fair.c 248.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371 372 373 374 375
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
376
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
377 378 379
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
380
		return se->cfs_rq;
P
Peter Zijlstra 已提交
381

P
Peter Zijlstra 已提交
382
	return NULL;
P
Peter Zijlstra 已提交
383 384 385 386 387 388 389
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

390 391 392 393 394 395 396 397 398 399 400 401 402
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
403 404
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

422 423 424 425 426 427
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
428

429 430 431
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
432 433 434 435
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
436 437
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
438

P
Peter Zijlstra 已提交
439
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440
{
P
Peter Zijlstra 已提交
441
	return &task_rq(p)->cfs;
442 443
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

458 459 460 461 462 463 464 465
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

474 475 476 477 478
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
479 480
#endif	/* CONFIG_FAIR_GROUP_SCHED */

481
static __always_inline
482
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 484 485 486 487

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

488
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489
{
490
	s64 delta = (s64)(vruntime - max_vruntime);
491
	if (delta > 0)
492
		max_vruntime = vruntime;
493

494
	return max_vruntime;
495 496
}

497
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

506 507 508 509 510 511
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

512 513
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
514 515
	struct sched_entity *curr = cfs_rq->curr;

516 517
	u64 vruntime = cfs_rq->min_vruntime;

518 519 520 521 522 523
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
524 525 526 527 528 529

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

530
		if (!curr)
531 532 533 534 535
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

536
	/* ensure we never gain time by being placed backwards. */
537
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 539 540 541
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
542 543
}

544 545 546
/*
 * Enqueue an entity into the rb-tree:
 */
547
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
564
		if (entity_before(se, entry)) {
565 566 567 568 569 570 571 572 573 574 575
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
576
	if (leftmost)
I
Ingo Molnar 已提交
577
		cfs_rq->rb_leftmost = &se->run_node;
578 579 580 581 582

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

583
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584
{
P
Peter Zijlstra 已提交
585 586 587 588 589 590
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
591

592 593 594
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

595
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596
{
597 598 599 600 601 602
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
603 604
}

605 606 607 608 609 610 611 612 613 614 615
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
616
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617
{
618
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619

620 621
	if (!last)
		return NULL;
622 623

	return rb_entry(last, struct sched_entity, run_node);
624 625
}

626 627 628 629
/**************************************************************
 * Scheduling class statistics methods:
 */

630
int sched_proc_update_handler(struct ctl_table *table, int write,
631
		void __user *buffer, size_t *lenp,
632 633
		loff_t *ppos)
{
634
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635
	unsigned int factor = get_update_sysctl_factor();
636 637 638 639 640 641 642

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

643 644 645 646 647 648 649
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

650 651 652
	return 0;
}
#endif
653

654
/*
655
 * delta /= w
656
 */
657
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658
{
659
	if (unlikely(se->load.weight != NICE_0_LOAD))
660
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 662 663 664

	return delta;
}

665 666 667
/*
 * The idea is to set a period in which each task runs once.
 *
668
 * When there are too many tasks (sched_nr_latency) we have to stretch
669 670 671 672
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
673 674
static u64 __sched_period(unsigned long nr_running)
{
675 676 677 678
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
679 680
}

681 682 683 684
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
685
 * s = p*P[w/rw]
686
 */
P
Peter Zijlstra 已提交
687
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688
{
M
Mike Galbraith 已提交
689
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690

M
Mike Galbraith 已提交
691
	for_each_sched_entity(se) {
L
Lin Ming 已提交
692
		struct load_weight *load;
693
		struct load_weight lw;
L
Lin Ming 已提交
694 695 696

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
697

M
Mike Galbraith 已提交
698
		if (unlikely(!se->on_rq)) {
699
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
700 701 702 703

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
704
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
705 706
	}
	return slice;
707 708
}

709
/*
A
Andrei Epure 已提交
710
 * We calculate the vruntime slice of a to-be-inserted task.
711
 *
712
 * vs = s/w
713
 */
714
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
715
{
716
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 718
}

719
#ifdef CONFIG_SMP
720
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
721 722
static unsigned long task_h_load(struct task_struct *p);

723 724
/*
 * We choose a half-life close to 1 scheduling period.
725 726
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
727 728 729
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
730

731 732
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
733
{
734
	struct sched_avg *sa = &se->avg;
735

736 737 738 739 740 741 742
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
743 744 745 746 747 748 749 750
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
751
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
752 753 754 755 756
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
757
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
758
}
759

760
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
761
static void attach_entity_cfs_rq(struct sched_entity *se);
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
792
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
793 794 795 796 797 798 799 800 801 802 803 804 805

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
806 807 808 809 810 811 812 813 814 815 816 817 818 819

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
820
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
821 822 823 824
			return;
		}
	}

825
	attach_entity_cfs_rq(se);
826 827
}

828
#else /* !CONFIG_SMP */
829
void init_entity_runnable_average(struct sched_entity *se)
830 831
{
}
832 833 834
void post_init_entity_util_avg(struct sched_entity *se)
{
}
835 836 837
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
838
#endif /* CONFIG_SMP */
839

840
/*
841
 * Update the current task's runtime statistics.
842
 */
843
static void update_curr(struct cfs_rq *cfs_rq)
844
{
845
	struct sched_entity *curr = cfs_rq->curr;
846
	u64 now = rq_clock_task(rq_of(cfs_rq));
847
	u64 delta_exec;
848 849 850 851

	if (unlikely(!curr))
		return;

852 853
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
854
		return;
855

I
Ingo Molnar 已提交
856
	curr->exec_start = now;
857

858 859 860 861
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
862
	schedstat_add(cfs_rq->exec_clock, delta_exec);
863 864 865 866

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

867 868 869
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

870
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
871
		cpuacct_charge(curtask, delta_exec);
872
		account_group_exec_runtime(curtask, delta_exec);
873
	}
874 875

	account_cfs_rq_runtime(cfs_rq, delta_exec);
876 877
}

878 879 880 881 882
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

883
static inline void
884
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
885
{
886 887 888 889 890 891 892
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
893 894

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
895 896
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
897

898
	schedstat_set(se->statistics.wait_start, wait_start);
899 900
}

901
static inline void
902 903 904
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
905 906
	u64 delta;

907 908 909 910
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
911 912 913 914 915 916 917 918 919

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
920
			schedstat_set(se->statistics.wait_start, delta);
921 922 923 924 925
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

926 927 928 929 930
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
931 932
}

933
static inline void
934 935 936
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
937 938 939 940 941 942 943
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
944 945 946 947

	if (entity_is_task(se))
		tsk = task_of(se);

948 949
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
950 951 952 953

		if ((s64)delta < 0)
			delta = 0;

954 955
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
956

957 958
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
959 960 961 962 963 964

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
965 966
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
967 968 969 970

		if ((s64)delta < 0)
			delta = 0;

971 972
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
973

974 975
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
976 977 978

		if (tsk) {
			if (tsk->in_iowait) {
979 980
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
999 1000
}

1001 1002 1003
/*
 * Task is being enqueued - update stats:
 */
1004
static inline void
1005
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006
{
1007 1008 1009
	if (!schedstat_enabled())
		return;

1010 1011 1012 1013
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1014
	if (se != cfs_rq->curr)
1015
		update_stats_wait_start(cfs_rq, se);
1016 1017 1018

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1019 1020 1021
}

static inline void
1022
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1023
{
1024 1025 1026 1027

	if (!schedstat_enabled())
		return;

1028 1029 1030 1031
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1032
	if (se != cfs_rq->curr)
1033
		update_stats_wait_end(cfs_rq, se);
1034

1035 1036
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1037

1038 1039 1040 1041 1042 1043
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1044 1045 1046
	}
}

1047 1048 1049 1050
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1051
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052 1053 1054 1055
{
	/*
	 * We are starting a new run period:
	 */
1056
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1057 1058 1059 1060 1061 1062
}

/**************************************************
 * Scheduling class queueing methods:
 */

1063 1064
#ifdef CONFIG_NUMA_BALANCING
/*
1065 1066 1067
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1068
 */
1069 1070
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1071 1072 1073

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1074

1075 1076 1077
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1102
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103 1104 1105
	unsigned int scan, floor;
	unsigned int windows = 1;

1106 1107
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1136 1137 1138 1139 1140
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1141
	pid_t gid;
1142
	int active_nodes;
1143 1144

	struct rcu_head rcu;
1145
	unsigned long total_faults;
1146
	unsigned long max_faults_cpu;
1147 1148 1149 1150 1151
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1152
	unsigned long *faults_cpu;
1153
	unsigned long faults[0];
1154 1155
};

1156 1157 1158 1159 1160 1161 1162 1163 1164
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1165 1166 1167 1168 1169
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1170 1171 1172 1173 1174 1175 1176
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1177
{
1178
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1179 1180 1181 1182
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1183
	if (!p->numa_faults)
1184 1185
		return 0;

1186 1187
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1188 1189
}

1190 1191 1192 1193 1194
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1195 1196
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1197 1198
}

1199 1200
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1201 1202
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1282 1283 1284 1285 1286 1287
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1288 1289
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1290
{
1291
	unsigned long faults, total_faults;
1292

1293
	if (!p->numa_faults)
1294 1295 1296 1297 1298 1299 1300
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1301
	faults = task_faults(p, nid);
1302 1303
	faults += score_nearby_nodes(p, nid, dist, true);

1304
	return 1000 * faults / total_faults;
1305 1306
}

1307 1308
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1309
{
1310 1311 1312 1313 1314 1315 1316 1317
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1318 1319
		return 0;

1320
	faults = group_faults(p, nid);
1321 1322
	faults += score_nearby_nodes(p, nid, dist, false);

1323
	return 1000 * faults / total_faults;
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1366 1367
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1368
	 */
1369 1370
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1371 1372 1373
		return true;

	/*
1374 1375 1376 1377 1378 1379
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1380
	 */
1381 1382
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1383 1384
}

1385
static unsigned long weighted_cpuload(const int cpu);
1386 1387
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1388
static unsigned long capacity_of(int cpu);
1389 1390
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1391
/* Cached statistics for all CPUs within a node */
1392
struct numa_stats {
1393
	unsigned long nr_running;
1394
	unsigned long load;
1395 1396

	/* Total compute capacity of CPUs on a node */
1397
	unsigned long compute_capacity;
1398 1399

	/* Approximate capacity in terms of runnable tasks on a node */
1400
	unsigned long task_capacity;
1401
	int has_free_capacity;
1402
};
1403

1404 1405 1406 1407 1408
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1409 1410
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1411 1412 1413 1414 1415 1416 1417

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1418
		ns->compute_capacity += capacity_of(cpu);
1419 1420

		cpus++;
1421 1422
	}

1423 1424 1425 1426 1427
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1428 1429
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1430 1431 1432 1433
	 */
	if (!cpus)
		return;

1434 1435 1436 1437 1438 1439
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1440
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1441 1442
}

1443 1444
struct task_numa_env {
	struct task_struct *p;
1445

1446 1447
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1448

1449
	struct numa_stats src_stats, dst_stats;
1450

1451
	int imbalance_pct;
1452
	int dist;
1453 1454 1455

	struct task_struct *best_task;
	long best_imp;
1456 1457 1458
	int best_cpu;
};

1459 1460 1461 1462 1463
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1464 1465
	if (p)
		get_task_struct(p);
1466 1467 1468 1469 1470 1471

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1472
static bool load_too_imbalanced(long src_load, long dst_load,
1473 1474
				struct task_numa_env *env)
{
1475 1476
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1488 1489

	/* We care about the slope of the imbalance, not the direction. */
1490 1491
	if (dst_load < src_load)
		swap(dst_load, src_load);
1492 1493

	/* Is the difference below the threshold? */
1494 1495
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1496 1497 1498 1499 1500
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1501
	 * Compare it with the old imbalance.
1502
	 */
1503
	orig_src_load = env->src_stats.load;
1504
	orig_dst_load = env->dst_stats.load;
1505

1506 1507
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1508

1509 1510 1511 1512 1513
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1514 1515
}

1516 1517 1518 1519 1520 1521
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1522 1523
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1524 1525 1526 1527
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1528
	long src_load, dst_load;
1529
	long load;
1530
	long imp = env->p->numa_group ? groupimp : taskimp;
1531
	long moveimp = imp;
1532
	int dist = env->dist;
1533 1534

	rcu_read_lock();
1535 1536
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1537 1538
		cur = NULL;

1539 1540 1541 1542 1543 1544 1545
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1546 1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1555
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1556 1557
			goto unlock;

1558 1559
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1560
		 * in any group then look only at task weights.
1561
		 */
1562
		if (cur->numa_group == env->p->numa_group) {
1563 1564
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1565 1566 1567 1568 1569 1570
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1571
		} else {
1572 1573 1574 1575 1576 1577
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1578 1579
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1580
			else
1581 1582
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1583
		}
1584 1585
	}

1586
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1587 1588 1589 1590
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1591
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1592
		    !env->dst_stats.has_free_capacity)
1593 1594 1595 1596 1597 1598
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1599 1600
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1601 1602 1603 1604 1605 1606
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1607 1608 1609
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1628
	if (cur) {
1629 1630 1631
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1632 1633
	}

1634
	if (load_too_imbalanced(src_load, dst_load, env))
1635 1636
		goto unlock;

1637 1638 1639 1640
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1641 1642 1643 1644 1645 1646
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1647 1648
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1649 1650
		local_irq_enable();
	}
1651

1652 1653 1654 1655 1656 1657
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1658 1659
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1660 1661 1662 1663 1664
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1665
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1666 1667 1668
			continue;

		env->dst_cpu = cpu;
1669
		task_numa_compare(env, taskimp, groupimp);
1670 1671 1672
	}
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1690 1691 1692
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1693 1694 1695 1696 1697
		return true;

	return false;
}

1698 1699 1700 1701
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1702

1703
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1704
		.src_nid = task_node(p),
1705 1706 1707 1708 1709

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1710
		.best_cpu = -1,
1711 1712
	};
	struct sched_domain *sd;
1713
	unsigned long taskweight, groupweight;
1714
	int nid, ret, dist;
1715
	long taskimp, groupimp;
1716

1717
	/*
1718 1719 1720 1721 1722 1723
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1724 1725
	 */
	rcu_read_lock();
1726
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1727 1728
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1729 1730
	rcu_read_unlock();

1731 1732 1733 1734 1735 1736 1737
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1738
		p->numa_preferred_nid = task_node(p);
1739 1740 1741
		return -EINVAL;
	}

1742
	env.dst_nid = p->numa_preferred_nid;
1743 1744 1745 1746 1747 1748
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1749
	update_numa_stats(&env.dst_stats, env.dst_nid);
1750

1751
	/* Try to find a spot on the preferred nid. */
1752 1753
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1754

1755 1756 1757 1758 1759 1760 1761
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1762
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1763 1764 1765
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1766

1767
			dist = node_distance(env.src_nid, env.dst_nid);
1768 1769 1770 1771 1772
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1773

1774
			/* Only consider nodes where both task and groups benefit */
1775 1776
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1777
			if (taskimp < 0 && groupimp < 0)
1778 1779
				continue;

1780
			env.dist = dist;
1781 1782
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1783 1784
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1785 1786 1787
		}
	}

1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1796
	if (p->numa_group) {
1797 1798
		struct numa_group *ng = p->numa_group;

1799 1800 1801 1802 1803
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1804
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1805 1806 1807 1808 1809 1810
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1811

1812 1813 1814 1815 1816 1817
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1818
	if (env.best_task == NULL) {
1819 1820 1821
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1822 1823 1824 1825
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1826 1827
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1828 1829
	put_task_struct(env.best_task);
	return ret;
1830 1831
}

1832 1833 1834
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1835 1836
	unsigned long interval = HZ;

1837
	/* This task has no NUMA fault statistics yet */
1838
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1839 1840
		return;

1841
	/* Periodically retry migrating the task to the preferred node */
1842 1843
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1844 1845

	/* Success if task is already running on preferred CPU */
1846
	if (task_node(p) == p->numa_preferred_nid)
1847 1848 1849
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1850
	task_numa_migrate(p);
1851 1852
}

1853
/*
1854
 * Find out how many nodes on the workload is actively running on. Do this by
1855 1856 1857 1858
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1859
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1860 1861
{
	unsigned long faults, max_faults = 0;
1862
	int nid, active_nodes = 0;
1863 1864 1865 1866 1867 1868 1869 1870 1871

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1872 1873
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1874
	}
1875 1876 1877

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1878 1879
}

1880 1881 1882
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1883 1884 1885
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1886 1887
 */
#define NUMA_PERIOD_SLOTS 10
1888
#define NUMA_PERIOD_THRESHOLD 7
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1909 1910 1911
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1912
	 */
1913
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1947
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1948 1949 1950 1951 1952 1953 1954 1955
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1974 1975
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1976 1977 1978 1979 1980 1981 1982 1983
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2031
		nodemask_t max_group = NODE_MASK_NONE;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2065 2066
		if (!max_faults)
			break;
2067 2068 2069 2070 2071
		nodes = max_group;
	}
	return nid;
}

2072 2073
static void task_numa_placement(struct task_struct *p)
{
2074 2075
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2076
	unsigned long fault_types[2] = { 0, 0 };
2077 2078
	unsigned long total_faults;
	u64 runtime, period;
2079
	spinlock_t *group_lock = NULL;
2080

2081 2082 2083 2084 2085
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2086
	seq = READ_ONCE(p->mm->numa_scan_seq);
2087 2088 2089
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2090
	p->numa_scan_period_max = task_scan_max(p);
2091

2092 2093 2094 2095
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2096 2097 2098
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2099
		spin_lock_irq(group_lock);
2100 2101
	}

2102 2103
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2104 2105
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2106
		unsigned long faults = 0, group_faults = 0;
2107
		int priv;
2108

2109
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2110
			long diff, f_diff, f_weight;
2111

2112 2113 2114 2115
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2116

2117
			/* Decay existing window, copy faults since last scan */
2118 2119 2120
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2121

2122 2123 2124 2125 2126 2127 2128 2129
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2130
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2131
				   (total_faults + 1);
2132 2133
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2134

2135 2136 2137
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2138
			p->total_numa_faults += diff;
2139
			if (p->numa_group) {
2140 2141 2142 2143 2144 2145 2146 2147 2148
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2149
				p->numa_group->total_faults += diff;
2150
				group_faults += p->numa_group->faults[mem_idx];
2151
			}
2152 2153
		}

2154 2155 2156 2157
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2158 2159 2160 2161 2162 2163 2164

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2165 2166
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2167
	if (p->numa_group) {
2168
		numa_group_count_active_nodes(p->numa_group);
2169
		spin_unlock_irq(group_lock);
2170
		max_nid = preferred_group_nid(p, max_group_nid);
2171 2172
	}

2173 2174 2175 2176 2177 2178 2179
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2180
	}
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2194 2195
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2196 2197 2198 2199 2200 2201 2202 2203 2204
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2205
				    4*nr_node_ids*sizeof(unsigned long);
2206 2207 2208 2209 2210 2211

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2212 2213
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2214
		spin_lock_init(&grp->lock);
2215
		grp->gid = p->pid;
2216
		/* Second half of the array tracks nids where faults happen */
2217 2218
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2219

2220
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2221
			grp->faults[i] = p->numa_faults[i];
2222

2223
		grp->total_faults = p->total_numa_faults;
2224

2225 2226 2227 2228 2229
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2230
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2231 2232

	if (!cpupid_match_pid(tsk, cpupid))
2233
		goto no_join;
2234 2235 2236

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2237
		goto no_join;
2238 2239 2240

	my_grp = p->numa_group;
	if (grp == my_grp)
2241
		goto no_join;
2242 2243 2244 2245 2246 2247

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2248
		goto no_join;
2249 2250 2251 2252 2253

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2254
		goto no_join;
2255

2256 2257 2258 2259 2260 2261 2262
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2263

2264 2265 2266
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2267
	if (join && !get_numa_group(grp))
2268
		goto no_join;
2269 2270 2271 2272 2273 2274

	rcu_read_unlock();

	if (!join)
		return;

2275 2276
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2277

2278
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2279 2280
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2281
	}
2282 2283
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2284 2285 2286 2287 2288

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2289
	spin_unlock_irq(&grp->lock);
2290 2291 2292 2293

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2294 2295 2296 2297 2298
	return;

no_join:
	rcu_read_unlock();
	return;
2299 2300 2301 2302 2303
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2304
	void *numa_faults = p->numa_faults;
2305 2306
	unsigned long flags;
	int i;
2307 2308

	if (grp) {
2309
		spin_lock_irqsave(&grp->lock, flags);
2310
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2311
			grp->faults[i] -= p->numa_faults[i];
2312
		grp->total_faults -= p->total_numa_faults;
2313

2314
		grp->nr_tasks--;
2315
		spin_unlock_irqrestore(&grp->lock, flags);
2316
		RCU_INIT_POINTER(p->numa_group, NULL);
2317 2318 2319
		put_numa_group(grp);
	}

2320
	p->numa_faults = NULL;
2321
	kfree(numa_faults);
2322 2323
}

2324 2325 2326
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2327
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2328 2329
{
	struct task_struct *p = current;
2330
	bool migrated = flags & TNF_MIGRATED;
2331
	int cpu_node = task_node(current);
2332
	int local = !!(flags & TNF_FAULT_LOCAL);
2333
	struct numa_group *ng;
2334
	int priv;
2335

2336
	if (!static_branch_likely(&sched_numa_balancing))
2337 2338
		return;

2339 2340 2341 2342
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2343
	/* Allocate buffer to track faults on a per-node basis */
2344 2345
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2346
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2347

2348 2349
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2350
			return;
2351

2352
		p->total_numa_faults = 0;
2353
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2354
	}
2355

2356 2357 2358 2359 2360 2361 2362 2363
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2364
		if (!priv && !(flags & TNF_NO_GROUP))
2365
			task_numa_group(p, last_cpupid, flags, &priv);
2366 2367
	}

2368 2369 2370 2371 2372 2373
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2374 2375 2376 2377
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2378 2379
		local = 1;

2380
	task_numa_placement(p);
2381

2382 2383 2384 2385 2386
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2387 2388
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2389 2390
	if (migrated)
		p->numa_pages_migrated += pages;
2391 2392
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2393

2394 2395
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2396
	p->numa_faults_locality[local] += pages;
2397 2398
}

2399 2400
static void reset_ptenuma_scan(struct task_struct *p)
{
2401 2402 2403 2404 2405 2406 2407 2408
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2409
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2410 2411 2412
	p->mm->numa_scan_offset = 0;
}

2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2422
	u64 runtime = p->se.sum_exec_runtime;
2423
	struct vm_area_struct *vma;
2424
	unsigned long start, end;
2425
	unsigned long nr_pte_updates = 0;
2426
	long pages, virtpages;
2427

2428
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2442
	if (!mm->numa_next_scan) {
2443 2444
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2445 2446
	}

2447 2448 2449 2450 2451 2452 2453
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2454 2455 2456 2457
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2458

2459
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2460 2461 2462
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2463 2464 2465 2466 2467 2468
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2469 2470 2471
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2472
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2473 2474
	if (!pages)
		return;
2475

2476

2477
	down_read(&mm->mmap_sem);
2478
	vma = find_vma(mm, start);
2479 2480
	if (!vma) {
		reset_ptenuma_scan(p);
2481
		start = 0;
2482 2483
		vma = mm->mmap;
	}
2484
	for (; vma; vma = vma->vm_next) {
2485
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2486
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2487
			continue;
2488
		}
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2500 2501 2502 2503 2504 2505
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2506

2507 2508 2509 2510
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2511
			nr_pte_updates = change_prot_numa(vma, start, end);
2512 2513

			/*
2514 2515 2516 2517 2518 2519
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2520 2521 2522
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2523
			virtpages -= (end - start) >> PAGE_SHIFT;
2524

2525
			start = end;
2526
			if (pages <= 0 || virtpages <= 0)
2527
				goto out;
2528 2529

			cond_resched();
2530
		} while (end != vma->vm_end);
2531
	}
2532

2533
out:
2534
	/*
P
Peter Zijlstra 已提交
2535 2536 2537 2538
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2539 2540
	 */
	if (vma)
2541
		mm->numa_scan_offset = start;
2542 2543 2544
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2581
	if (now > curr->node_stamp + period) {
2582
		if (!curr->node_stamp)
2583
			curr->numa_scan_period = task_scan_min(curr);
2584
		curr->node_stamp += period;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2596 2597 2598 2599 2600 2601 2602 2603

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2604 2605
#endif /* CONFIG_NUMA_BALANCING */

2606 2607 2608 2609
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2610
	if (!parent_entity(se))
2611
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2612
#ifdef CONFIG_SMP
2613 2614 2615 2616 2617 2618
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2619
#endif
2620 2621 2622 2623 2624 2625 2626
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2627
	if (!parent_entity(se))
2628
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2629
#ifdef CONFIG_SMP
2630 2631
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2632
		list_del_init(&se->group_node);
2633
	}
2634
#endif
2635 2636 2637
	cfs_rq->nr_running--;
}

2638 2639
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2640
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2641
{
2642
	long tg_weight, load, shares;
2643 2644

	/*
2645 2646 2647
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2648
	 */
2649
	load = scale_load_down(cfs_rq->load.weight);
2650

2651
	tg_weight = atomic_long_read(&tg->load_avg);
2652

2653 2654 2655
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2656 2657

	shares = (tg->shares * load);
2658 2659
	if (tg_weight)
		shares /= tg_weight;
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2673 2674 2675 2676 2677 2678 2679 2680
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2681
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2682 2683 2684 2685
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2686

P
Peter Zijlstra 已提交
2687 2688 2689
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2690 2691 2692 2693
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2694
		account_entity_dequeue(cfs_rq, se);
2695
	}
P
Peter Zijlstra 已提交
2696 2697 2698 2699 2700 2701 2702

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2703 2704
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2705
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2706
{
2707
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2708
	struct task_group *tg;
2709
	long shares;
P
Peter Zijlstra 已提交
2710

2711 2712 2713 2714
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2715
		return;
2716 2717 2718

	tg = cfs_rq->tg;

2719 2720 2721 2722
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2723
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2724 2725 2726

	reweight_entity(cfs_rq_of(se), se, shares);
}
2727

P
Peter Zijlstra 已提交
2728
#else /* CONFIG_FAIR_GROUP_SCHED */
2729
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2730 2731 2732 2733
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2734
#ifdef CONFIG_SMP
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

2745 2746 2747 2748
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2749
static u64 decay_load(u64 val, u64 n)
2750
{
2751 2752
	unsigned int local_n;

2753
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2754 2755 2756 2757 2758 2759 2760
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2761 2762
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2763 2764 2765 2766 2767 2768
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2769 2770
	}

2771 2772
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2773 2774
}

2775
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2776
{
2777
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2778

2779 2780 2781
	/*
	 * c1 = d1 y^(p+1)
	 */
2782
	c1 = decay_load((u64)d1, periods);
2783 2784

	/*
2785 2786 2787
	 *             p
	 * c2 = 1024 \Sum y^n
	 *            n=1
2788
	 *
2789 2790 2791
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
	 *              n=0        n=p+1
2792
	 */
2793
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2794 2795

	return c1 + c2 + c3;
2796 2797
}

2798
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
 *                                p
 * u' = (u + d1) y^(p+1) + 1024 \Sum y^n + d3 y^0
 *                               n=1
 *
 *    = u y^(p+1) +				(Step 1)
 *
 *                          p
 *      d1 y^(p+1) + 1024 \Sum y^n + d3 y^0	(Step 2)
 *                         n=1
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2826
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2846 2847 2848 2849 2850 2851 2852
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2895
static __always_inline int
2896
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2897
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2898
{
2899
	u64 delta;
2900

2901
	delta = now - sa->last_update_time;
2902 2903 2904 2905 2906
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2907
		sa->last_update_time = now;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2918
	sa->last_update_time = now;
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
2929

2930 2931 2932 2933 2934 2935 2936
	/*
	 * Step 2: update *_avg.
	 */
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2937
	}
2938
	sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2939

2940
	return 1;
2941 2942
}

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2985
#ifdef CONFIG_FAIR_GROUP_SCHED
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
3001
 */
3002
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3003
{
3004
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3005

3006 3007 3008 3009 3010 3011
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3012 3013 3014
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3015
	}
3016
}
3017

3018 3019 3020 3021 3022 3023 3024 3025
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3026 3027 3028
	u64 p_last_update_time;
	u64 n_last_update_time;

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3039 3040
	if (!(se->avg.last_update_time && prev))
		return;
3041 3042

#ifndef CONFIG_64BIT
3043
	{
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3058
	}
3059
#else
3060 3061
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3062
#endif
3063 3064
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3065
}
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3217
#else /* CONFIG_FAIR_GROUP_SCHED */
3218

3219
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3220 3221 3222 3223 3224 3225 3226 3227

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3228
#endif /* CONFIG_FAIR_GROUP_SCHED */
3229

3230 3231
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3232
	if (&this_rq()->cfs == cfs_rq) {
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3249
		cpufreq_update_util(rq_of(cfs_rq), 0);
3250 3251 3252
	}
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3282 3283 3284 3285
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3286
 */
3287 3288
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3289
{
3290
	struct sched_avg *sa = &cfs_rq->avg;
3291
	int decayed, removed_load = 0, removed_util = 0;
3292

3293
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3294
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3295 3296
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3297
		removed_load = 1;
3298
		set_tg_cfs_propagate(cfs_rq);
3299
	}
3300

3301 3302
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3303 3304
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3305
		removed_util = 1;
3306
		set_tg_cfs_propagate(cfs_rq);
3307
	}
3308

3309
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3310

3311 3312 3313 3314
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3315

3316 3317
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3318

3319
	return decayed || removed_load;
3320 3321
}

3322 3323 3324 3325 3326 3327
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3328
/* Update task and its cfs_rq load average */
3329
static inline void update_load_avg(struct sched_entity *se, int flags)
3330 3331 3332 3333 3334
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3335
	int decayed;
3336 3337 3338 3339 3340

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3341 3342
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3343

3344 3345 3346 3347
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3348
		update_tg_load_avg(cfs_rq, 0);
3349 3350
}

3351 3352 3353 3354 3355 3356 3357 3358
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3359 3360 3361 3362 3363 3364 3365
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3366
	set_tg_cfs_propagate(cfs_rq);
3367 3368

	cfs_rq_util_change(cfs_rq);
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3379 3380 3381
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3382 3383 3384 3385
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3386
	set_tg_cfs_propagate(cfs_rq);
3387 3388

	cfs_rq_util_change(cfs_rq);
3389 3390
}

3391 3392 3393
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3394
{
3395
	struct sched_avg *sa = &se->avg;
3396

3397 3398 3399
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3400
	if (!sa->last_update_time) {
3401
		attach_entity_load_avg(cfs_rq, se);
3402
		update_tg_load_avg(cfs_rq, 0);
3403
	}
3404 3405
}

3406 3407 3408 3409 3410 3411 3412
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3413
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3414 3415
}

3416
#ifndef CONFIG_64BIT
3417 3418
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3419
	u64 last_update_time_copy;
3420
	u64 last_update_time;
3421

3422 3423 3424 3425 3426
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3427 3428 3429

	return last_update_time;
}
3430
#else
3431 3432 3433 3434
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3435 3436
#endif

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3447
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3448 3449
}

3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3459 3460 3461 3462 3463 3464 3465
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3466 3467
	 */

3468
	sync_entity_load_avg(se);
3469 3470
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3471
}
3472

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3483
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3484

3485 3486
#else /* CONFIG_SMP */

3487 3488 3489 3490 3491 3492
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3493 3494 3495 3496
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3497
{
3498
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3499 3500
}

3501 3502
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3503 3504
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3505
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3506

3507 3508 3509 3510 3511
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3512
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3513 3514 3515 3516
{
	return 0;
}

3517
#endif /* CONFIG_SMP */
3518

P
Peter Zijlstra 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3528
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3529 3530 3531
#endif
}

3532 3533 3534
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3535
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3536

3537 3538 3539 3540 3541 3542
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3543
	if (initial && sched_feat(START_DEBIT))
3544
		vruntime += sched_vslice(cfs_rq, se);
3545

3546
	/* sleeps up to a single latency don't count. */
3547
	if (!initial) {
3548
		unsigned long thresh = sysctl_sched_latency;
3549

3550 3551 3552 3553 3554 3555
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3556

3557
		vruntime -= thresh;
3558 3559
	}

3560
	/* ensure we never gain time by being placed backwards. */
3561
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3562 3563
}

3564 3565
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3578
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3579 3580 3581 3582 3583 3584 3585
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3605
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3617
static void
3618
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3619
{
3620 3621 3622
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3623
	/*
3624 3625
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3626
	 */
3627
	if (renorm && curr)
3628 3629
		se->vruntime += cfs_rq->min_vruntime;

3630 3631
	update_curr(cfs_rq);

3632
	/*
3633 3634 3635 3636
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3637
	 */
3638 3639 3640
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3641 3642 3643 3644 3645 3646 3647 3648
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3649
	update_load_avg(se, UPDATE_TG);
3650
	enqueue_entity_load_avg(cfs_rq, se);
3651
	update_cfs_shares(se);
3652
	account_entity_enqueue(cfs_rq, se);
3653

3654
	if (flags & ENQUEUE_WAKEUP)
3655
		place_entity(cfs_rq, se, 0);
3656

3657
	check_schedstat_required();
3658 3659
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3660
	if (!curr)
3661
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3662
	se->on_rq = 1;
3663

3664
	if (cfs_rq->nr_running == 1) {
3665
		list_add_leaf_cfs_rq(cfs_rq);
3666 3667
		check_enqueue_throttle(cfs_rq);
	}
3668 3669
}

3670
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3671
{
3672 3673
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3674
		if (cfs_rq->last != se)
3675
			break;
3676 3677

		cfs_rq->last = NULL;
3678 3679
	}
}
P
Peter Zijlstra 已提交
3680

3681 3682 3683 3684
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3685
		if (cfs_rq->next != se)
3686
			break;
3687 3688

		cfs_rq->next = NULL;
3689
	}
P
Peter Zijlstra 已提交
3690 3691
}

3692 3693 3694 3695
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3696
		if (cfs_rq->skip != se)
3697
			break;
3698 3699

		cfs_rq->skip = NULL;
3700 3701 3702
	}
}

P
Peter Zijlstra 已提交
3703 3704
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3705 3706 3707 3708 3709
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3710 3711 3712

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3713 3714
}

3715
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3716

3717
static void
3718
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3719
{
3720 3721 3722 3723
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3724 3725 3726 3727 3728 3729 3730 3731 3732

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3733
	update_load_avg(se, UPDATE_TG);
3734
	dequeue_entity_load_avg(cfs_rq, se);
3735

3736
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3737

P
Peter Zijlstra 已提交
3738
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3739

3740
	if (se != cfs_rq->curr)
3741
		__dequeue_entity(cfs_rq, se);
3742
	se->on_rq = 0;
3743
	account_entity_dequeue(cfs_rq, se);
3744 3745

	/*
3746 3747 3748 3749
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3750
	 */
3751
	if (!(flags & DEQUEUE_SLEEP))
3752
		se->vruntime -= cfs_rq->min_vruntime;
3753

3754 3755 3756
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3757
	update_cfs_shares(se);
3758 3759 3760 3761 3762 3763 3764 3765 3766

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3767 3768 3769 3770 3771
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3772
static void
I
Ingo Molnar 已提交
3773
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3774
{
3775
	unsigned long ideal_runtime, delta_exec;
3776 3777
	struct sched_entity *se;
	s64 delta;
3778

P
Peter Zijlstra 已提交
3779
	ideal_runtime = sched_slice(cfs_rq, curr);
3780
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3781
	if (delta_exec > ideal_runtime) {
3782
		resched_curr(rq_of(cfs_rq));
3783 3784 3785 3786 3787
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3799 3800
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3801

3802 3803
	if (delta < 0)
		return;
3804

3805
	if (delta > ideal_runtime)
3806
		resched_curr(rq_of(cfs_rq));
3807 3808
}

3809
static void
3810
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3811
{
3812 3813 3814 3815 3816 3817 3818
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3819
		update_stats_wait_end(cfs_rq, se);
3820
		__dequeue_entity(cfs_rq, se);
3821
		update_load_avg(se, UPDATE_TG);
3822 3823
	}

3824
	update_stats_curr_start(cfs_rq, se);
3825
	cfs_rq->curr = se;
3826

I
Ingo Molnar 已提交
3827 3828 3829 3830 3831
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3832
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3833 3834 3835
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3836
	}
3837

3838
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3839 3840
}

3841 3842 3843
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3844 3845 3846 3847 3848 3849 3850
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3851 3852
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3853
{
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3865

3866 3867 3868 3869 3870
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3881 3882 3883
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3884

3885 3886 3887 3888 3889 3890
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3891 3892 3893 3894 3895 3896
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3897
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3898 3899

	return se;
3900 3901
}

3902
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3903

3904
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3905 3906 3907 3908 3909 3910
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3911
		update_curr(cfs_rq);
3912

3913 3914 3915
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3916
	check_spread(cfs_rq, prev);
3917

3918
	if (prev->on_rq) {
3919
		update_stats_wait_start(cfs_rq, prev);
3920 3921
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3922
		/* in !on_rq case, update occurred at dequeue */
3923
		update_load_avg(prev, 0);
3924
	}
3925
	cfs_rq->curr = NULL;
3926 3927
}

P
Peter Zijlstra 已提交
3928 3929
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3930 3931
{
	/*
3932
	 * Update run-time statistics of the 'current'.
3933
	 */
3934
	update_curr(cfs_rq);
3935

3936 3937 3938
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3939
	update_load_avg(curr, UPDATE_TG);
3940
	update_cfs_shares(curr);
3941

P
Peter Zijlstra 已提交
3942 3943 3944 3945 3946
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3947
	if (queued) {
3948
		resched_curr(rq_of(cfs_rq));
3949 3950
		return;
	}
P
Peter Zijlstra 已提交
3951 3952 3953 3954 3955 3956 3957 3958
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3959
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3960
		check_preempt_tick(cfs_rq, curr);
3961 3962
}

3963 3964 3965 3966 3967 3968

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3969 3970

#ifdef HAVE_JUMP_LABEL
3971
static struct static_key __cfs_bandwidth_used;
3972 3973 3974

static inline bool cfs_bandwidth_used(void)
{
3975
	return static_key_false(&__cfs_bandwidth_used);
3976 3977
}

3978
void cfs_bandwidth_usage_inc(void)
3979
{
3980 3981 3982 3983 3984 3985
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3986 3987 3988 3989 3990 3991 3992
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3993 3994
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3995 3996
#endif /* HAVE_JUMP_LABEL */

3997 3998 3999 4000 4001 4002 4003 4004
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4005 4006 4007 4008 4009 4010

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4011 4012 4013 4014 4015 4016 4017
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4018
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4030 4031 4032 4033 4034
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4035 4036 4037 4038
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4039
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4040

4041
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4042 4043
}

4044 4045
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4046 4047 4048
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4049
	u64 amount = 0, min_amount, expires;
4050 4051 4052 4053 4054 4055 4056

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4057
	else {
P
Peter Zijlstra 已提交
4058
		start_cfs_bandwidth(cfs_b);
4059 4060 4061 4062 4063 4064

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4065
	}
P
Paul Turner 已提交
4066
	expires = cfs_b->runtime_expires;
4067 4068 4069
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4070 4071 4072 4073 4074 4075 4076
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4077 4078

	return cfs_rq->runtime_remaining > 0;
4079 4080
}

P
Paul Turner 已提交
4081 4082 4083 4084 4085
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4086
{
P
Paul Turner 已提交
4087 4088 4089
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4090
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4091 4092
		return;

P
Paul Turner 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4102 4103 4104
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4105 4106
	 */

4107
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4108 4109 4110 4111 4112 4113 4114 4115
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4116
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4117 4118
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4119
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4120 4121 4122
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4123 4124
		return;

4125 4126 4127 4128 4129
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4130
		resched_curr(rq_of(cfs_rq));
4131 4132
}

4133
static __always_inline
4134
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4135
{
4136
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4137 4138 4139 4140 4141
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4142 4143
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4144
	return cfs_bandwidth_used() && cfs_rq->throttled;
4145 4146
}

4147 4148 4149
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4150
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4178
		/* adjust cfs_rq_clock_task() */
4179
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4180
					     cfs_rq->throttled_clock_task;
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4191 4192
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4193
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4194 4195 4196 4197 4198
	cfs_rq->throttle_count++;

	return 0;
}

4199
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4200 4201 4202 4203 4204
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4205
	bool empty;
4206 4207 4208

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4209
	/* freeze hierarchy runnable averages while throttled */
4210 4211 4212
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4230
		sub_nr_running(rq, task_delta);
4231 4232

	cfs_rq->throttled = 1;
4233
	cfs_rq->throttled_clock = rq_clock(rq);
4234
	raw_spin_lock(&cfs_b->lock);
4235
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4236

4237 4238 4239 4240 4241
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4242 4243 4244 4245 4246 4247 4248 4249

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4250 4251 4252
	raw_spin_unlock(&cfs_b->lock);
}

4253
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4254 4255 4256 4257 4258 4259 4260
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4261
	se = cfs_rq->tg->se[cpu_of(rq)];
4262 4263

	cfs_rq->throttled = 0;
4264 4265 4266

	update_rq_clock(rq);

4267
	raw_spin_lock(&cfs_b->lock);
4268
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4269 4270 4271
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4272 4273 4274
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4293
		add_nr_running(rq, task_delta);
4294 4295 4296

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4297
		resched_curr(rq);
4298 4299 4300 4301 4302 4303
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4304 4305
	u64 runtime;
	u64 starting_runtime = remaining;
4306 4307 4308 4309 4310

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4311
		struct rq_flags rf;
4312

4313
		rq_lock(rq, &rf);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4330
		rq_unlock(rq, &rf);
4331 4332 4333 4334 4335 4336

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4337
	return starting_runtime - remaining;
4338 4339
}

4340 4341 4342 4343 4344 4345 4346 4347
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4348
	u64 runtime, runtime_expires;
4349
	int throttled;
4350 4351 4352

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4353
		goto out_deactivate;
4354

4355
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4356
	cfs_b->nr_periods += overrun;
4357

4358 4359 4360 4361 4362 4363
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4364 4365 4366

	__refill_cfs_bandwidth_runtime(cfs_b);

4367 4368 4369
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4370
		return 0;
4371 4372
	}

4373 4374 4375
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4376 4377 4378
	runtime_expires = cfs_b->runtime_expires;

	/*
4379 4380 4381 4382 4383
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4384
	 */
4385 4386
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4387 4388 4389 4390 4391 4392 4393
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4394 4395

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4396
	}
4397

4398 4399 4400 4401 4402 4403 4404
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4405

4406 4407 4408 4409
	return 0;

out_deactivate:
	return 1;
4410
}
4411

4412 4413 4414 4415 4416 4417 4418
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4419 4420 4421 4422
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4423
 * hrtimer base being cleared by hrtimer_start. In the case of
4424 4425
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4451 4452 4453
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4483 4484 4485
	if (!cfs_bandwidth_used())
		return;

4486
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4502 4503 4504
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4505
		return;
4506
	}
4507

4508
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4509
		runtime = cfs_b->runtime;
4510

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4521
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4522 4523 4524
	raw_spin_unlock(&cfs_b->lock);
}

4525 4526 4527 4528 4529 4530 4531
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4532 4533 4534
	if (!cfs_bandwidth_used())
		return;

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4563
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4564 4565
}

4566
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4567
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4568
{
4569
	if (!cfs_bandwidth_used())
4570
		return false;
4571

4572
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4573
		return false;
4574 4575 4576 4577 4578 4579

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4580
		return true;
4581 4582

	throttle_cfs_rq(cfs_rq);
4583
	return true;
4584
}
4585 4586 4587 4588 4589

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4590

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4603
	raw_spin_lock(&cfs_b->lock);
4604
	for (;;) {
P
Peter Zijlstra 已提交
4605
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4606 4607 4608 4609 4610
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4611 4612
	if (idle)
		cfs_b->period_active = 0;
4613
	raw_spin_unlock(&cfs_b->lock);
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4626
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4638
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4639
{
P
Peter Zijlstra 已提交
4640
	lockdep_assert_held(&cfs_b->lock);
4641

P
Peter Zijlstra 已提交
4642 4643 4644 4645 4646
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4647 4648 4649 4650
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4651 4652 4653 4654
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4655 4656 4657 4658
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4672
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4684
		cfs_rq->runtime_remaining = 1;
4685 4686 4687 4688 4689 4690
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4691 4692 4693 4694 4695 4696
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4697 4698
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4699
	return rq_clock_task(rq_of(cfs_rq));
4700 4701
}

4702
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4703
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4704
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4705
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4706
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4707 4708 4709 4710 4711

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4723 4724 4725 4726 4727

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4728 4729
#endif

4730 4731 4732 4733 4734
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4735
static inline void update_runtime_enabled(struct rq *rq) {}
4736
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4737 4738 4739

#endif /* CONFIG_CFS_BANDWIDTH */

4740 4741 4742 4743
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4744 4745 4746 4747 4748 4749
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4750
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4751

4752
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4753 4754 4755 4756 4757 4758
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4759
				resched_curr(rq);
P
Peter Zijlstra 已提交
4760 4761
			return;
		}
4762
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4763 4764
	}
}
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4775
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4776 4777 4778 4779 4780
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4781
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4782 4783 4784 4785
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4786 4787 4788 4789

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4790 4791
#endif

4792 4793 4794 4795 4796
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4797
static void
4798
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4799 4800
{
	struct cfs_rq *cfs_rq;
4801
	struct sched_entity *se = &p->se;
4802

4803 4804 4805 4806 4807 4808 4809 4810
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4811
	for_each_sched_entity(se) {
4812
		if (se->on_rq)
4813 4814
			break;
		cfs_rq = cfs_rq_of(se);
4815
		enqueue_entity(cfs_rq, se, flags);
4816 4817 4818 4819 4820 4821

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4822
		 */
4823 4824
		if (cfs_rq_throttled(cfs_rq))
			break;
4825
		cfs_rq->h_nr_running++;
4826

4827
		flags = ENQUEUE_WAKEUP;
4828
	}
P
Peter Zijlstra 已提交
4829

P
Peter Zijlstra 已提交
4830
	for_each_sched_entity(se) {
4831
		cfs_rq = cfs_rq_of(se);
4832
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4833

4834 4835 4836
		if (cfs_rq_throttled(cfs_rq))
			break;

4837
		update_load_avg(se, UPDATE_TG);
4838
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4839 4840
	}

Y
Yuyang Du 已提交
4841
	if (!se)
4842
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4843

4844
	hrtick_update(rq);
4845 4846
}

4847 4848
static void set_next_buddy(struct sched_entity *se);

4849 4850 4851 4852 4853
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4854
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4855 4856
{
	struct cfs_rq *cfs_rq;
4857
	struct sched_entity *se = &p->se;
4858
	int task_sleep = flags & DEQUEUE_SLEEP;
4859 4860 4861

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4862
		dequeue_entity(cfs_rq, se, flags);
4863 4864 4865 4866 4867 4868 4869 4870 4871

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4872
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4873

4874
		/* Don't dequeue parent if it has other entities besides us */
4875
		if (cfs_rq->load.weight) {
4876 4877
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4878 4879 4880 4881
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4882 4883
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4884
			break;
4885
		}
4886
		flags |= DEQUEUE_SLEEP;
4887
	}
P
Peter Zijlstra 已提交
4888

P
Peter Zijlstra 已提交
4889
	for_each_sched_entity(se) {
4890
		cfs_rq = cfs_rq_of(se);
4891
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4892

4893 4894 4895
		if (cfs_rq_throttled(cfs_rq))
			break;

4896
		update_load_avg(se, UPDATE_TG);
4897
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4898 4899
	}

Y
Yuyang Du 已提交
4900
	if (!se)
4901
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4902

4903
	hrtick_update(rq);
4904 4905
}

4906
#ifdef CONFIG_SMP
4907 4908 4909 4910 4911

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4912
#ifdef CONFIG_NO_HZ_COMMON
4913 4914 4915 4916 4917
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4918
 * The exact cpuload calculated at every tick would be:
4919
 *
4920 4921 4922 4923 4924 4925 4926
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4927 4928 4929
 *
 * decay_load_missed() below does efficient calculation of
 *
4930 4931 4932 4933 4934 4935
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4936
 *
4937
 * The calculation is approximated on a 128 point scale.
4938 4939
 */
#define DEGRADE_SHIFT		7
4940 4941 4942 4943 4944 4945 4946 4947 4948

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4978
#endif /* CONFIG_NO_HZ_COMMON */
4979

4980
/**
4981
 * __cpu_load_update - update the rq->cpu_load[] statistics
4982 4983 4984 4985
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4986
 * Update rq->cpu_load[] statistics. This function is usually called every
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5013
 * term.
5014
 */
5015 5016
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5017
{
5018
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5030
		old_load = this_rq->cpu_load[i];
5031
#ifdef CONFIG_NO_HZ_COMMON
5032
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5033 5034 5035 5036 5037 5038 5039 5040 5041
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5042
#endif
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5058 5059 5060 5061 5062 5063
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5064
#ifdef CONFIG_NO_HZ_COMMON
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5093
		cpu_load_update(this_rq, load, pending_updates);
5094 5095 5096
	}
}

5097 5098 5099 5100
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5101
static void cpu_load_update_idle(struct rq *this_rq)
5102 5103 5104 5105
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5106
	if (weighted_cpuload(cpu_of(this_rq)))
5107 5108
		return;

5109
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5110 5111 5112
}

/*
5113 5114 5115 5116
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5117
 */
5118
void cpu_load_update_nohz_start(void)
5119 5120
{
	struct rq *this_rq = this_rq();
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5135
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5136 5137
	struct rq *this_rq = this_rq();
	unsigned long load;
5138
	struct rq_flags rf;
5139 5140 5141 5142

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5143
	load = weighted_cpuload(cpu_of(this_rq));
5144
	rq_lock(this_rq, &rf);
5145
	update_rq_clock(this_rq);
5146
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5147
	rq_unlock(this_rq, &rf);
5148
}
5149 5150 5151 5152 5153 5154 5155 5156
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5157
#ifdef CONFIG_NO_HZ_COMMON
5158 5159
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5160
#endif
5161 5162
	cpu_load_update(this_rq, load, 1);
}
5163 5164 5165 5166

/*
 * Called from scheduler_tick()
 */
5167
void cpu_load_update_active(struct rq *this_rq)
5168
{
5169
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5170 5171 5172 5173 5174

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5175 5176
}

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5210
static unsigned long capacity_of(int cpu)
5211
{
5212
	return cpu_rq(cpu)->cpu_capacity;
5213 5214
}

5215 5216 5217 5218 5219
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5220 5221 5222
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5223
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5224
	unsigned long load_avg = weighted_cpuload(cpu);
5225 5226

	if (nr_running)
5227
		return load_avg / nr_running;
5228 5229 5230 5231

	return 0;
}

5232
#ifdef CONFIG_FAIR_GROUP_SCHED
5233 5234 5235 5236 5237 5238
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5282
 */
P
Peter Zijlstra 已提交
5283
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5284
{
P
Peter Zijlstra 已提交
5285
	struct sched_entity *se = tg->se[cpu];
5286

5287
	if (!tg->parent)	/* the trivial, non-cgroup case */
5288 5289
		return wl;

P
Peter Zijlstra 已提交
5290
	for_each_sched_entity(se) {
5291 5292
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5293

5294
		tg = cfs_rq->tg;
5295

5296 5297 5298
		/*
		 * W = @wg + \Sum rw_j
		 */
5299 5300 5301 5302 5303
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5304

5305 5306 5307
		/*
		 * w = rw_i + @wl
		 */
5308
		w += wl;
5309

5310 5311 5312 5313
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5314
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5315
		else
5316
			wl = scale_load_down(tg->shares);
5317

5318 5319 5320 5321 5322
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5323 5324
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5325 5326 5327 5328

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5329
		wl -= se->avg.load_avg;
5330 5331 5332 5333 5334 5335 5336 5337

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5338 5339
		wg = 0;
	}
5340

P
Peter Zijlstra 已提交
5341
	return wl;
5342 5343
}
#else
P
Peter Zijlstra 已提交
5344

5345
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5346
{
5347
	return wl;
5348
}
P
Peter Zijlstra 已提交
5349

5350 5351
#endif

P
Peter Zijlstra 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5369 5370
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5371
 *
M
Mike Galbraith 已提交
5372
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5385
 */
5386 5387
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5388 5389
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5390
	int factor = this_cpu_read(sd_llc_size);
5391

M
Mike Galbraith 已提交
5392 5393 5394 5395 5396
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5397 5398
}

5399 5400
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5401
{
5402
	s64 this_load, load;
5403
	s64 this_eff_load, prev_eff_load;
5404
	int idx, this_cpu;
5405
	struct task_group *tg;
5406
	unsigned long weight;
5407
	int balanced;
5408

5409 5410 5411 5412
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5413

5414 5415 5416 5417 5418
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5419 5420
	if (sync) {
		tg = task_group(current);
5421
		weight = current->se.avg.load_avg;
5422

5423
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5424 5425
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5426

5427
	tg = task_group(p);
5428
	weight = p->se.avg.load_avg;
5429

5430 5431
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5432 5433 5434
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5435 5436 5437 5438
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5439 5440
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5441

5442 5443
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5444

5445
	if (this_load > 0) {
5446 5447 5448 5449
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5450
	}
5451

5452
	balanced = this_eff_load <= prev_eff_load;
5453

5454
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5455

5456 5457
	if (!balanced)
		return 0;
5458

5459 5460
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5461 5462

	return 1;
5463 5464
}

5465 5466 5467 5468 5469 5470 5471 5472
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5473 5474 5475 5476 5477
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5478
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5479
		  int this_cpu, int sd_flag)
5480
{
5481
	struct sched_group *idlest = NULL, *group = sd->groups;
5482
	struct sched_group *most_spare_sg = NULL;
5483 5484
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5485
	unsigned long most_spare = 0, this_spare = 0;
5486
	int load_idx = sd->forkexec_idx;
5487 5488 5489
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5490

5491 5492 5493
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5494
	do {
5495 5496
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5497 5498
		int local_group;
		int i;
5499

5500 5501
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5502
					&p->cpus_allowed))
5503 5504 5505 5506 5507
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5508 5509 5510 5511
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5512
		avg_load = 0;
5513
		runnable_load = 0;
5514
		max_spare_cap = 0;
5515 5516 5517 5518 5519 5520 5521 5522

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5523 5524 5525
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5526 5527 5528 5529 5530

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5531 5532
		}

5533
		/* Adjust by relative CPU capacity of the group */
5534 5535 5536 5537
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5538 5539

		if (local_group) {
5540 5541
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5542 5543
			this_spare = max_spare_cap;
		} else {
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5559 5560 5561 5562 5563 5564 5565
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5566 5567 5568
		}
	} while (group = group->next, group != sd->groups);

5569 5570 5571 5572 5573 5574
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5575 5576 5577 5578
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5579
	 */
5580 5581 5582
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5583
	if (this_spare > task_util(p) / 2 &&
5584
	    imbalance_scale*this_spare > 100*most_spare)
5585
		return NULL;
5586 5587

	if (most_spare > task_util(p) / 2)
5588 5589
		return most_spare_sg;

5590
skip_spare:
5591 5592 5593 5594
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5595
		return NULL;
5596 5597 5598 5599 5600

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5611 5612 5613 5614
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5615 5616
	int i;

5617 5618 5619 5620
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5621
	/* Traverse only the allowed CPUs */
5622
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5645
		} else if (shallowest_idle_cpu == -1) {
5646 5647 5648 5649 5650
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5651 5652 5653
		}
	}

5654
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5655
}
5656

5657
/*
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5723
void __update_idle_core(struct rq *rq)
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5755 5756 5757
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5758 5759 5760
	if (!test_idle_cores(target, false))
		return -1;

5761
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5791 5792 5793
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5794
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5795
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5822
 */
5823 5824
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5825 5826
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5827 5828 5829 5830
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5831 5832 5833 5834 5835 5836
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5837 5838 5839 5840
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5841
	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5842 5843 5844 5845 5846
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5847
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5863
 */
5864
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5865
{
5866
	struct sched_domain *sd;
5867
	int i;
5868

5869 5870
	if (idle_cpu(target))
		return target;
5871 5872

	/*
5873
	 * If the previous cpu is cache affine and idle, don't be stupid.
5874
	 */
5875 5876
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5877

5878
	sd = rcu_dereference(per_cpu(sd_llc, target));
5879 5880
	if (!sd)
		return target;
5881

5882 5883 5884
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5885

5886 5887 5888 5889 5890 5891 5892
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5893

5894 5895
	return target;
}
5896

5897
/*
5898
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5899
 * tasks. The unit of the return value must be the one of capacity so we can
5900 5901
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5922
 */
5923
static int cpu_util(int cpu)
5924
{
5925
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5926 5927
	unsigned long capacity = capacity_orig_of(cpu);

5928
	return (util >= capacity) ? capacity : util;
5929
}
5930

5931 5932 5933 5934 5935
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5972 5973 5974
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5975 5976 5977
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5978
/*
5979 5980 5981
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5982
 *
5983 5984
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5985
 *
5986
 * Returns the target cpu number.
5987 5988 5989
 *
 * preempt must be disabled.
 */
5990
static int
5991
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5992
{
5993
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5994
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5995
	int new_cpu = prev_cpu;
5996
	int want_affine = 0;
5997
	int sync = wake_flags & WF_SYNC;
5998

P
Peter Zijlstra 已提交
5999 6000
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6001
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6002
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6003
	}
6004

6005
	rcu_read_lock();
6006
	for_each_domain(cpu, tmp) {
6007
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6008
			break;
6009

6010
		/*
6011 6012
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6013
		 */
6014 6015 6016
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6017
			break;
6018
		}
6019

6020
		if (tmp->flags & sd_flag)
6021
			sd = tmp;
M
Mike Galbraith 已提交
6022 6023
		else if (!want_affine)
			break;
6024 6025
	}

M
Mike Galbraith 已提交
6026 6027
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6028
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6029
			new_cpu = cpu;
6030
	}
6031

M
Mike Galbraith 已提交
6032 6033
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6034
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6035 6036

	} else while (sd) {
6037
		struct sched_group *group;
6038
		int weight;
6039

6040
		if (!(sd->flags & sd_flag)) {
6041 6042 6043
			sd = sd->child;
			continue;
		}
6044

6045
		group = find_idlest_group(sd, p, cpu, sd_flag);
6046 6047 6048 6049
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6050

6051
		new_cpu = find_idlest_cpu(group, p, cpu);
6052 6053 6054 6055
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6056
		}
6057 6058 6059

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6060
		weight = sd->span_weight;
6061 6062
		sd = NULL;
		for_each_domain(cpu, tmp) {
6063
			if (weight <= tmp->span_weight)
6064
				break;
6065
			if (tmp->flags & sd_flag)
6066 6067 6068
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6069
	}
6070
	rcu_read_unlock();
6071

6072
	return new_cpu;
6073
}
6074 6075 6076 6077

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6078
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6079
 */
6080
static void migrate_task_rq_fair(struct task_struct *p)
6081
{
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6108
	/*
6109 6110 6111 6112 6113
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6114
	 */
6115 6116 6117 6118
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6119 6120

	/* We have migrated, no longer consider this task hot */
6121
	p->se.exec_start = 0;
6122
}
6123 6124 6125 6126 6127

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6128 6129
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6130 6131
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6132 6133 6134 6135
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6136 6137
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6147
	 */
6148
	return calc_delta_fair(gran, se);
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6173
	gran = wakeup_gran(curr, se);
6174 6175 6176 6177 6178 6179
	if (vdiff > gran)
		return 1;

	return 0;
}

6180 6181
static void set_last_buddy(struct sched_entity *se)
{
6182 6183 6184 6185 6186
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6187 6188 6189 6190
}

static void set_next_buddy(struct sched_entity *se)
{
6191 6192 6193 6194 6195
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6196 6197
}

6198 6199
static void set_skip_buddy(struct sched_entity *se)
{
6200 6201
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6202 6203
}

6204 6205 6206
/*
 * Preempt the current task with a newly woken task if needed:
 */
6207
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6208 6209
{
	struct task_struct *curr = rq->curr;
6210
	struct sched_entity *se = &curr->se, *pse = &p->se;
6211
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6212
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6213
	int next_buddy_marked = 0;
6214

I
Ingo Molnar 已提交
6215 6216 6217
	if (unlikely(se == pse))
		return;

6218
	/*
6219
	 * This is possible from callers such as attach_tasks(), in which we
6220 6221 6222 6223 6224 6225 6226
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6227
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6228
		set_next_buddy(pse);
6229 6230
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6231

6232 6233 6234
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6235 6236 6237 6238 6239 6240
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6241 6242 6243 6244
	 */
	if (test_tsk_need_resched(curr))
		return;

6245 6246 6247 6248 6249
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6250
	/*
6251 6252
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6253
	 */
6254
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6255
		return;
6256

6257
	find_matching_se(&se, &pse);
6258
	update_curr(cfs_rq_of(se));
6259
	BUG_ON(!pse);
6260 6261 6262 6263 6264 6265 6266
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6267
		goto preempt;
6268
	}
6269

6270
	return;
6271

6272
preempt:
6273
	resched_curr(rq);
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6288 6289
}

6290
static struct task_struct *
6291
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6292 6293 6294
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6295
	struct task_struct *p;
6296
	int new_tasks;
6297

6298
again:
6299 6300
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6301
		goto idle;
6302

6303
	if (prev->sched_class != &fair_sched_class)
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6323 6324 6325 6326 6327
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6328

6329 6330 6331 6332 6333 6334 6335 6336 6337
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6378

6379
	if (!cfs_rq->nr_running)
6380
		goto idle;
6381

6382
	put_prev_task(rq, prev);
6383

6384
	do {
6385
		se = pick_next_entity(cfs_rq, NULL);
6386
		set_next_entity(cfs_rq, se);
6387 6388 6389
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6390
	p = task_of(se);
6391

6392 6393
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6394 6395

	return p;
6396 6397

idle:
6398 6399
	new_tasks = idle_balance(rq, rf);

6400 6401 6402 6403 6404
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6405
	if (new_tasks < 0)
6406 6407
		return RETRY_TASK;

6408
	if (new_tasks > 0)
6409 6410 6411
		goto again;

	return NULL;
6412 6413 6414 6415 6416
}

/*
 * Account for a descheduled task:
 */
6417
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6418 6419 6420 6421 6422 6423
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6424
		put_prev_entity(cfs_rq, se);
6425 6426 6427
	}
}

6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6453 6454 6455 6456 6457
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6458
		rq_clock_skip_update(rq, true);
6459 6460 6461 6462 6463
	}

	set_skip_buddy(se);
}

6464 6465 6466 6467
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6468 6469
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6480
#ifdef CONFIG_SMP
6481
/**************************************************
P
Peter Zijlstra 已提交
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6498
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6499 6500 6501 6502 6503 6504
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6505
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6506 6507 6508 6509 6510 6511
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6512
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6551
 *             log_2 n
P
Peter Zijlstra 已提交
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6597
 */
6598

6599 6600
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6601 6602
enum fbq_type { regular, remote, all };

6603
#define LBF_ALL_PINNED	0x01
6604
#define LBF_NEED_BREAK	0x02
6605 6606
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6607 6608 6609 6610 6611

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6612
	int			src_cpu;
6613 6614 6615 6616

	int			dst_cpu;
	struct rq		*dst_rq;

6617 6618
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6619
	enum cpu_idle_type	idle;
6620
	long			imbalance;
6621 6622 6623
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6624
	unsigned int		flags;
6625 6626 6627 6628

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6629 6630

	enum fbq_type		fbq_type;
6631
	struct list_head	tasks;
6632 6633
};

6634 6635 6636
/*
 * Is this task likely cache-hot:
 */
6637
static int task_hot(struct task_struct *p, struct lb_env *env)
6638 6639 6640
{
	s64 delta;

6641 6642
	lockdep_assert_held(&env->src_rq->lock);

6643 6644 6645 6646 6647 6648 6649 6650 6651
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6652
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6653 6654 6655 6656 6657 6658 6659 6660 6661
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6662
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6663 6664 6665 6666

	return delta < (s64)sysctl_sched_migration_cost;
}

6667
#ifdef CONFIG_NUMA_BALANCING
6668
/*
6669 6670 6671
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6672
 */
6673
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6674
{
6675
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6676
	unsigned long src_faults, dst_faults;
6677 6678
	int src_nid, dst_nid;

6679
	if (!static_branch_likely(&sched_numa_balancing))
6680 6681
		return -1;

6682
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6683
		return -1;
6684 6685 6686 6687

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6688
	if (src_nid == dst_nid)
6689
		return -1;
6690

6691 6692 6693 6694 6695 6696 6697
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6698

6699 6700
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6701
		return 0;
6702

6703 6704 6705 6706 6707 6708
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6709 6710
	}

6711
	return dst_faults < src_faults;
6712 6713
}

6714
#else
6715
static inline int migrate_degrades_locality(struct task_struct *p,
6716 6717
					     struct lb_env *env)
{
6718
	return -1;
6719
}
6720 6721
#endif

6722 6723 6724 6725
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6726
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6727
{
6728
	int tsk_cache_hot;
6729 6730 6731

	lockdep_assert_held(&env->src_rq->lock);

6732 6733
	/*
	 * We do not migrate tasks that are:
6734
	 * 1) throttled_lb_pair, or
6735
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6736 6737
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6738
	 */
6739 6740 6741
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6742
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6743
		int cpu;
6744

6745
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6746

6747 6748
		env->flags |= LBF_SOME_PINNED;

6749 6750 6751 6752 6753 6754 6755 6756
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6757
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6758 6759
			return 0;

6760 6761
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6762
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6763
				env->flags |= LBF_DST_PINNED;
6764 6765 6766
				env->new_dst_cpu = cpu;
				break;
			}
6767
		}
6768

6769 6770
		return 0;
	}
6771 6772

	/* Record that we found atleast one task that could run on dst_cpu */
6773
	env->flags &= ~LBF_ALL_PINNED;
6774

6775
	if (task_running(env->src_rq, p)) {
6776
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6777 6778 6779 6780 6781
		return 0;
	}

	/*
	 * Aggressive migration if:
6782 6783 6784
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6785
	 */
6786 6787 6788
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6789

6790
	if (tsk_cache_hot <= 0 ||
6791
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6792
		if (tsk_cache_hot == 1) {
6793 6794
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6795
		}
6796 6797 6798
		return 1;
	}

6799
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6800
	return 0;
6801 6802
}

6803
/*
6804 6805 6806 6807 6808 6809 6810
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6811
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6812 6813 6814
	set_task_cpu(p, env->dst_cpu);
}

6815
/*
6816
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6817 6818
 * part of active balancing operations within "domain".
 *
6819
 * Returns a task if successful and NULL otherwise.
6820
 */
6821
static struct task_struct *detach_one_task(struct lb_env *env)
6822 6823 6824
{
	struct task_struct *p, *n;

6825 6826
	lockdep_assert_held(&env->src_rq->lock);

6827 6828 6829
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6830

6831
		detach_task(p, env);
6832

6833
		/*
6834
		 * Right now, this is only the second place where
6835
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6836
		 * so we can safely collect stats here rather than
6837
		 * inside detach_tasks().
6838
		 */
6839
		schedstat_inc(env->sd->lb_gained[env->idle]);
6840
		return p;
6841
	}
6842
	return NULL;
6843 6844
}

6845 6846
static const unsigned int sched_nr_migrate_break = 32;

6847
/*
6848 6849
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6850
 *
6851
 * Returns number of detached tasks if successful and 0 otherwise.
6852
 */
6853
static int detach_tasks(struct lb_env *env)
6854
{
6855 6856
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6857
	unsigned long load;
6858 6859 6860
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6861

6862
	if (env->imbalance <= 0)
6863
		return 0;
6864

6865
	while (!list_empty(tasks)) {
6866 6867 6868 6869 6870 6871 6872
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6873
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6874

6875 6876
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6877
		if (env->loop > env->loop_max)
6878
			break;
6879 6880

		/* take a breather every nr_migrate tasks */
6881
		if (env->loop > env->loop_break) {
6882
			env->loop_break += sched_nr_migrate_break;
6883
			env->flags |= LBF_NEED_BREAK;
6884
			break;
6885
		}
6886

6887
		if (!can_migrate_task(p, env))
6888 6889 6890
			goto next;

		load = task_h_load(p);
6891

6892
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6893 6894
			goto next;

6895
		if ((load / 2) > env->imbalance)
6896
			goto next;
6897

6898 6899 6900 6901
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6902
		env->imbalance -= load;
6903 6904

#ifdef CONFIG_PREEMPT
6905 6906
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6907
		 * kernels will stop after the first task is detached to minimize
6908 6909
		 * the critical section.
		 */
6910
		if (env->idle == CPU_NEWLY_IDLE)
6911
			break;
6912 6913
#endif

6914 6915 6916 6917
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6918
		if (env->imbalance <= 0)
6919
			break;
6920 6921 6922

		continue;
next:
6923
		list_move_tail(&p->se.group_node, tasks);
6924
	}
6925

6926
	/*
6927 6928 6929
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6930
	 */
6931
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6932

6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6944
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6945
	p->on_rq = TASK_ON_RQ_QUEUED;
6946 6947 6948 6949 6950 6951 6952 6953 6954
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6955 6956 6957
	struct rq_flags rf;

	rq_lock(rq, &rf);
6958
	update_rq_clock(rq);
6959
	attach_task(rq, p);
6960
	rq_unlock(rq, &rf);
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6971
	struct rq_flags rf;
6972

6973
	rq_lock(env->dst_rq, &rf);
6974
	update_rq_clock(env->dst_rq);
6975 6976 6977 6978

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6979

6980 6981 6982
		attach_task(env->dst_rq, p);
	}

6983
	rq_unlock(env->dst_rq, &rf);
6984 6985
}

P
Peter Zijlstra 已提交
6986
#ifdef CONFIG_FAIR_GROUP_SCHED
6987
static void update_blocked_averages(int cpu)
6988 6989
{
	struct rq *rq = cpu_rq(cpu);
6990
	struct cfs_rq *cfs_rq;
6991
	struct rq_flags rf;
6992

6993
	rq_lock_irqsave(rq, &rf);
6994
	update_rq_clock(rq);
6995

6996 6997 6998 6999
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7000
	for_each_leaf_cfs_rq(rq, cfs_rq) {
7001 7002
		struct sched_entity *se;

7003 7004 7005
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7006

7007
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
7008
			update_tg_load_avg(cfs_rq, 0);
7009

7010 7011 7012 7013
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7014
	}
7015
	rq_unlock_irqrestore(rq, &rf);
7016 7017
}

7018
/*
7019
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7020 7021 7022
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7023
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7024
{
7025 7026
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7027
	unsigned long now = jiffies;
7028
	unsigned long load;
7029

7030
	if (cfs_rq->last_h_load_update == now)
7031 7032
		return;

7033 7034 7035 7036 7037 7038 7039
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7040

7041
	if (!se) {
7042
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7043 7044 7045 7046 7047
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7048 7049
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7050 7051 7052 7053
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7054 7055
}

7056
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7057
{
7058
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7059

7060
	update_cfs_rq_h_load(cfs_rq);
7061
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7062
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7063 7064
}
#else
7065
static inline void update_blocked_averages(int cpu)
7066
{
7067 7068
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7069
	struct rq_flags rf;
7070

7071
	rq_lock_irqsave(rq, &rf);
7072
	update_rq_clock(rq);
7073
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7074
	rq_unlock_irqrestore(rq, &rf);
7075 7076
}

7077
static unsigned long task_h_load(struct task_struct *p)
7078
{
7079
	return p->se.avg.load_avg;
7080
}
P
Peter Zijlstra 已提交
7081
#endif
7082 7083

/********** Helpers for find_busiest_group ************************/
7084 7085 7086 7087 7088 7089 7090

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7091 7092 7093 7094 7095 7096 7097
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7098
	unsigned long load_per_task;
7099
	unsigned long group_capacity;
7100
	unsigned long group_util; /* Total utilization of the group */
7101 7102 7103
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7104
	enum group_type group_type;
7105
	int group_no_capacity;
7106 7107 7108 7109
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7110 7111
};

J
Joonsoo Kim 已提交
7112 7113 7114 7115 7116 7117 7118 7119
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7120
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7121 7122 7123
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7124
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7125 7126
};

7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7139
		.total_capacity = 0UL,
7140 7141
		.busiest_stat = {
			.avg_load = 0UL,
7142 7143
			.sum_nr_running = 0,
			.group_type = group_other,
7144 7145 7146 7147
		},
	};
}

7148 7149 7150
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7151
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7152 7153
 *
 * Return: The load index.
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7176
static unsigned long scale_rt_capacity(int cpu)
7177 7178
{
	struct rq *rq = cpu_rq(cpu);
7179
	u64 total, used, age_stamp, avg;
7180
	s64 delta;
7181

7182 7183 7184 7185
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7186 7187
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7188
	delta = __rq_clock_broken(rq) - age_stamp;
7189

7190 7191 7192 7193
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7194

7195
	used = div_u64(avg, total);
7196

7197 7198
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7199

7200
	return 1;
7201 7202
}

7203
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7204
{
7205
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7206 7207
	struct sched_group *sdg = sd->groups;

7208
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7209

7210
	capacity *= scale_rt_capacity(cpu);
7211
	capacity >>= SCHED_CAPACITY_SHIFT;
7212

7213 7214
	if (!capacity)
		capacity = 1;
7215

7216 7217
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7218
	sdg->sgc->min_capacity = capacity;
7219 7220
}

7221
void update_group_capacity(struct sched_domain *sd, int cpu)
7222 7223 7224
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7225
	unsigned long capacity, min_capacity;
7226 7227 7228 7229
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7230
	sdg->sgc->next_update = jiffies + interval;
7231 7232

	if (!child) {
7233
		update_cpu_capacity(sd, cpu);
7234 7235 7236
		return;
	}

7237
	capacity = 0;
7238
	min_capacity = ULONG_MAX;
7239

P
Peter Zijlstra 已提交
7240 7241 7242 7243 7244 7245
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7246
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7247
			struct sched_group_capacity *sgc;
7248
			struct rq *rq = cpu_rq(cpu);
7249

7250
			/*
7251
			 * build_sched_domains() -> init_sched_groups_capacity()
7252 7253 7254
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7255 7256
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7257
			 *
7258
			 * This avoids capacity from being 0 and
7259 7260 7261
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7262
				capacity += capacity_of(cpu);
7263 7264 7265
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7266
			}
7267

7268
			min_capacity = min(capacity, min_capacity);
7269
		}
P
Peter Zijlstra 已提交
7270 7271 7272 7273
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7274
		 */
P
Peter Zijlstra 已提交
7275 7276 7277

		group = child->groups;
		do {
7278 7279 7280 7281
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7282 7283 7284
			group = group->next;
		} while (group != child->groups);
	}
7285

7286
	sdg->sgc->capacity = capacity;
7287
	sdg->sgc->min_capacity = min_capacity;
7288 7289
}

7290
/*
7291 7292 7293
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7294 7295
 */
static inline int
7296
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7297
{
7298 7299
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7300 7301
}

7302 7303
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7304
 * groups is inadequate due to ->cpus_allowed constraints.
7305 7306 7307 7308 7309
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7310 7311
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7312 7313 7314 7315 7316 7317
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7318 7319
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7320 7321
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7322
 * update_sd_pick_busiest(). And calculate_imbalance() and
7323
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7324 7325 7326 7327 7328 7329 7330
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7331
static inline int sg_imbalanced(struct sched_group *group)
7332
{
7333
	return group->sgc->imbalance;
7334 7335
}

7336
/*
7337 7338 7339
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7340 7341
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7342 7343 7344 7345 7346
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7347
 */
7348 7349
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7350
{
7351 7352
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7353

7354
	if ((sgs->group_capacity * 100) >
7355
			(sgs->group_util * env->sd->imbalance_pct))
7356
		return true;
7357

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7374

7375
	if ((sgs->group_capacity * 100) <
7376
			(sgs->group_util * env->sd->imbalance_pct))
7377
		return true;
7378

7379
	return false;
7380 7381
}

7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7393 7394 7395
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7396
{
7397
	if (sgs->group_no_capacity)
7398 7399 7400 7401 7402 7403 7404 7405
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7406 7407
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7408
 * @env: The load balancing environment.
7409 7410 7411 7412
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7413
 * @overload: Indicate more than one runnable task for any CPU.
7414
 */
7415 7416
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7417 7418
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7419
{
7420
	unsigned long load;
7421
	int i, nr_running;
7422

7423 7424
	memset(sgs, 0, sizeof(*sgs));

7425
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7426 7427 7428
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7429
		if (local_group)
7430
			load = target_load(i, load_idx);
7431
		else
7432 7433 7434
			load = source_load(i, load_idx);

		sgs->group_load += load;
7435
		sgs->group_util += cpu_util(i);
7436
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7437

7438 7439
		nr_running = rq->nr_running;
		if (nr_running > 1)
7440 7441
			*overload = true;

7442 7443 7444 7445
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7446
		sgs->sum_weighted_load += weighted_cpuload(i);
7447 7448 7449 7450
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7451
			sgs->idle_cpus++;
7452 7453
	}

7454 7455
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7456
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7457

7458
	if (sgs->sum_nr_running)
7459
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7460

7461
	sgs->group_weight = group->group_weight;
7462

7463
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7464
	sgs->group_type = group_classify(group, sgs);
7465 7466
}

7467 7468
/**
 * update_sd_pick_busiest - return 1 on busiest group
7469
 * @env: The load balancing environment.
7470 7471
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7472
 * @sgs: sched_group statistics
7473 7474 7475
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7476 7477 7478
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7479
 */
7480
static bool update_sd_pick_busiest(struct lb_env *env,
7481 7482
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7483
				   struct sg_lb_stats *sgs)
7484
{
7485
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7486

7487
	if (sgs->group_type > busiest->group_type)
7488 7489
		return true;

7490 7491 7492 7493 7494 7495
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7510 7511
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7512 7513
		return true;

7514 7515 7516
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7517
	/*
T
Tim Chen 已提交
7518 7519 7520
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7521
	 */
T
Tim Chen 已提交
7522 7523
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7524 7525 7526
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7527 7528 7529
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7530 7531 7532 7533 7534 7535
			return true;
	}

	return false;
}

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7566
/**
7567
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7568
 * @env: The load balancing environment.
7569 7570
 * @sds: variable to hold the statistics for this sched_domain.
 */
7571
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7572
{
7573 7574
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7575
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7576
	struct sg_lb_stats tmp_sgs;
7577
	int load_idx, prefer_sibling = 0;
7578
	bool overload = false;
7579 7580 7581 7582

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7583
	load_idx = get_sd_load_idx(env->sd, env->idle);
7584 7585

	do {
J
Joonsoo Kim 已提交
7586
		struct sg_lb_stats *sgs = &tmp_sgs;
7587 7588
		int local_group;

7589
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7590 7591
		if (local_group) {
			sds->local = sg;
7592
			sgs = local;
7593 7594

			if (env->idle != CPU_NEWLY_IDLE ||
7595 7596
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7597
		}
7598

7599 7600
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7601

7602 7603 7604
		if (local_group)
			goto next_group;

7605 7606
		/*
		 * In case the child domain prefers tasks go to siblings
7607
		 * first, lower the sg capacity so that we'll try
7608 7609
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7610 7611 7612 7613
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7614
		 */
7615
		if (prefer_sibling && sds->local &&
7616 7617
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7618
			sgs->group_no_capacity = 1;
7619
			sgs->group_type = group_classify(sg, sgs);
7620
		}
7621

7622
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7623
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7624
			sds->busiest_stat = *sgs;
7625 7626
		}

7627 7628 7629
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7630
		sds->total_capacity += sgs->group_capacity;
7631

7632
		sg = sg->next;
7633
	} while (sg != env->sd->groups);
7634 7635 7636

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7637 7638 7639 7640 7641 7642 7643

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7663
 * Return: 1 when packing is required and a task should be moved to
7664 7665
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7666
 * @env: The load balancing environment.
7667 7668
 * @sds: Statistics of the sched_domain which is to be packed
 */
7669
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7670 7671 7672
{
	int busiest_cpu;

7673
	if (!(env->sd->flags & SD_ASYM_PACKING))
7674 7675
		return 0;

7676 7677 7678
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7679 7680 7681
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7682 7683
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7684 7685
		return 0;

7686
	env->imbalance = DIV_ROUND_CLOSEST(
7687
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7688
		SCHED_CAPACITY_SCALE);
7689

7690
	return 1;
7691 7692 7693 7694 7695 7696
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7697
 * @env: The load balancing environment.
7698 7699
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7700 7701
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7702
{
7703
	unsigned long tmp, capa_now = 0, capa_move = 0;
7704
	unsigned int imbn = 2;
7705
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7706
	struct sg_lb_stats *local, *busiest;
7707

J
Joonsoo Kim 已提交
7708 7709
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7710

J
Joonsoo Kim 已提交
7711 7712 7713 7714
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7715

J
Joonsoo Kim 已提交
7716
	scaled_busy_load_per_task =
7717
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7718
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7719

7720 7721
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7722
		env->imbalance = busiest->load_per_task;
7723 7724 7725 7726 7727
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7728
	 * however we may be able to increase total CPU capacity used by
7729 7730 7731
	 * moving them.
	 */

7732
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7733
			min(busiest->load_per_task, busiest->avg_load);
7734
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7735
			min(local->load_per_task, local->avg_load);
7736
	capa_now /= SCHED_CAPACITY_SCALE;
7737 7738

	/* Amount of load we'd subtract */
7739
	if (busiest->avg_load > scaled_busy_load_per_task) {
7740
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7741
			    min(busiest->load_per_task,
7742
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7743
	}
7744 7745

	/* Amount of load we'd add */
7746
	if (busiest->avg_load * busiest->group_capacity <
7747
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7748 7749
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7750
	} else {
7751
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7752
		      local->group_capacity;
J
Joonsoo Kim 已提交
7753
	}
7754
	capa_move += local->group_capacity *
7755
		    min(local->load_per_task, local->avg_load + tmp);
7756
	capa_move /= SCHED_CAPACITY_SCALE;
7757 7758

	/* Move if we gain throughput */
7759
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7760
		env->imbalance = busiest->load_per_task;
7761 7762 7763 7764 7765
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7766
 * @env: load balance environment
7767 7768
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7769
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7770
{
7771
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7772 7773 7774 7775
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7776

7777
	if (busiest->group_type == group_imbalanced) {
7778 7779 7780 7781
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7782 7783
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7784 7785
	}

7786
	/*
7787 7788 7789 7790
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7791
	 */
7792 7793
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7794 7795
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7796 7797
	}

7798 7799 7800 7801 7802
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7803
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7804
		if (load_above_capacity > busiest->group_capacity) {
7805
			load_above_capacity -= busiest->group_capacity;
7806
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7807 7808
			load_above_capacity /= busiest->group_capacity;
		} else
7809
			load_above_capacity = ~0UL;
7810 7811 7812 7813 7814 7815
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7816 7817
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7818
	 */
7819
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7820 7821

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7822
	env->imbalance = min(
7823 7824
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7825
	) / SCHED_CAPACITY_SCALE;
7826 7827 7828

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7829
	 * there is no guarantee that any tasks will be moved so we'll have
7830 7831 7832
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7833
	if (env->imbalance < busiest->load_per_task)
7834
		return fix_small_imbalance(env, sds);
7835
}
7836

7837 7838 7839 7840
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7841
 * if there is an imbalance.
7842 7843 7844 7845
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7846
 * @env: The load balancing environment.
7847
 *
7848
 * Return:	- The busiest group if imbalance exists.
7849
 */
J
Joonsoo Kim 已提交
7850
static struct sched_group *find_busiest_group(struct lb_env *env)
7851
{
J
Joonsoo Kim 已提交
7852
	struct sg_lb_stats *local, *busiest;
7853 7854
	struct sd_lb_stats sds;

7855
	init_sd_lb_stats(&sds);
7856 7857 7858 7859 7860

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7861
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7862 7863
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7864

7865
	/* ASYM feature bypasses nice load balance check */
7866
	if (check_asym_packing(env, &sds))
7867 7868
		return sds.busiest;

7869
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7870
	if (!sds.busiest || busiest->sum_nr_running == 0)
7871 7872
		goto out_balanced;

7873 7874
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7875

P
Peter Zijlstra 已提交
7876 7877
	/*
	 * If the busiest group is imbalanced the below checks don't
7878
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7879 7880
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7881
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7882 7883
		goto force_balance;

7884
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7885 7886
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7887 7888
		goto force_balance;

7889
	/*
7890
	 * If the local group is busier than the selected busiest group
7891 7892
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7893
	if (local->avg_load >= busiest->avg_load)
7894 7895
		goto out_balanced;

7896 7897 7898 7899
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7900
	if (local->avg_load >= sds.avg_load)
7901 7902
		goto out_balanced;

7903
	if (env->idle == CPU_IDLE) {
7904
		/*
7905 7906 7907 7908 7909
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7910
		 */
7911 7912
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7913
			goto out_balanced;
7914 7915 7916 7917 7918
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7919 7920
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7921
			goto out_balanced;
7922
	}
7923

7924
force_balance:
7925
	/* Looks like there is an imbalance. Compute it */
7926
	calculate_imbalance(env, &sds);
7927 7928 7929
	return sds.busiest;

out_balanced:
7930
	env->imbalance = 0;
7931 7932 7933 7934 7935 7936
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7937
static struct rq *find_busiest_queue(struct lb_env *env,
7938
				     struct sched_group *group)
7939 7940
{
	struct rq *busiest = NULL, *rq;
7941
	unsigned long busiest_load = 0, busiest_capacity = 1;
7942 7943
	int i;

7944
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7945
		unsigned long capacity, wl;
7946 7947 7948 7949
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7950

7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7973
		capacity = capacity_of(i);
7974

7975
		wl = weighted_cpuload(i);
7976

7977 7978
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7979
		 * which is not scaled with the cpu capacity.
7980
		 */
7981 7982 7983

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7984 7985
			continue;

7986 7987
		/*
		 * For the load comparisons with the other cpu's, consider
7988 7989 7990
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7991
		 *
7992
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7993
		 * multiplication to rid ourselves of the division works out
7994 7995
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7996
		 */
7997
		if (wl * busiest_capacity > busiest_load * capacity) {
7998
			busiest_load = wl;
7999
			busiest_capacity = capacity;
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8013
static int need_active_balance(struct lb_env *env)
8014
{
8015 8016 8017
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8018 8019 8020

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8021 8022
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8023
		 */
T
Tim Chen 已提交
8024 8025
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8026
			return 1;
8027 8028
	}

8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8042 8043 8044
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8045 8046
static int active_load_balance_cpu_stop(void *data);

8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8078
	return balance_cpu == env->dst_cpu;
8079 8080
}

8081 8082 8083 8084 8085 8086
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8087
			int *continue_balancing)
8088
{
8089
	int ld_moved, cur_ld_moved, active_balance = 0;
8090
	struct sched_domain *sd_parent = sd->parent;
8091 8092
	struct sched_group *group;
	struct rq *busiest;
8093
	struct rq_flags rf;
8094
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8095

8096 8097
	struct lb_env env = {
		.sd		= sd,
8098 8099
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8100
		.dst_grpmask    = sched_group_cpus(sd->groups),
8101
		.idle		= idle,
8102
		.loop_break	= sched_nr_migrate_break,
8103
		.cpus		= cpus,
8104
		.fbq_type	= all,
8105
		.tasks		= LIST_HEAD_INIT(env.tasks),
8106 8107
	};

8108 8109 8110 8111
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8112
	if (idle == CPU_NEWLY_IDLE)
8113 8114
		env.dst_grpmask = NULL;

8115 8116
	cpumask_copy(cpus, cpu_active_mask);

8117
	schedstat_inc(sd->lb_count[idle]);
8118 8119

redo:
8120 8121
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8122
		goto out_balanced;
8123
	}
8124

8125
	group = find_busiest_group(&env);
8126
	if (!group) {
8127
		schedstat_inc(sd->lb_nobusyg[idle]);
8128 8129 8130
		goto out_balanced;
	}

8131
	busiest = find_busiest_queue(&env, group);
8132
	if (!busiest) {
8133
		schedstat_inc(sd->lb_nobusyq[idle]);
8134 8135 8136
		goto out_balanced;
	}

8137
	BUG_ON(busiest == env.dst_rq);
8138

8139
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8140

8141 8142 8143
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8144 8145 8146 8147 8148 8149 8150 8151
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8152
		env.flags |= LBF_ALL_PINNED;
8153
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8154

8155
more_balance:
8156
		rq_lock_irqsave(busiest, &rf);
8157
		update_rq_clock(busiest);
8158 8159 8160 8161 8162

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8163
		cur_ld_moved = detach_tasks(&env);
8164 8165

		/*
8166 8167 8168 8169 8170
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8171
		 */
8172

8173
		rq_unlock(busiest, &rf);
8174 8175 8176 8177 8178 8179

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8180
		local_irq_restore(rf.flags);
8181

8182 8183 8184 8185 8186
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8206
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8207

8208 8209 8210
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8211
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8212
			env.dst_cpu	 = env.new_dst_cpu;
8213
			env.flags	&= ~LBF_DST_PINNED;
8214 8215
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8216

8217 8218 8219 8220 8221 8222
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8223

8224 8225 8226 8227
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8228
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8229

8230
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8231 8232 8233
				*group_imbalance = 1;
		}

8234
		/* All tasks on this runqueue were pinned by CPU affinity */
8235
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8236
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8237 8238 8239
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8240
				goto redo;
8241
			}
8242
			goto out_all_pinned;
8243 8244 8245 8246
		}
	}

	if (!ld_moved) {
8247
		schedstat_inc(sd->lb_failed[idle]);
8248 8249 8250 8251 8252 8253 8254 8255
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8256

8257
		if (need_active_balance(&env)) {
8258 8259
			unsigned long flags;

8260 8261
			raw_spin_lock_irqsave(&busiest->lock, flags);

8262 8263 8264
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8265
			 */
8266
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8267 8268
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8269
				env.flags |= LBF_ALL_PINNED;
8270 8271 8272
				goto out_one_pinned;
			}

8273 8274 8275 8276 8277
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8278 8279 8280 8281 8282 8283
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8284

8285
			if (active_balance) {
8286 8287 8288
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8289
			}
8290

8291
			/* We've kicked active balancing, force task migration. */
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8305
		 * detach_tasks).
8306 8307 8308 8309 8310 8311 8312 8313
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8331
	schedstat_inc(sd->lb_balanced[idle]);
8332 8333 8334 8335 8336

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8337
	if (((env.flags & LBF_ALL_PINNED) &&
8338
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8339 8340 8341
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8342
	ld_moved = 0;
8343 8344 8345 8346
out:
	return ld_moved;
}

8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8363
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8364 8365 8366
{
	unsigned long interval, next;

8367 8368
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8369 8370 8371 8372 8373 8374
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8375 8376 8377 8378
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8379
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8380
{
8381 8382
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8383 8384
	struct sched_domain *sd;
	int pulled_task = 0;
8385
	u64 curr_cost = 0;
8386

8387 8388 8389 8390 8391 8392
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8393 8394 8395 8396 8397 8398 8399 8400
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8401 8402
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8403 8404 8405
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8406
			update_next_balance(sd, &next_balance);
8407 8408
		rcu_read_unlock();

8409
		goto out;
8410
	}
8411

8412 8413
	raw_spin_unlock(&this_rq->lock);

8414
	update_blocked_averages(this_cpu);
8415
	rcu_read_lock();
8416
	for_each_domain(this_cpu, sd) {
8417
		int continue_balancing = 1;
8418
		u64 t0, domain_cost;
8419 8420 8421 8422

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8423
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8424
			update_next_balance(sd, &next_balance);
8425
			break;
8426
		}
8427

8428
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8429 8430
			t0 = sched_clock_cpu(this_cpu);

8431
			pulled_task = load_balance(this_cpu, this_rq,
8432 8433
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8434 8435 8436 8437 8438 8439

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8440
		}
8441

8442
		update_next_balance(sd, &next_balance);
8443 8444 8445 8446 8447 8448

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8449 8450
			break;
	}
8451
	rcu_read_unlock();
8452 8453 8454

	raw_spin_lock(&this_rq->lock);

8455 8456 8457
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8458
	/*
8459 8460 8461
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8462
	 */
8463
	if (this_rq->cfs.h_nr_running && !pulled_task)
8464
		pulled_task = 1;
8465

8466 8467 8468
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8469
		this_rq->next_balance = next_balance;
8470

8471
	/* Is there a task of a high priority class? */
8472
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8473 8474
		pulled_task = -1;

8475
	if (pulled_task)
8476 8477
		this_rq->idle_stamp = 0;

8478 8479
	rq_repin_lock(this_rq, rf);

8480
	return pulled_task;
8481 8482 8483
}

/*
8484 8485 8486 8487
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8488
 */
8489
static int active_load_balance_cpu_stop(void *data)
8490
{
8491 8492
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8493
	int target_cpu = busiest_rq->push_cpu;
8494
	struct rq *target_rq = cpu_rq(target_cpu);
8495
	struct sched_domain *sd;
8496
	struct task_struct *p = NULL;
8497
	struct rq_flags rf;
8498

8499
	rq_lock_irq(busiest_rq, &rf);
8500 8501 8502 8503 8504

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8505 8506 8507

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8508
		goto out_unlock;
8509 8510 8511 8512 8513 8514 8515 8516 8517

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8518
	rcu_read_lock();
8519 8520 8521 8522 8523 8524 8525
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8526 8527
		struct lb_env env = {
			.sd		= sd,
8528 8529 8530 8531
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8532 8533 8534
			.idle		= CPU_IDLE,
		};

8535
		schedstat_inc(sd->alb_count);
8536
		update_rq_clock(busiest_rq);
8537

8538
		p = detach_one_task(&env);
8539
		if (p) {
8540
			schedstat_inc(sd->alb_pushed);
8541 8542 8543
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8544
			schedstat_inc(sd->alb_failed);
8545
		}
8546
	}
8547
	rcu_read_unlock();
8548 8549
out_unlock:
	busiest_rq->active_balance = 0;
8550
	rq_unlock(busiest_rq, &rf);
8551 8552 8553 8554 8555 8556

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8557
	return 0;
8558 8559
}

8560 8561 8562 8563 8564
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8565
#ifdef CONFIG_NO_HZ_COMMON
8566 8567 8568 8569 8570 8571
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8572
static struct {
8573
	cpumask_var_t idle_cpus_mask;
8574
	atomic_t nr_cpus;
8575 8576
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8577

8578
static inline int find_new_ilb(void)
8579
{
8580
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8581

8582 8583 8584 8585
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8586 8587
}

8588 8589 8590 8591 8592
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8593
static void nohz_balancer_kick(void)
8594 8595 8596 8597 8598
{
	int ilb_cpu;

	nohz.next_balance++;

8599
	ilb_cpu = find_new_ilb();
8600

8601 8602
	if (ilb_cpu >= nr_cpu_ids)
		return;
8603

8604
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8605 8606 8607 8608 8609 8610 8611 8612
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8613 8614 8615
	return;
}

8616
void nohz_balance_exit_idle(unsigned int cpu)
8617 8618
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8619 8620 8621 8622 8623 8624 8625
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8626 8627 8628 8629
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8630 8631 8632
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8633
	int cpu = smp_processor_id();
8634 8635

	rcu_read_lock();
8636
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8637 8638 8639 8640 8641

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8642
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8643
unlock:
8644 8645 8646 8647 8648 8649
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8650
	int cpu = smp_processor_id();
8651 8652

	rcu_read_lock();
8653
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8654 8655 8656 8657 8658

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8659
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8660
unlock:
8661 8662 8663
	rcu_read_unlock();
}

8664
/*
8665
 * This routine will record that the cpu is going idle with tick stopped.
8666
 * This info will be used in performing idle load balancing in the future.
8667
 */
8668
void nohz_balance_enter_idle(int cpu)
8669
{
8670 8671 8672 8673 8674 8675
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8676 8677
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8678

8679 8680 8681 8682 8683 8684
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8685 8686 8687
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8688 8689 8690 8691 8692
}
#endif

static DEFINE_SPINLOCK(balancing);

8693 8694 8695 8696
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8697
void update_max_interval(void)
8698 8699 8700 8701
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8702 8703 8704 8705
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8706
 * Balancing parameters are set up in init_sched_domains.
8707
 */
8708
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8709
{
8710
	int continue_balancing = 1;
8711
	int cpu = rq->cpu;
8712
	unsigned long interval;
8713
	struct sched_domain *sd;
8714 8715 8716
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8717 8718
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8719

8720
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8721

8722
	rcu_read_lock();
8723
	for_each_domain(cpu, sd) {
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8736 8737 8738
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8750
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8751 8752 8753 8754 8755 8756 8757 8758

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8759
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8760
				/*
8761
				 * The LBF_DST_PINNED logic could have changed
8762 8763
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8764
				 */
8765
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8766 8767
			}
			sd->last_balance = jiffies;
8768
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8769 8770 8771 8772 8773 8774 8775 8776
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8777 8778
	}
	if (need_decay) {
8779
		/*
8780 8781
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8782
		 */
8783 8784
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8785
	}
8786
	rcu_read_unlock();
8787 8788 8789 8790 8791 8792

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8793
	if (likely(update_next_balance)) {
8794
		rq->next_balance = next_balance;
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8809 8810
}

8811
#ifdef CONFIG_NO_HZ_COMMON
8812
/*
8813
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8814 8815
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8816
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8817
{
8818
	int this_cpu = this_rq->cpu;
8819 8820
	struct rq *rq;
	int balance_cpu;
8821 8822 8823
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8824

8825 8826 8827
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8828 8829

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8830
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8831 8832 8833 8834 8835 8836 8837
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8838
		if (need_resched())
8839 8840
			break;

V
Vincent Guittot 已提交
8841 8842
		rq = cpu_rq(balance_cpu);

8843 8844 8845 8846 8847
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8848 8849 8850
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8851
			update_rq_clock(rq);
8852
			cpu_load_update_idle(rq);
8853 8854
			rq_unlock_irq(rq, &rf);

8855 8856
			rebalance_domains(rq, CPU_IDLE);
		}
8857

8858 8859 8860 8861
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8862
	}
8863 8864 8865 8866 8867 8868 8869 8870

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8871 8872
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8873 8874 8875
}

/*
8876
 * Current heuristic for kicking the idle load balancer in the presence
8877
 * of an idle cpu in the system.
8878
 *   - This rq has more than one task.
8879 8880 8881 8882
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8883 8884
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8885
 */
8886
static inline bool nohz_kick_needed(struct rq *rq)
8887 8888
{
	unsigned long now = jiffies;
8889
	struct sched_domain_shared *sds;
8890
	struct sched_domain *sd;
T
Tim Chen 已提交
8891
	int nr_busy, i, cpu = rq->cpu;
8892
	bool kick = false;
8893

8894
	if (unlikely(rq->idle_balance))
8895
		return false;
8896

8897 8898 8899 8900
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8901
	set_cpu_sd_state_busy();
8902
	nohz_balance_exit_idle(cpu);
8903 8904 8905 8906 8907 8908

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8909
		return false;
8910 8911

	if (time_before(now, nohz.next_balance))
8912
		return false;
8913

8914
	if (rq->nr_running >= 2)
8915
		return true;
8916

8917
	rcu_read_lock();
8918 8919 8920 8921 8922 8923 8924
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8925 8926 8927 8928 8929
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8930
	}
8931

8932 8933 8934 8935 8936 8937 8938 8939
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8940

8941
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8942 8943 8944 8945 8946
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8947

T
Tim Chen 已提交
8948 8949 8950 8951 8952 8953
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8954
unlock:
8955
	rcu_read_unlock();
8956
	return kick;
8957 8958
}
#else
8959
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8960 8961 8962 8963 8964 8965
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8966
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8967
{
8968
	struct rq *this_rq = this_rq();
8969
	enum cpu_idle_type idle = this_rq->idle_balance ?
8970 8971 8972
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8973
	 * If this cpu has a pending nohz_balance_kick, then do the
8974
	 * balancing on behalf of the other idle cpus whose ticks are
8975 8976 8977 8978
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8979
	 */
8980
	nohz_idle_balance(this_rq, idle);
8981
	rebalance_domains(this_rq, idle);
8982 8983 8984 8985 8986
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8987
void trigger_load_balance(struct rq *rq)
8988 8989
{
	/* Don't need to rebalance while attached to NULL domain */
8990 8991 8992 8993
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8994
		raise_softirq(SCHED_SOFTIRQ);
8995
#ifdef CONFIG_NO_HZ_COMMON
8996
	if (nohz_kick_needed(rq))
8997
		nohz_balancer_kick();
8998
#endif
8999 9000
}

9001 9002 9003
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9004 9005

	update_runtime_enabled(rq);
9006 9007 9008 9009 9010
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9011 9012 9013

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9014 9015
}

9016
#endif /* CONFIG_SMP */
9017

9018 9019 9020
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9021
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9022 9023 9024 9025 9026 9027
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9028
		entity_tick(cfs_rq, se, queued);
9029
	}
9030

9031
	if (static_branch_unlikely(&sched_numa_balancing))
9032
		task_tick_numa(rq, curr);
9033 9034 9035
}

/*
P
Peter Zijlstra 已提交
9036 9037 9038
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9039
 */
P
Peter Zijlstra 已提交
9040
static void task_fork_fair(struct task_struct *p)
9041
{
9042 9043
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9044
	struct rq *rq = this_rq();
9045
	struct rq_flags rf;
9046

9047
	rq_lock(rq, &rf);
9048 9049
	update_rq_clock(rq);

9050 9051
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9052 9053
	if (curr) {
		update_curr(cfs_rq);
9054
		se->vruntime = curr->vruntime;
9055
	}
9056
	place_entity(cfs_rq, se, 1);
9057

P
Peter Zijlstra 已提交
9058
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9059
		/*
9060 9061 9062
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9063
		swap(curr->vruntime, se->vruntime);
9064
		resched_curr(rq);
9065
	}
9066

9067
	se->vruntime -= cfs_rq->min_vruntime;
9068
	rq_unlock(rq, &rf);
9069 9070
}

9071 9072 9073 9074
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9075 9076
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9077
{
9078
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9079 9080
		return;

9081 9082 9083 9084 9085
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9086
	if (rq->curr == p) {
9087
		if (p->prio > oldprio)
9088
			resched_curr(rq);
9089
	} else
9090
		check_preempt_curr(rq, p, 0);
9091 9092
}

9093
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9094 9095 9096 9097
{
	struct sched_entity *se = &p->se;

	/*
9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9108
	 *
9109 9110 9111 9112
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9113
	 */
9114 9115 9116 9117 9118 9119
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9145
static void detach_entity_cfs_rq(struct sched_entity *se)
9146 9147 9148
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9149
	/* Catch up with the cfs_rq and remove our load when we leave */
9150
	update_load_avg(se, 0);
9151
	detach_entity_load_avg(cfs_rq, se);
9152
	update_tg_load_avg(cfs_rq, false);
9153
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9154 9155
}

9156
static void attach_entity_cfs_rq(struct sched_entity *se)
9157
{
9158
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9159 9160

#ifdef CONFIG_FAIR_GROUP_SCHED
9161 9162 9163 9164 9165 9166
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9167

9168
	/* Synchronize entity with its cfs_rq */
9169
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9170
	attach_entity_load_avg(cfs_rq, se);
9171
	update_tg_load_avg(cfs_rq, false);
9172
	propagate_entity_cfs_rq(se);
9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9198 9199 9200 9201

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9202

9203 9204 9205 9206 9207 9208 9209 9210
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9211

9212
	if (task_on_rq_queued(p)) {
9213
		/*
9214 9215 9216
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9217
		 */
9218 9219 9220 9221
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9222
	}
9223 9224
}

9225 9226 9227 9228 9229 9230 9231 9232 9233
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9234 9235 9236 9237 9238 9239 9240
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9241 9242
}

9243 9244 9245 9246 9247 9248 9249
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9250
#ifdef CONFIG_SMP
9251 9252 9253
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9254 9255
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9256
#endif
9257 9258
}

P
Peter Zijlstra 已提交
9259
#ifdef CONFIG_FAIR_GROUP_SCHED
9260 9261 9262 9263 9264 9265 9266 9267
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9268
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9269
{
9270
	detach_task_cfs_rq(p);
9271
	set_task_rq(p, task_cpu(p));
9272 9273 9274 9275 9276

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9277
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9278
}
9279

9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9293 9294 9295 9296 9297 9298 9299 9300 9301
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9302
		if (tg->se)
9303 9304 9305 9306 9307 9308 9309 9310 9311 9312
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9313
	struct cfs_rq *cfs_rq;
9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9340
		init_entity_runnable_average(se);
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9362
		update_rq_clock(rq);
9363
		attach_entity_cfs_rq(se);
9364
		sync_throttle(tg, i);
9365 9366 9367 9368
		raw_spin_unlock_irq(&rq->lock);
	}
}

9369
void unregister_fair_sched_group(struct task_group *tg)
9370 9371
{
	unsigned long flags;
9372 9373
	struct rq *rq;
	int cpu;
9374

9375 9376 9377
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9378

9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9411
	if (!parent) {
9412
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9413 9414
		se->depth = 0;
	} else {
9415
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9416 9417
		se->depth = parent->depth + 1;
	}
9418 9419

	se->my_q = cfs_rq;
9420 9421
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9446 9447
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9448 9449

		/* Propagate contribution to hierarchy */
9450
		rq_lock_irqsave(rq, &rf);
9451
		update_rq_clock(rq);
9452 9453 9454 9455
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9456
		rq_unlock_irqrestore(rq, &rf);
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9472 9473
void online_fair_sched_group(struct task_group *tg) { }

9474
void unregister_fair_sched_group(struct task_group *tg) { }
9475 9476 9477

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9478

9479
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9480 9481 9482 9483 9484 9485 9486 9487 9488
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9489
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9490 9491 9492 9493

	return rr_interval;
}

9494 9495 9496
/*
 * All the scheduling class methods:
 */
9497
const struct sched_class fair_sched_class = {
9498
	.next			= &idle_sched_class,
9499 9500 9501
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9502
	.yield_to_task		= yield_to_task_fair,
9503

I
Ingo Molnar 已提交
9504
	.check_preempt_curr	= check_preempt_wakeup,
9505 9506 9507 9508

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9509
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9510
	.select_task_rq		= select_task_rq_fair,
9511
	.migrate_task_rq	= migrate_task_rq_fair,
9512

9513 9514
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9515

9516
	.task_dead		= task_dead_fair,
9517
	.set_cpus_allowed	= set_cpus_allowed_common,
9518
#endif
9519

9520
	.set_curr_task          = set_curr_task_fair,
9521
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9522
	.task_fork		= task_fork_fair,
9523 9524

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9525
	.switched_from		= switched_from_fair,
9526
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9527

9528 9529
	.get_rr_interval	= get_rr_interval_fair,

9530 9531
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9532
#ifdef CONFIG_FAIR_GROUP_SCHED
9533
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9534
#endif
9535 9536 9537
};

#ifdef CONFIG_SCHED_DEBUG
9538
void print_cfs_stats(struct seq_file *m, int cpu)
9539 9540 9541
{
	struct cfs_rq *cfs_rq;

9542
	rcu_read_lock();
9543
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9544
		print_cfs_rq(m, cpu, cfs_rq);
9545
	rcu_read_unlock();
9546
}
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9568 9569 9570 9571 9572 9573

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9574
#ifdef CONFIG_NO_HZ_COMMON
9575
	nohz.next_balance = jiffies;
9576 9577 9578 9579 9580
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}