denali.c 46.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * NAND Flash Controller Device Driver
 * Copyright © 2009-2010, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */
#include <linux/interrupt.h>
#include <linux/delay.h>
21
#include <linux/dma-mapping.h>
22 23 24 25 26 27 28 29 30
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>

#include "denali.h"

MODULE_LICENSE("GPL");

31 32
/*
 * We define a module parameter that allows the user to override
33 34 35 36 37 38
 * the hardware and decide what timing mode should be used.
 */
#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
39 40
MODULE_PARM_DESC(onfi_timing_mode,
	   "Overrides default ONFI setting. -1 indicates use default timings");
41 42 43

#define DENALI_NAND_NAME    "denali-nand"

44 45 46 47
/*
 * We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience.
 */
48 49 50 51 52 53 54 55 56 57
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP)
58

59 60 61 62
/*
 * indicates whether or not the internal value for the flash bank is
 * valid or not
 */
63
#define CHIP_SELECT_INVALID	-1
64 65 66

#define SUPPORT_8BITECC		1

67 68 69 70
/*
 * This macro divides two integers and rounds fractional values up
 * to the nearest integer value.
 */
71 72
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))

73 74
/*
 * this macro allows us to convert from an MTD structure to our own
75 76
 * device context (denali) structure.
 */
77 78 79 80
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}
81

82 83 84 85
/*
 * These constants are defined by the driver to enable common driver
 * configuration options.
 */
86 87 88
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43
89
#define PIPELINE_ACCESS		0x2000
90 91 92 93 94 95 96 97 98

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

99 100 101 102
/*
 * this is a helper macro that allows us to
 * format the bank into the proper bits for the controller
 */
103 104 105 106
#define BANK(x) ((x) << 24)

/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
107 108 109 110
static uint32_t wait_for_irq(struct denali_nand_info *denali,
							uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask);
111 112
static uint32_t read_interrupt_status(struct denali_nand_info *denali);

113 114 115 116
/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
117
 * abstracts this common operation.
118
 */
119 120
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
121
{
122 123
	iowrite32(address, denali->flash_mem);
	iowrite32(data, denali->flash_mem + 0x10);
124 125 126 127 128 129
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
130
	iowrite32(address, denali->flash_mem);
131 132 133
	*pdata = ioread32(denali->flash_mem + 0x10);
}

134 135 136 137
/*
 * We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data.
 */
138 139 140 141 142 143 144 145 146 147 148 149 150
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
151
	uint32_t cmd;
152 153 154 155

	/* initialize the data buffer to store status */
	reset_buf(denali);

156 157 158 159 160
	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
	if (cmd)
		write_byte_to_buf(denali, NAND_STATUS_WP);
	else
		write_byte_to_buf(denali, 0);
161 162 163 164 165
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
166
	uint32_t irq_status;
167
	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
168 169 170

	clear_interrupts(denali);

171
	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
172 173

	irq_status = wait_for_irq(denali, irq_mask);
174

175
	if (irq_status & INTR_STATUS__TIME_OUT)
176
		dev_err(denali->dev, "reset bank failed.\n");
177 178 179
}

/* Reset the flash controller */
180
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
181
{
182
	int i;
183

184
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
185
		__FILE__, __LINE__, __func__);
186

187
	for (i = 0; i < denali->max_banks; i++)
188 189
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		denali->flash_reg + INTR_STATUS(i));
190

191
	for (i = 0; i < denali->max_banks; i++) {
192
		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
193
		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
194
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
195
			cpu_relax();
196 197
		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
			INTR_STATUS__TIME_OUT)
198
			dev_dbg(denali->dev,
199 200 201
			"NAND Reset operation timed out on bank %d\n", i);
	}

202
	for (i = 0; i < denali->max_banks; i++)
203
		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
204
			  denali->flash_reg + INTR_STATUS(i));
205 206 207 208

	return PASS;
}

209 210
/*
 * this routine calculates the ONFI timing values for a given mode and
211 212
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
213
 */
214
static void nand_onfi_timing_set(struct denali_nand_info *denali,
215
								uint16_t mode)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};

	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint16_t dv_window = 0;
	uint16_t en_lo, en_hi;
	uint16_t acc_clks;
	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

236
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
237
		__FILE__, __LINE__, __func__);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	en_lo = CEIL_DIV(Trp[mode], CLK_X);
	en_hi = CEIL_DIV(Treh[mode], CLK_X);
#if ONFI_BLOOM_TIME
	if ((en_hi * CLK_X) < (Treh[mode] + 2))
		en_hi++;
#endif

	if ((en_lo + en_hi) * CLK_X < Trc[mode])
		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];

257 258
		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
					data_invalid_rhoh : data_invalid_rloh;
259 260 261 262 263 264 265 266 267

		dv_window = data_invalid - Trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = CEIL_DIV(Trea[mode], CLK_X);

268
	while (acc_clks * CLK_X - Trea[mode] < 3)
269 270
		acc_clks++;

271
	if (data_invalid - acc_clks * CLK_X < 2)
272
		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
273
			 __FILE__, __LINE__);
274 275 276 277 278 279 280 281 282 283

	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (Tcea[mode]) {
284
		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
285 286 287 288 289 290 291 292 293
			cs_cnt++;
	}

#if MODE5_WORKAROUND
	if (mode == 5)
		acc_clks = 5;
#endif

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
294 295
	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
296 297
		acc_clks = 6;

298 299 300 301 302 303 304 305
	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
306 307 308 309 310 311
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
312 313 314

	/*
	 * we needn't to do a reset here because driver has already
315
	 * reset all the banks before
316
	 */
317 318 319 320 321
	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
		ONFI_TIMING_MODE__VALUE))
		return FAIL;

	for (i = 5; i > 0; i--) {
322 323
		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
324 325 326
			break;
	}

327
	nand_onfi_timing_set(denali, i);
328

329 330 331 332
	/*
	 * By now, all the ONFI devices we know support the page cache
	 * rw feature. So here we enable the pipeline_rw_ahead feature
	 */
333 334 335 336 337 338
	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */

	return PASS;
}

339 340
static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
341
{
342
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
343
		/* Set timing register values according to datasheet */
344 345 346 347 348 349 350
		iowrite32(5, denali->flash_reg + ACC_CLKS);
		iowrite32(20, denali->flash_reg + RE_2_WE);
		iowrite32(12, denali->flash_reg + WE_2_RE);
		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
351 352 353 354 355 356 357
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

358 359 360 361
	/*
	 * Workaround to fix a controller bug which reports a wrong
	 * spare area size for some kind of Toshiba NAND device
	 */
362 363
	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
364
		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
365 366
		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
367
		iowrite32(tmp,
368
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
369
#if SUPPORT_15BITECC
370
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
371
#elif SUPPORT_8BITECC
372
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
373 374 375 376
#endif
	}
}

377 378
static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
379 380 381
{
	uint32_t main_size, spare_size;

382
	switch (device_id) {
383 384
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
385 386 387
		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
388 389 390 391
		main_size = 4096 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			ioread32(denali->flash_reg + DEVICES_CONNECTED);
392
		iowrite32(main_size,
393
				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
394
		iowrite32(spare_size,
395
				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
396
		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
397
#if SUPPORT_15BITECC
398
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
399
#elif SUPPORT_8BITECC
400
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
401 402 403
#endif
		break;
	default:
404
		dev_warn(denali->dev,
405 406 407
			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
			 "Will use default parameter values instead.\n",
			 device_id);
408 409 410
	}
}

411 412
/*
 * determines how many NAND chips are connected to the controller. Note for
413
 * Intel CE4100 devices we don't support more than one device.
414 415 416
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
417
	uint32_t id[denali->max_banks];
418 419 420
	int i;

	denali->total_used_banks = 1;
421
	for (i = 0; i < denali->max_banks; i++) {
422 423
		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
424
		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
425

426
		dev_dbg(denali->dev,
427 428 429 430 431 432 433 434 435 436 437 438 439
			"Return 1st ID for bank[%d]: %x\n", i, id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break; /* WTF? */
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}

440
	if (denali->platform == INTEL_CE4100) {
441 442
		/*
		 * Platform limitations of the CE4100 device limit
443
		 * users to a single chip solution for NAND.
444 445
		 * Multichip support is not enabled.
		 */
446
		if (denali->total_used_banks != 1) {
447
			dev_err(denali->dev,
448
				"Sorry, Intel CE4100 only supports a single NAND device.\n");
449 450 451
			BUG();
		}
	}
452
	dev_dbg(denali->dev,
453 454 455
		"denali->total_used_banks: %d\n", denali->total_used_banks);
}

456 457 458 459 460 461 462
/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->flash_reg + FEATURES);
463 464 465 466 467 468
	/*
	 * Read the revision register, so we can calculate the max_banks
	 * properly: the encoding changed from rev 5.0 to 5.1
	 */
	u32 revision = MAKE_COMPARABLE_REVISION(
				ioread32(denali->flash_reg + REVISION));
469

470 471 472 473
	if (revision < REVISION_5_1)
		denali->max_banks = 2 << (features & FEATURES__N_BANKS);
	else
		denali->max_banks = 1 << (features & FEATURES__N_BANKS);
474 475
}

476 477
static void detect_partition_feature(struct denali_nand_info *denali)
{
478 479
	/*
	 * For MRST platform, denali->fwblks represent the
480 481 482 483
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
484
	 */
485
	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
486 487
		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
488
			denali->fwblks =
489 490
			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
491
			     denali->blksperchip)
492
			    +
493 494
			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
495
		} else {
496
			denali->fwblks = SPECTRA_START_BLOCK;
497 498
		}
	} else {
499
		denali->fwblks = SPECTRA_START_BLOCK;
500
	}
501 502
}

503
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
504 505
{
	uint16_t status = PASS;
506
	uint32_t id_bytes[8], addr;
507 508
	uint8_t maf_id, device_id;
	int i;
509

510
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
511
			__FILE__, __LINE__, __func__);
512

513 514 515 516 517
	/*
	 * Use read id method to get device ID and other params.
	 * For some NAND chips, controller can't report the correct
	 * device ID by reading from DEVICE_ID register
	 */
518 519 520
	addr = MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, addr | 0, 0x90);
	index_addr(denali, addr | 1, 0);
521
	for (i = 0; i < 8; i++)
522 523 524
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];
525 526 527 528 529

	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (FAIL == get_onfi_nand_para(denali))
			return FAIL;
530
	} else if (maf_id == 0xEC) { /* Samsung NAND */
531
		get_samsung_nand_para(denali, device_id);
532
	} else if (maf_id == 0x98) { /* Toshiba NAND */
533
		get_toshiba_nand_para(denali);
534 535
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
536 537
	}

538
	dev_info(denali->dev,
539
			"Dump timing register values:\n"
540 541
			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
542 543 544
			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
			ioread32(denali->flash_reg + ACC_CLKS),
			ioread32(denali->flash_reg + RE_2_WE),
545
			ioread32(denali->flash_reg + RE_2_RE),
546 547 548 549 550 551 552 553 554 555
			ioread32(denali->flash_reg + WE_2_RE),
			ioread32(denali->flash_reg + ADDR_2_DATA),
			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
			ioread32(denali->flash_reg + CS_SETUP_CNT));

	find_valid_banks(denali);

	detect_partition_feature(denali);

556 557
	/*
	 * If the user specified to override the default timings
558
	 * with a specific ONFI mode, we apply those changes here.
559 560
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
561
		nand_onfi_timing_set(denali, onfi_timing_mode);
562 563 564 565

	return status;
}

566
static void denali_set_intr_modes(struct denali_nand_info *denali,
567 568
					uint16_t INT_ENABLE)
{
569
	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
570
		__FILE__, __LINE__, __func__);
571 572

	if (INT_ENABLE)
573
		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
574
	else
575
		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
576 577
}

578 579
/*
 * validation function to verify that the controlling software is making
580
 * a valid request
581 582 583
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
584
	return flash_bank >= 0 && flash_bank < 4;
585 586 587 588
}

static void denali_irq_init(struct denali_nand_info *denali)
{
589
	uint32_t int_mask;
590
	int i;
591 592

	/* Disable global interrupts */
593
	denali_set_intr_modes(denali, false);
594 595 596 597

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
598
	for (i = 0; i < denali->max_banks; ++i)
599
		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
600 601 602 603 604 605

	denali_irq_enable(denali, int_mask);
}

static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
606
	denali_set_intr_modes(denali, false);
607 608 609
	free_irq(irqnum, denali);
}

610 611
static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
612
{
613 614
	int i;

615
	for (i = 0; i < denali->max_banks; ++i)
616
		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
617 618
}

619 620
/*
 * This function only returns when an interrupt that this driver cares about
621
 * occurs. This is to reduce the overhead of servicing interrupts
622 623 624
 */
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
625
	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
626 627 628
}

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
629 630
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
631
{
632
	uint32_t intr_status_reg;
633

634
	intr_status_reg = INTR_STATUS(denali->flash_bank);
635

636
	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
637 638 639 640
}

static void clear_interrupts(struct denali_nand_info *denali)
{
641 642
	uint32_t status;

643 644 645
	spin_lock_irq(&denali->irq_lock);

	status = read_interrupt_status(denali);
646
	clear_interrupt(denali, status);
647 648 649 650 651 652 653

	denali->irq_status = 0x0;
	spin_unlock_irq(&denali->irq_lock);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
654
	uint32_t intr_status_reg;
655

656
	intr_status_reg = INTR_STATUS(denali->flash_bank);
657 658 659 660

	return ioread32(denali->flash_reg + intr_status_reg);
}

661 662 663
/*
 * This is the interrupt service routine. It handles all interrupts
 * sent to this device. Note that on CE4100, this is a shared interrupt.
664 665 666 667
 */
static irqreturn_t denali_isr(int irq, void *dev_id)
{
	struct denali_nand_info *denali = dev_id;
668
	uint32_t irq_status;
669 670 671 672
	irqreturn_t result = IRQ_NONE;

	spin_lock(&denali->irq_lock);

673
	/* check to see if a valid NAND chip has been selected. */
674
	if (is_flash_bank_valid(denali->flash_bank)) {
675 676 677 678
		/*
		 * check to see if controller generated the interrupt,
		 * since this is a shared interrupt
		 */
679 680
		irq_status = denali_irq_detected(denali);
		if (irq_status != 0) {
681 682 683
			/* handle interrupt */
			/* first acknowledge it */
			clear_interrupt(denali, irq_status);
684 685 686 687
			/*
			 * store the status in the device context for someone
			 * to read
			 */
688 689 690 691 692 693 694 695 696 697 698 699 700 701
			denali->irq_status |= irq_status;
			/* notify anyone who cares that it happened */
			complete(&denali->complete);
			/* tell the OS that we've handled this */
			result = IRQ_HANDLED;
		}
	}
	spin_unlock(&denali->irq_lock);
	return result;
}
#define BANK(x) ((x) << 24)

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
702 703
	unsigned long comp_res;
	uint32_t intr_status;
704 705
	unsigned long timeout = msecs_to_jiffies(1000);

706
	do {
707 708
		comp_res =
			wait_for_completion_timeout(&denali->complete, timeout);
709 710 711
		spin_lock_irq(&denali->irq_lock);
		intr_status = denali->irq_status;

712
		if (intr_status & irq_mask) {
713 714 715 716 717
			denali->irq_status &= ~irq_mask;
			spin_unlock_irq(&denali->irq_lock);
			/* our interrupt was detected */
			break;
		}
718 719 720 721 722 723

		/*
		 * these are not the interrupts you are looking for -
		 * need to wait again
		 */
		spin_unlock_irq(&denali->irq_lock);
724 725
	} while (comp_res != 0);

726
	if (comp_res == 0) {
727
		/* timeout */
728
		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
729
				intr_status, irq_mask);
730 731 732 733 734 735

		intr_status = 0;
	}
	return intr_status;
}

736 737 738 739
/*
 * This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred.
 */
740
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
741 742
				bool transfer_spare)
{
743
	int ecc_en_flag, transfer_spare_flag;
744 745 746 747 748 749

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
750
	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
751
	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
752 753
}

754 755
/*
 * sends a pipeline command operation to the controller. See the Denali NAND
756
 * controller's user guide for more information (section 4.2.3.6).
757
 */
758
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
759 760
				    bool ecc_en, bool transfer_spare,
				    int access_type, int op)
761 762
{
	int status = PASS;
763 764
	uint32_t page_count = 1;
	uint32_t addr, cmd, irq_status, irq_mask;
765

766
	if (op == DENALI_READ)
767
		irq_mask = INTR_STATUS__LOAD_COMP;
768 769 770 771
	else if (op == DENALI_WRITE)
		irq_mask = 0;
	else
		BUG();
772 773 774

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

775
	clear_interrupts(denali);
776 777 778

	addr = BANK(denali->flash_bank) | denali->page;

779
	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
780
		cmd = MODE_01 | addr;
781
		iowrite32(cmd, denali->flash_mem);
782
	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
783
		/* read spare area */
784
		cmd = MODE_10 | addr;
785
		index_addr(denali, cmd, access_type);
786

787
		cmd = MODE_01 | addr;
788
		iowrite32(cmd, denali->flash_mem);
789
	} else if (op == DENALI_READ) {
790
		/* setup page read request for access type */
791
		cmd = MODE_10 | addr;
792
		index_addr(denali, cmd, access_type);
793

794 795 796 797
		/*
		 * page 33 of the NAND controller spec indicates we should not
		 * use the pipeline commands in Spare area only mode.
		 * So we don't.
798
		 */
799
		if (access_type == SPARE_ACCESS) {
800
			cmd = MODE_01 | addr;
801
			iowrite32(cmd, denali->flash_mem);
802
		} else {
803
			index_addr(denali, cmd,
804
					PIPELINE_ACCESS | op | page_count);
805

806 807
			/*
			 * wait for command to be accepted
808
			 * can always use status0 bit as the
809 810
			 * mask is identical for each bank.
			 */
811 812
			irq_status = wait_for_irq(denali, irq_mask);

813
			if (irq_status == 0) {
814
				dev_err(denali->dev,
815 816
					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
					cmd, denali->page, addr);
817
				status = FAIL;
818
			} else {
819
				cmd = MODE_01 | addr;
820
				iowrite32(cmd, denali->flash_mem);
821 822 823 824 825 826 827
			}
		}
	}
	return status;
}

/* helper function that simply writes a buffer to the flash */
828
static int write_data_to_flash_mem(struct denali_nand_info *denali,
829
				   const uint8_t *buf, int len)
830
{
831 832
	uint32_t *buf32;
	int i;
833

834 835 836 837
	/*
	 * verify that the len is a multiple of 4.
	 * see comment in read_data_from_flash_mem()
	 */
838 839 840 841 842
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
843
		iowrite32(*buf32++, denali->flash_mem + 0x10);
844
	return i * 4; /* intent is to return the number of bytes read */
845 846 847
}

/* helper function that simply reads a buffer from the flash */
848
static int read_data_from_flash_mem(struct denali_nand_info *denali,
849
				    uint8_t *buf, int len)
850
{
851 852
	uint32_t *buf32;
	int i;
853

854 855 856 857 858
	/*
	 * we assume that len will be a multiple of 4, if not it would be nice
	 * to know about it ASAP rather than have random failures...
	 * This assumption is based on the fact that this function is designed
	 * to be used to read flash pages, which are typically multiples of 4.
859 860 861 862 863 864 865
	 */
	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = ioread32(denali->flash_mem + 0x10);
866
	return i * 4; /* intent is to return the number of bytes read */
867 868 869 870 871 872
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
873
	uint32_t irq_status;
874 875
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
876 877 878 879
	int status = 0;

	denali->page = page;

880
	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
881
							DENALI_WRITE) == PASS) {
882 883 884 885 886
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

887
		if (irq_status == 0) {
888
			dev_err(denali->dev, "OOB write failed\n");
889 890
			status = -EIO;
		}
891
	} else {
892
		dev_err(denali->dev, "unable to send pipeline command\n");
893
		status = -EIO;
894 895 896 897 898 899 900 901
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
902 903
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
	uint32_t irq_status, addr, cmd;
904 905 906

	denali->page = page;

907
	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
908
							DENALI_READ) == PASS) {
909
		read_data_from_flash_mem(denali, buf, mtd->oobsize);
910

911 912 913 914 915
		/*
		 * wait for command to be accepted
		 * can always use status0 bit as the
		 * mask is identical for each bank.
		 */
916 917 918
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
919
			dev_err(denali->dev, "page on OOB timeout %d\n",
920
					denali->page);
921

922 923
		/*
		 * We set the device back to MAIN_ACCESS here as I observed
924 925 926
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
927
		 * if you are in MAIN_ACCESS.
928 929
		 */
		addr = BANK(denali->flash_bank) | denali->page;
930
		cmd = MODE_10 | addr;
931
		index_addr(denali, cmd, MAIN_ACCESS);
932 933 934
	}
}

935 936
/*
 * this function examines buffers to see if they contain data that
937 938
 * indicate that the buffer is part of an erased region of flash.
 */
939
static bool is_erased(uint8_t *buf, int len)
940
{
941
	int i;
942

943 944 945 946 947 948 949 950 951 952
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}
#define ECC_SECTOR_SIZE 512

#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
953 954
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
955 956
#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)

957
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
958
		       uint32_t irq_status, unsigned int *max_bitflips)
959 960
{
	bool check_erased_page = false;
961
	unsigned int bitflips = 0;
962

963
	if (irq_status & INTR_STATUS__ECC_ERR) {
964
		/* read the ECC errors. we'll ignore them for now */
965 966
		uint32_t err_address, err_correction_info, err_byte,
			 err_sector, err_device, err_correction_value;
967
		denali_set_intr_modes(denali, false);
968

969
		do {
970
			err_address = ioread32(denali->flash_reg +
971 972 973 974
						ECC_ERROR_ADDRESS);
			err_sector = ECC_SECTOR(err_address);
			err_byte = ECC_BYTE(err_address);

975
			err_correction_info = ioread32(denali->flash_reg +
976
						ERR_CORRECTION_INFO);
977
			err_correction_value =
978 979 980
				ECC_CORRECTION_VALUE(err_correction_info);
			err_device = ECC_ERR_DEVICE(err_correction_info);

981
			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
982 983
				/*
				 * If err_byte is larger than ECC_SECTOR_SIZE,
L
Lucas De Marchi 已提交
984
				 * means error happened in OOB, so we ignore
985 986 987 988
				 * it. It's no need for us to correct it
				 * err_device is represented the NAND error
				 * bits are happened in if there are more
				 * than one NAND connected.
989
				 */
990
				if (err_byte < ECC_SECTOR_SIZE) {
991 992
					struct mtd_info *mtd =
						nand_to_mtd(&denali->nand);
993
					int offset;
994

995 996 997 998 999
					offset = (err_sector *
							ECC_SECTOR_SIZE +
							err_byte) *
							denali->devnum +
							err_device;
1000 1001
					/* correct the ECC error */
					buf[offset] ^= err_correction_value;
1002
					mtd->ecc_stats.corrected++;
1003
					bitflips++;
1004
				}
1005
			} else {
1006 1007
				/*
				 * if the error is not correctable, need to
1008 1009
				 * look at the page to see if it is an erased
				 * page. if so, then it's not a real ECC error
1010
				 */
1011 1012 1013
				check_erased_page = true;
			}
		} while (!ECC_LAST_ERR(err_correction_info));
1014 1015
		/*
		 * Once handle all ecc errors, controller will triger
1016 1017
		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
		 * for a while for this interrupt
1018
		 */
1019
		while (!(read_interrupt_status(denali) &
1020
				INTR_STATUS__ECC_TRANSACTION_DONE))
1021 1022 1023
			cpu_relax();
		clear_interrupts(denali);
		denali_set_intr_modes(denali, true);
1024
	}
1025
	*max_bitflips = bitflips;
1026 1027 1028 1029
	return check_erased_page;
}

/* programs the controller to either enable/disable DMA transfers */
1030
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1031
{
1032
	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1033 1034 1035 1036
	ioread32(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
1037
static void denali_setup_dma(struct denali_nand_info *denali, int op)
1038
{
1039
	uint32_t mode;
1040
	const int page_count = 1;
1041
	uint32_t addr = denali->buf.dma_buf;
1042 1043 1044 1045 1046 1047 1048 1049 1050

	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
1051
	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1052 1053

	/* 3. set memory low address bits 23:8 */
1054
	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
1055

1056
	/* 4. interrupt when complete, burst len = 64 bytes */
1057 1058 1059
	index_addr(denali, mode | 0x14000, 0x2400);
}

1060 1061 1062 1063
/*
 * writes a page. user specifies type, and this function handles the
 * configuration details.
 */
1064
static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1065 1066 1067 1068
			const uint8_t *buf, bool raw_xfer)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1069
	size_t size = mtd->writesize + mtd->oobsize;
1070
	uint32_t irq_status;
1071 1072
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
						INTR_STATUS__PROGRAM_FAIL;
1073

1074 1075
	/*
	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1076 1077 1078 1079 1080 1081 1082 1083
	 * !raw_xfer - enable ecc
	 * raw_xfer - transfer spare
	 */
	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.buf, buf, mtd->writesize);

1084
	if (raw_xfer) {
1085
		/* transfer the data to the spare area */
1086 1087 1088
		memcpy(denali->buf.buf + mtd->writesize,
			chip->oob_poi,
			mtd->oobsize);
1089 1090
	}

1091
	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1092 1093

	clear_interrupts(denali);
1094
	denali_enable_dma(denali, true);
1095

1096
	denali_setup_dma(denali, DENALI_WRITE);
1097 1098 1099 1100

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1101
	if (irq_status == 0) {
1102 1103
		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
			raw_xfer);
1104
		denali->status = NAND_STATUS_FAIL;
1105 1106
	}

1107
	denali_enable_dma(denali, false);
1108
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1109 1110

	return 0;
1111 1112 1113 1114
}

/* NAND core entry points */

1115 1116
/*
 * this is the callback that the NAND core calls to write a page. Since
1117 1118
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
1119
 */
1120
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1121
				const uint8_t *buf, int oob_required, int page)
1122
{
1123 1124 1125 1126
	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
1127
	return write_page(mtd, chip, buf, false);
1128 1129
}

1130 1131
/*
 * This is the callback that the NAND core calls to write a page without ECC.
L
Lucas De Marchi 已提交
1132
 * raw access is similar to ECC page writes, so all the work is done in the
1133
 * write_page() function above.
1134
 */
1135
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1136 1137
				 const uint8_t *buf, int oob_required,
				 int page)
1138
{
1139 1140 1141 1142
	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */
1143
	return write_page(mtd, chip, buf, true);
1144 1145
}

1146
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1147 1148
			    int page)
{
1149
	return write_oob_data(mtd, chip->oob_poi, page);
1150 1151
}

1152
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1153
			   int page)
1154 1155 1156
{
	read_oob_data(mtd, chip->oob_poi, page);

1157
	return 0;
1158 1159 1160
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1161
			    uint8_t *buf, int oob_required, int page)
1162
{
1163
	unsigned int max_bitflips;
1164 1165 1166
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	dma_addr_t addr = denali->buf.dma_buf;
1167
	size_t size = mtd->writesize + mtd->oobsize;
1168

1169
	uint32_t irq_status;
1170 1171
	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
			    INTR_STATUS__ECC_ERR;
1172 1173
	bool check_erased_page = false;

1174
	if (page != denali->page) {
1175 1176 1177
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1178 1179 1180
		BUG();
	}

1181 1182
	setup_ecc_for_xfer(denali, true, false);

1183
	denali_enable_dma(denali, true);
1184
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1185 1186

	clear_interrupts(denali);
1187
	denali_setup_dma(denali, DENALI_READ);
1188 1189 1190 1191

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

1192
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1193 1194

	memcpy(buf, denali->buf.buf, mtd->writesize);
1195

1196
	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1197
	denali_enable_dma(denali, false);
1198

1199
	if (check_erased_page) {
1200
		read_oob_data(mtd, chip->oob_poi, denali->page);
1201 1202

		/* check ECC failures that may have occurred on erased pages */
1203
		if (check_erased_page) {
1204 1205 1206 1207
			if (!is_erased(buf, mtd->writesize))
				mtd->ecc_stats.failed++;
			if (!is_erased(buf, mtd->oobsize))
				mtd->ecc_stats.failed++;
1208
		}
1209
	}
1210
	return max_bitflips;
1211 1212 1213
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1214
				uint8_t *buf, int oob_required, int page)
1215 1216 1217
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	dma_addr_t addr = denali->buf.dma_buf;
1218
	size_t size = mtd->writesize + mtd->oobsize;
1219
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1220

1221
	if (page != denali->page) {
1222 1223 1224
		dev_err(denali->dev,
			"IN %s: page %d is not equal to denali->page %d",
			__func__, page, denali->page);
1225 1226 1227
		BUG();
	}

1228
	setup_ecc_for_xfer(denali, false, true);
1229
	denali_enable_dma(denali, true);
1230

1231
	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1232 1233

	clear_interrupts(denali);
1234
	denali_setup_dma(denali, DENALI_READ);
1235 1236

	/* wait for operation to complete */
1237
	wait_for_irq(denali, irq_mask);
1238

1239
	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1240

1241
	denali_enable_dma(denali, false);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	memcpy(buf, denali->buf.buf, mtd->writesize);
	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint8_t result = 0xff;

	if (denali->buf.head < denali->buf.tail)
		result = denali->buf.buf[denali->buf.head++];

	return result;
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272
	spin_lock_irq(&denali->irq_lock);
	denali->flash_bank = chip;
	spin_unlock_irq(&denali->irq_lock);
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
1273

1274 1275 1276 1277 1278
	denali->status = 0;

	return status;
}

1279
static int denali_erase(struct mtd_info *mtd, int page)
1280 1281 1282
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

1283
	uint32_t cmd, irq_status;
1284

1285
	clear_interrupts(denali);
1286 1287 1288

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1289
	index_addr(denali, cmd, 0x1);
1290 1291

	/* wait for erase to complete or failure to occur */
1292 1293
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);
1294

1295
	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1296 1297
}

1298
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1299 1300 1301
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
1302 1303
	uint32_t addr, id;
	int i;
1304

1305
	switch (cmd) {
1306 1307 1308 1309 1310 1311
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		read_status(denali);
		break;
	case NAND_CMD_READID:
1312
	case NAND_CMD_PARAM:
1313
		reset_buf(denali);
1314 1315
		/*
		 * sometimes ManufactureId read from register is not right
1316 1317
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
1318
		 */
1319 1320
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, 0x90);
1321
		index_addr(denali, addr | 1, col);
1322
		for (i = 0; i < 8; i++) {
1323
			index_addr_read_data(denali, addr | 2, &id);
1324
			write_byte_to_buf(denali, id);
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
		}
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	default:
1338
		pr_err(": unsupported command received 0x%x\n", cmd);
1339
		break;
1340 1341 1342 1343 1344 1345 1346
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
1347 1348
	/*
	 * tell driver how many bit controller will skip before
1349 1350 1351
	 * writing ECC code in OOB, this register may be already
	 * set by firmware. So we read this value out.
	 * if this value is 0, just let it be.
1352
	 */
1353 1354
	denali->bbtskipbytes = ioread32(denali->flash_reg +
						SPARE_AREA_SKIP_BYTES);
1355
	detect_max_banks(denali);
1356
	denali_nand_reset(denali);
1357 1358
	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1359
			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1360

1361
	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1362 1363

	/* Should set value for these registers when init */
1364 1365
	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1366 1367
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
1368 1369
}

1370 1371
/*
 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1372 1373
 * but denali controller in MRST only support 15bit and 8bit ECC
 * correction
1374
 */
1375 1376
#define ECC_8BITS	14
#define ECC_15BITS	26
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->bbtskipbytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
};

static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	8,
	.len = 4,
	.veroffs = 12,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

1436
/* initialize driver data structures */
1437
static void denali_drv_init(struct denali_nand_info *denali)
1438
{
1439 1440 1441 1442
	/*
	 * the completion object will be used to notify
	 * the callee that the interrupt is done
	 */
1443 1444
	init_completion(&denali->complete);

1445 1446 1447 1448
	/*
	 * the spinlock will be used to synchronize the ISR with any
	 * element that might be access shared data (interrupt status)
	 */
1449 1450 1451 1452 1453 1454 1455 1456 1457
	spin_lock_init(&denali->irq_lock);

	/* indicate that MTD has not selected a valid bank yet */
	denali->flash_bank = CHIP_SELECT_INVALID;

	/* initialize our irq_status variable to indicate no interrupts */
	denali->irq_status = 0;
}

1458
int denali_init(struct denali_nand_info *denali)
1459
{
1460
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1461
	int ret;
1462

1463
	if (denali->platform == INTEL_CE4100) {
1464 1465
		/*
		 * Due to a silicon limitation, we can only support
1466 1467
		 * ONFI timing mode 1 and below.
		 */
1468
		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1469 1470
			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
			return -EINVAL;
1471 1472 1473
		}
	}

1474 1475 1476 1477 1478
	/* allocate a temporary buffer for nand_scan_ident() */
	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
					GFP_DMA | GFP_KERNEL);
	if (!denali->buf.buf)
		return -ENOMEM;
1479

1480
	mtd->dev.parent = denali->dev;
1481 1482 1483
	denali_hw_init(denali);
	denali_drv_init(denali);

1484 1485 1486 1487
	/*
	 * denali_isr register is done after all the hardware
	 * initilization is finished
	 */
1488
	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1489
			DENALI_NAND_NAME, denali)) {
1490 1491
		pr_err("Spectra: Unable to allocate IRQ\n");
		return -ENODEV;
1492 1493 1494
	}

	/* now that our ISR is registered, we can enable interrupts */
1495
	denali_set_intr_modes(denali, true);
1496
	mtd->name = "denali-nand";
1497 1498 1499 1500 1501 1502 1503

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.waitfunc = denali_waitfunc;

1504 1505
	/*
	 * scan for NAND devices attached to the controller
1506
	 * this is the first stage in a two step process to register
1507 1508
	 * with the nand subsystem
	 */
1509
	if (nand_scan_ident(mtd, denali->max_banks, NULL)) {
1510
		ret = -ENXIO;
1511
		goto failed_req_irq;
1512
	}
1513

1514 1515 1516
	/* allocate the right size buffer now */
	devm_kfree(denali->dev, denali->buf.buf);
	denali->buf.buf = devm_kzalloc(denali->dev,
1517
			     mtd->writesize + mtd->oobsize,
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
			     GFP_KERNEL);
	if (!denali->buf.buf) {
		ret = -ENOMEM;
		goto failed_req_irq;
	}

	/* Is 32-bit DMA supported? */
	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
	if (ret) {
		pr_err("Spectra: no usable DMA configuration\n");
		goto failed_req_irq;
	}

	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1532
			     mtd->writesize + mtd->oobsize,
1533 1534 1535 1536
			     DMA_BIDIRECTIONAL);
	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
		ret = -EIO;
1537
		goto failed_req_irq;
1538 1539
	}

1540 1541 1542 1543
	/*
	 * support for multi nand
	 * MTD known nothing about multi nand, so we should tell it
	 * the real pagesize and anything necessery
1544 1545 1546 1547 1548 1549 1550 1551 1552
	 */
	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
	denali->nand.chipsize <<= (denali->devnum - 1);
	denali->nand.page_shift += (denali->devnum - 1);
	denali->nand.pagemask = (denali->nand.chipsize >>
						denali->nand.page_shift) - 1;
	denali->nand.bbt_erase_shift += (denali->devnum - 1);
	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
	denali->nand.chip_shift += (denali->devnum - 1);
1553 1554 1555 1556
	mtd->writesize <<= (denali->devnum - 1);
	mtd->oobsize <<= (denali->devnum - 1);
	mtd->erasesize <<= (denali->devnum - 1);
	mtd->size = denali->nand.numchips * denali->nand.chipsize;
1557 1558
	denali->bbtskipbytes *= denali->devnum;

1559 1560
	/*
	 * second stage of the NAND scan
1561
	 * this stage requires information regarding ECC and
1562 1563
	 * bad block management.
	 */
1564 1565 1566 1567 1568 1569

	/* Bad block management */
	denali->nand.bbt_td = &bbt_main_descr;
	denali->nand.bbt_md = &bbt_mirror_descr;

	/* skip the scan for now until we have OOB read and write support */
1570
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1571
	denali->nand.options |= NAND_SKIP_BBTSCAN;
1572 1573
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

1574 1575 1576
	/* no subpage writes on denali */
	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;

1577 1578
	/*
	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1579 1580 1581
	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
	 * SLC if possible.
	 * */
1582
	if (!nand_is_slc(&denali->nand) &&
1583 1584
			(mtd->oobsize > (denali->bbtskipbytes +
			ECC_15BITS * (mtd->writesize /
1585 1586
			ECC_SECTOR_SIZE)))) {
		/* if MLC OOB size is large enough, use 15bit ECC*/
M
Mike Dunn 已提交
1587
		denali->nand.ecc.strength = 15;
1588
		denali->nand.ecc.bytes = ECC_15BITS;
1589
		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1590 1591
	} else if (mtd->oobsize < (denali->bbtskipbytes +
			ECC_8BITS * (mtd->writesize /
1592
			ECC_SECTOR_SIZE))) {
1593
		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1594
		goto failed_req_irq;
1595
	} else {
M
Mike Dunn 已提交
1596
		denali->nand.ecc.strength = 8;
1597
		denali->nand.ecc.bytes = ECC_8BITS;
1598
		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1599 1600
	}

1601
	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1602
	denali->nand.ecc.bytes *= denali->devnum;
M
Mike Dunn 已提交
1603
	denali->nand.ecc.strength *= denali->devnum;
1604

1605 1606 1607 1608 1609
	/*
	 * Let driver know the total blocks number and how many blocks
	 * contained by each nand chip. blksperchip will help driver to
	 * know how many blocks is taken by FW.
	 */
1610
	denali->totalblks = mtd->size >> denali->nand.phys_erase_shift;
1611 1612
	denali->blksperchip = denali->totalblks / denali->nand.numchips;

1613
	/* override the default read operations */
1614
	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1615 1616 1617 1618 1619 1620
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;
1621
	denali->nand.erase = denali_erase;
1622

1623
	if (nand_scan_tail(mtd)) {
1624
		ret = -ENXIO;
1625
		goto failed_req_irq;
1626 1627
	}

1628
	ret = mtd_device_register(mtd, NULL, 0);
1629
	if (ret) {
1630
		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1631
				ret);
1632
		goto failed_req_irq;
1633 1634 1635
	}
	return 0;

1636
failed_req_irq:
1637 1638
	denali_irq_cleanup(denali->irq, denali);

1639 1640
	return ret;
}
1641
EXPORT_SYMBOL(denali_init);
1642 1643

/* driver exit point */
1644
void denali_remove(struct denali_nand_info *denali)
1645
{
1646
	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1647 1648 1649 1650 1651
	/*
	 * Pre-compute DMA buffer size to avoid any problems in case
	 * nand_release() ever changes in a way that mtd->writesize and
	 * mtd->oobsize are not reliable after this call.
	 */
1652
	int bufsize = mtd->writesize + mtd->oobsize;
1653

1654
	nand_release(mtd);
1655
	denali_irq_cleanup(denali->irq, denali);
1656
	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
1657
			 DMA_BIDIRECTIONAL);
1658
}
1659
EXPORT_SYMBOL(denali_remove);