sched.c 220.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
96
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
97
 */
98
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
99

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
106
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
107 108 109
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
110

111 112 113 114 115
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138
static inline int rt_policy(int policy)
{
139
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140 141 142 143 144 145 146 147 148
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

157
struct rt_bandwidth {
I
Ingo Molnar 已提交
158 159 160 161 162
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
196 197
	spin_lock_init(&rt_b->rt_runtime_lock);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

235 236 237 238 239 240
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

241
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
242

243 244
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
245 246
struct cfs_rq;

P
Peter Zijlstra 已提交
247 248
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
249
/* task group related information */
250
struct task_group {
251
#ifdef CONFIG_CGROUP_SCHED
252 253
	struct cgroup_subsys_state css;
#endif
254 255

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256 257 258 259 260
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
261 262 263 264 265 266
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

267
	struct rt_bandwidth rt_bandwidth;
268
#endif
269

270
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
271
	struct list_head list;
P
Peter Zijlstra 已提交
272 273 274 275

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
276 277
};

D
Dhaval Giani 已提交
278
#ifdef CONFIG_USER_SCHED
279 280 281 282 283 284 285 286

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

287
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
288 289 290 291
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 293 294 295 296 297
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
298 299
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
300
#endif
P
Peter Zijlstra 已提交
301

302
/* task_group_lock serializes add/remove of task groups and also changes to
303 304
 * a task group's cpu shares.
 */
305
static DEFINE_SPINLOCK(task_group_lock);
306

307 308 309 310 311 312 313
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

314 315 316 317 318
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
319
#define MIN_SHARES	2
320
#define MAX_SHARES	(ULONG_MAX - 1)
321

322 323 324
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
325
/* Default task group.
I
Ingo Molnar 已提交
326
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
327
 */
328
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
329 330

/* return group to which a task belongs */
331
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
332
{
333
	struct task_group *tg;
334

335
#ifdef CONFIG_USER_SCHED
336
	tg = p->user->tg;
337
#elif defined(CONFIG_CGROUP_SCHED)
338 339
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
340
#else
I
Ingo Molnar 已提交
341
	tg = &init_task_group;
342
#endif
343
	return tg;
S
Srivatsa Vaddagiri 已提交
344 345 346
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
347
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
348
{
349
#ifdef CONFIG_FAIR_GROUP_SCHED
350 351
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
352
#endif
P
Peter Zijlstra 已提交
353

354
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
355 356
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
357
#endif
S
Srivatsa Vaddagiri 已提交
358 359 360 361
}

#else

P
Peter Zijlstra 已提交
362
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
363

364
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
365

I
Ingo Molnar 已提交
366 367 368 369 370 371
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
372
	u64 min_vruntime;
I
Ingo Molnar 已提交
373 374 375

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
376 377 378 379 380 381

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
382 383
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
384
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
385 386 387

	unsigned long nr_spread_over;

388
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
389 390
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
391 392
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
393 394 395 396 397 398
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
399 400
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
438 439
#endif
};
L
Linus Torvalds 已提交
440

I
Ingo Molnar 已提交
441 442 443
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
444
	unsigned long rt_nr_running;
445
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
446 447
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
448
#ifdef CONFIG_SMP
449
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
450
	int overloaded;
P
Peter Zijlstra 已提交
451
#endif
P
Peter Zijlstra 已提交
452
	int rt_throttled;
P
Peter Zijlstra 已提交
453
	u64 rt_time;
P
Peter Zijlstra 已提交
454
	u64 rt_runtime;
I
Ingo Molnar 已提交
455
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
456
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
457

458
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
459 460
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
461 462 463 464 465
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
466 467
};

G
Gregory Haskins 已提交
468 469 470 471
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
472 473
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
474 475 476 477 478 479 480 481
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
482

I
Ingo Molnar 已提交
483
	/*
484 485 486 487
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
488
	atomic_t rto_count;
G
Gregory Haskins 已提交
489 490
};

491 492 493 494
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
495 496 497 498
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
499 500 501 502 503 504 505
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
506
struct rq {
507 508
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
509 510 511 512 513 514

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
515 516
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
517
	unsigned char idle_at_tick;
518
#ifdef CONFIG_NO_HZ
519
	unsigned long last_tick_seen;
520 521
	unsigned char in_nohz_recently;
#endif
522 523
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
524 525 526 527
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
528 529
	struct rt_rq rt;

I
Ingo Molnar 已提交
530
#ifdef CONFIG_FAIR_GROUP_SCHED
531 532
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
533 534
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
535
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
536 537 538 539 540 541 542 543 544 545
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

546
	struct task_struct *curr, *idle;
547
	unsigned long next_balance;
L
Linus Torvalds 已提交
548
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
549

550
	u64 clock;
I
Ingo Molnar 已提交
551

L
Linus Torvalds 已提交
552 553 554
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
555
	struct root_domain *rd;
L
Linus Torvalds 已提交
556 557 558 559 560
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
561 562
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
563

564
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
565 566 567
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
568 569 570 571 572 573
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
574 575 576 577 578
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
579 580 581 582
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
583 584

	/* schedule() stats */
585 586 587
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
588 589

	/* try_to_wake_up() stats */
590 591
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
592 593

	/* BKL stats */
594
	unsigned int bkl_count;
L
Linus Torvalds 已提交
595
#endif
596
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
597 598
};

599
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
600

I
Ingo Molnar 已提交
601 602 603 604 605
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
615 616
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
617
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
618 619 620 621
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
622 623
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
624 625 626 627 628 629

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

630 631 632 633 634
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
647 648 649 650

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
651
enum {
P
Peter Zijlstra 已提交
652
#include "sched_features.h"
I
Ingo Molnar 已提交
653 654
};

P
Peter Zijlstra 已提交
655 656 657 658 659
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
660
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
661 662 663 664 665 666 667 668 669
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

670
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
671 672 673 674 675 676
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

677
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
705
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
735
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785
/*
P
Peter Zijlstra 已提交
786
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
787 788
 * default: 1s
 */
P
Peter Zijlstra 已提交
789
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
790

791 792
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
793 794 795 796 797
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
798

799 800 801 802 803 804 805 806 807 808 809 810
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
811

812
unsigned long long time_sync_thresh = 100000;
813 814 815 816

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

817
/*
818 819 820 821
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
822
 */
823 824 825
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
826
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
827
{
I
Ingo Molnar 已提交
828 829 830 831 832 833
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
834 835 836 837 838 839 840 841

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
842 843
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
844 845 846 847 848

	return time;
}

static unsigned long long __cpu_clock(int cpu)
849 850 851
{
	unsigned long long now;

852 853 854 855
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
856 857 858
	if (unlikely(!scheduler_running))
		return 0;

859
	now = sched_clock_cpu(cpu);
860 861 862

	return now;
}
863 864 865 866 867 868 869 870

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
871
	unsigned long flags;
872

I
Ingo Molnar 已提交
873
	local_irq_save(flags);
874 875 876 877
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
878
	if (unlikely(delta_time > time_sync_thresh)) {
879
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
880 881 882
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
883 884 885

	return time;
}
P
Paul E. McKenney 已提交
886
EXPORT_SYMBOL_GPL(cpu_clock);
887

L
Linus Torvalds 已提交
888
#ifndef prepare_arch_switch
889 890 891 892 893 894
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

895 896 897 898 899
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

900
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
901
static inline int task_running(struct rq *rq, struct task_struct *p)
902
{
903
	return task_current(rq, p);
904 905
}

906
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 908 909
{
}

910
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
911
{
912 913 914 915
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
916 917 918 919 920 921 922
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

923 924 925 926
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
927
static inline int task_running(struct rq *rq, struct task_struct *p)
928 929 930 931
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
932
	return task_current(rq, p);
933 934 935
#endif
}

936
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

953
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
954 955 956 957 958 959 960 961 962 963 964 965
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
966
#endif
967 968
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
969

970 971 972 973
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
974
static inline struct rq *__task_rq_lock(struct task_struct *p)
975 976
	__acquires(rq->lock)
{
977 978 979 980 981
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
982 983 984 985
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
986 987
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
988
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
989 990
 * explicitly disabling preemption.
 */
991
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
992 993
	__acquires(rq->lock)
{
994
	struct rq *rq;
L
Linus Torvalds 已提交
995

996 997 998 999 1000 1001
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1002 1003 1004 1005
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1006
static void __task_rq_unlock(struct rq *rq)
1007 1008 1009 1010 1011
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1012
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1019
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1020
 */
A
Alexey Dobriyan 已提交
1021
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1022 1023
	__acquires(rq->lock)
{
1024
	struct rq *rq;
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1068
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1080 1081
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1157
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1158 1159 1160 1161 1162 1163
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1257 1258 1259 1260

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1261 1262
#endif

I
Ingo Molnar 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1276
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1277 1278 1279 1280 1281
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1282
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1283 1284
		return;

P
Peter Zijlstra 已提交
1285
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1350
#else
P
Peter Zijlstra 已提交
1351
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1352 1353
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1354
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1355 1356 1357
}
#endif

1358 1359 1360 1361 1362 1363 1364 1365
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1366 1367 1368
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1369
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1370

1371
static unsigned long
1372 1373 1374 1375 1376
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1377 1378
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1379 1380 1381 1382 1383

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1384
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1385
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1386 1387
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1388
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1389

1390
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1391 1392
}

1393 1394 1395 1396 1397 1398
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1399
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1400 1401
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1402
	lw->inv_weight = 0;
1403 1404
}

1405
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1406 1407
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1408
	lw->inv_weight = 0;
1409 1410
}

1411 1412 1413 1414
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1415
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1416 1417 1418 1419
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1431 1432 1433
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1434 1435
 */
static const int prio_to_weight[40] = {
1436 1437 1438 1439 1440 1441 1442 1443
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1444 1445
};

1446 1447 1448 1449 1450 1451 1452
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1453
static const u32 prio_to_wmult[40] = {
1454 1455 1456 1457 1458 1459 1460 1461
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1462
};
1463

I
Ingo Molnar 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1489

1490 1491 1492 1493 1494 1495
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1506 1507 1508 1509 1510
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1613 1614
	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
1693 1694
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1839 1840
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1841 1842
#include "sched_stats.h"
#include "sched_idletask.c"
1843 1844
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1845 1846 1847 1848 1849 1850
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1883
{
I
Ingo Molnar 已提交
1884
	sched_info_queued(p);
1885
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1886
	p->se.on_rq = 1;
1887 1888
}

1889
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1890
{
1891
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1892
	p->se.on_rq = 0;
1893 1894
}

1895
/*
I
Ingo Molnar 已提交
1896
 * __normal_prio - return the priority that is based on the static prio
1897 1898 1899
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1900
	return p->static_prio;
1901 1902
}

1903 1904 1905 1906 1907 1908 1909
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1910
static inline int normal_prio(struct task_struct *p)
1911 1912 1913
{
	int prio;

1914
	if (task_has_rt_policy(p))
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1928
static int effective_prio(struct task_struct *p)
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1941
/*
I
Ingo Molnar 已提交
1942
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1943
 */
I
Ingo Molnar 已提交
1944
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1945
{
1946
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1947
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1948

1949
	enqueue_task(rq, p, wakeup);
1950
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1956
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1957
{
1958
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1959 1960
		rq->nr_uninterruptible++;

1961
	dequeue_task(rq, p, sleep);
1962
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1969
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1970 1971 1972 1973
{
	return cpu_curr(task_cpu(p)) == p;
}

1974 1975 1976
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1977
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1978 1979 1980 1981
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1982
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1983
#ifdef CONFIG_SMP
1984 1985 1986 1987 1988 1989
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1990 1991
	task_thread_info(p)->cpu = cpu;
#endif
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2006
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2007

2008 2009 2010
/*
 * Is this task likely cache-hot:
 */
2011
static int
2012 2013 2014 2015
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2016 2017 2018
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2019
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2020 2021
		return 1;

2022 2023 2024
	if (p->sched_class != &fair_sched_class)
		return 0;

2025 2026 2027 2028 2029
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2030 2031 2032 2033 2034 2035
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2036
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2037
{
I
Ingo Molnar 已提交
2038 2039
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2040 2041
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2042
	u64 clock_offset;
I
Ingo Molnar 已提交
2043 2044

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2045 2046 2047 2048

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2049 2050 2051 2052
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2053 2054 2055 2056 2057
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2058
#endif
2059 2060
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2061 2062

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2063 2064
}

2065
struct migration_req {
L
Linus Torvalds 已提交
2066 2067
	struct list_head list;

2068
	struct task_struct *task;
L
Linus Torvalds 已提交
2069 2070 2071
	int dest_cpu;

	struct completion done;
2072
};
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2078
static int
2079
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2080
{
2081
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2087
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2096

L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2109
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2110 2111
{
	unsigned long flags;
I
Ingo Molnar 已提交
2112
	int running, on_rq;
2113
	struct rq *rq;
L
Linus Torvalds 已提交
2114

2115 2116 2117 2118 2119 2120 2121 2122
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2172

2173 2174 2175 2176 2177 2178 2179
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2195
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2207 2208
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2209 2210 2211 2212
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2213
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2214
{
2215
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2216
	unsigned long total = weighted_cpuload(cpu);
2217

2218
	if (type == 0)
I
Ingo Molnar 已提交
2219
		return total;
2220

I
Ingo Molnar 已提交
2221
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2222 2223 2224
}

/*
2225 2226
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2227
 */
A
Alexey Dobriyan 已提交
2228
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2229
{
2230
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2231
	unsigned long total = weighted_cpuload(cpu);
2232

N
Nick Piggin 已提交
2233
	if (type == 0)
I
Ingo Molnar 已提交
2234
		return total;
2235

I
Ingo Molnar 已提交
2236
	return max(rq->cpu_load[type-1], total);
2237 2238 2239 2240 2241
}

/*
 * Return the average load per task on the cpu's run queue
 */
2242
static unsigned long cpu_avg_load_per_task(int cpu)
2243
{
2244
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2245
	unsigned long total = weighted_cpuload(cpu);
2246 2247
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2248
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2249 2250
}

N
Nick Piggin 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2268 2269
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2270
			continue;
2271

N
Nick Piggin 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2288 2289
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2290 2291 2292 2293 2294 2295 2296 2297

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2298
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2299 2300 2301 2302 2303 2304 2305

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2306
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2307
 */
I
Ingo Molnar 已提交
2308
static int
2309 2310
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2311 2312 2313 2314 2315
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2316
	/* Traverse only the allowed CPUs */
2317
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2318

2319
	for_each_cpu_mask(i, *tmp) {
2320
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2346

2347
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2348 2349 2350
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2351 2352
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2353 2354
		if (tmp->flags & flag)
			sd = tmp;
2355
	}
N
Nick Piggin 已提交
2356 2357

	while (sd) {
2358
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2359
		struct sched_group *group;
2360 2361 2362 2363 2364 2365
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2366 2367 2368

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2369 2370 2371 2372
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2373

2374
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2375 2376 2377 2378 2379
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2380

2381
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2413
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2414
{
2415
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2416 2417
	unsigned long flags;
	long old_state;
2418
	struct rq *rq;
L
Linus Torvalds 已提交
2419

2420 2421 2422
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2423
	smp_wmb();
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2429
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2430 2431 2432
		goto out_running;

	cpu = task_cpu(p);
2433
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2440 2441 2442
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2449
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2450 2451 2452 2453 2454 2455
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2471 2472
out_activate:
#endif /* CONFIG_SMP */
2473 2474 2475 2476 2477 2478 2479 2480 2481
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2482
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2483
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2484 2485 2486
	success = 1;

out_running:
I
Ingo Molnar 已提交
2487 2488
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2489
	p->state = TASK_RUNNING;
2490 2491 2492 2493
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2500
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2501
{
2502
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2503 2504 2505
}
EXPORT_SYMBOL(wake_up_process);

2506
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512 2513
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2514 2515 2516 2517 2518 2519 2520
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2521
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2522 2523
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2524 2525 2526

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2527 2528 2529 2530 2531 2532
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2533
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2534
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2535
#endif
N
Nick Piggin 已提交
2536

P
Peter Zijlstra 已提交
2537
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2538
	p->se.on_rq = 0;
2539
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2540

2541 2542 2543 2544
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2566
	set_task_cpu(p, cpu);
2567 2568 2569 2570 2571

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2572 2573
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2574

2575
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2576
	if (likely(sched_info_on()))
2577
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2578
#endif
2579
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2580 2581
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2582
#ifdef CONFIG_PREEMPT
2583
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2584
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2585
#endif
N
Nick Piggin 已提交
2586
	put_cpu();
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2596
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2597 2598
{
	unsigned long flags;
I
Ingo Molnar 已提交
2599
	struct rq *rq;
L
Linus Torvalds 已提交
2600 2601

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2602
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2603
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2604 2605 2606

	p->prio = effective_prio(p);

2607
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2608
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2609 2610
	} else {
		/*
I
Ingo Molnar 已提交
2611 2612
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2613
		 */
2614
		p->sched_class->task_new(rq, p);
2615
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2616
	}
I
Ingo Molnar 已提交
2617
	check_preempt_curr(rq, p);
2618 2619 2620 2621
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2622
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2623 2624
}

2625 2626 2627
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2628 2629
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2630 2631 2632 2633 2634 2635 2636 2637 2638
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2639
 * @notifier: notifier struct to unregister
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2683 2684 2685
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2686
 * @prev: the current task that is being switched out
2687 2688 2689 2690 2691 2692 2693 2694 2695
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2696 2697 2698
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2699
{
2700
	fire_sched_out_preempt_notifiers(prev, next);
2701 2702 2703 2704
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2705 2706
/**
 * finish_task_switch - clean up after a task-switch
2707
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2708 2709
 * @prev: the thread we just switched away from.
 *
2710 2711 2712 2713
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2714 2715
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2716
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2717 2718 2719
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2720
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2721 2722 2723
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2724
	long prev_state;
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2730
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2731 2732
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2733
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2739
	prev_state = prev->state;
2740 2741
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2742 2743 2744 2745
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2746

2747
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2748 2749
	if (mm)
		mmdrop(mm);
2750
	if (unlikely(prev_state == TASK_DEAD)) {
2751 2752 2753
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2754
		 */
2755
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2756
		put_task_struct(prev);
2757
	}
L
Linus Torvalds 已提交
2758 2759 2760 2761 2762 2763
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2764
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2765 2766
	__releases(rq->lock)
{
2767 2768
	struct rq *rq = this_rq();

2769 2770 2771 2772 2773
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2774
	if (current->set_child_tid)
2775
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2776 2777 2778 2779 2780 2781
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2782
static inline void
2783
context_switch(struct rq *rq, struct task_struct *prev,
2784
	       struct task_struct *next)
L
Linus Torvalds 已提交
2785
{
I
Ingo Molnar 已提交
2786
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2787

2788
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2789 2790
	mm = next->mm;
	oldmm = prev->active_mm;
2791 2792 2793 2794 2795 2796 2797
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2798
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2799 2800 2801 2802 2803 2804
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2805
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2806 2807 2808
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2809 2810 2811 2812 2813 2814 2815
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2816
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2817
#endif
L
Linus Torvalds 已提交
2818 2819 2820 2821

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2822 2823 2824 2825 2826 2827 2828
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2852
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2867 2868
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2869

2870
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2880
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2901
/*
I
Ingo Molnar 已提交
2902 2903
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2904
 */
I
Ingo Molnar 已提交
2905
static void update_cpu_load(struct rq *this_rq)
2906
{
2907
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2920 2921 2922 2923 2924 2925 2926
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2927 2928
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2929 2930
}

I
Ingo Molnar 已提交
2931 2932
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2933 2934 2935 2936 2937 2938
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2939
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2940 2941 2942
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2943
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2944 2945 2946 2947
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2948
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2956 2957
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963 2964 2965
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2966
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2980
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2981 2982 2983 2984
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2985 2986
	int ret = 0;

2987 2988 2989 2990 2991
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2992
	if (unlikely(!spin_trylock(&busiest->lock))) {
2993
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2994 2995 2996
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2997
			ret = 1;
L
Linus Torvalds 已提交
2998 2999 3000
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
3001
	return ret;
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3007
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3008 3009
 * the cpu_allowed mask is restored.
 */
3010
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3011
{
3012
	struct migration_req req;
L
Linus Torvalds 已提交
3013
	unsigned long flags;
3014
	struct rq *rq;
L
Linus Torvalds 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3025

L
Linus Torvalds 已提交
3026 3027 3028 3029 3030
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3031

L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3039 3040
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3041 3042 3043 3044
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3045
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3046
	put_cpu();
N
Nick Piggin 已提交
3047 3048
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3055 3056
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3057
{
3058
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3059
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3060
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3061 3062 3063 3064
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3065
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3071
static
3072
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3073
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3074
		     int *all_pinned)
L
Linus Torvalds 已提交
3075 3076 3077 3078 3079 3080 3081
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3082 3083
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3084
		return 0;
3085
	}
3086 3087
	*all_pinned = 0;

3088 3089
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3090
		return 0;
3091
	}
L
Linus Torvalds 已提交
3092

3093 3094 3095 3096 3097 3098
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3099 3100
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3101
#ifdef CONFIG_SCHEDSTATS
3102
		if (task_hot(p, rq->clock, sd)) {
3103
			schedstat_inc(sd, lb_hot_gained[idle]);
3104 3105
			schedstat_inc(p, se.nr_forced_migrations);
		}
3106 3107 3108 3109
#endif
		return 1;
	}

3110 3111
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3112
		return 0;
3113
	}
L
Linus Torvalds 已提交
3114 3115 3116
	return 1;
}

3117 3118 3119 3120 3121
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3122
{
3123
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3124 3125
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3126

3127
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3128 3129
		goto out;

3130 3131
	pinned = 1;

L
Linus Torvalds 已提交
3132
	/*
I
Ingo Molnar 已提交
3133
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3134
	 */
I
Ingo Molnar 已提交
3135 3136
	p = iterator->start(iterator->arg);
next:
3137
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3138
		goto out;
3139
	/*
3140
	 * To help distribute high priority tasks across CPUs we don't
3141 3142 3143
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3144 3145
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3146
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3147 3148 3149
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3150 3151
	}

I
Ingo Molnar 已提交
3152
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3153
	pulled++;
I
Ingo Molnar 已提交
3154
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3155

3156
	/*
3157
	 * We only want to steal up to the prescribed amount of weighted load.
3158
	 */
3159
	if (rem_load_move > 0) {
3160 3161
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3162 3163
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3164 3165 3166
	}
out:
	/*
3167
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3168 3169 3170 3171
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3172 3173 3174

	if (all_pinned)
		*all_pinned = pinned;
3175 3176

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3177 3178
}

I
Ingo Molnar 已提交
3179
/*
P
Peter Williams 已提交
3180 3181 3182
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3183 3184 3185 3186
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3187
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3188 3189 3190
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3191
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3192
	unsigned long total_load_moved = 0;
3193
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3194 3195

	do {
P
Peter Williams 已提交
3196 3197
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3198
				max_load_move - total_load_moved,
3199
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3200
		class = class->next;
P
Peter Williams 已提交
3201
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3202

P
Peter Williams 已提交
3203 3204 3205
	return total_load_moved > 0;
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3242
	const struct sched_class *class;
P
Peter Williams 已提交
3243 3244

	for (class = sched_class_highest; class; class = class->next)
3245
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3246 3247 3248
			return 1;

	return 0;
I
Ingo Molnar 已提交
3249 3250
}

L
Linus Torvalds 已提交
3251 3252
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3253 3254
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3255 3256 3257
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3258
		   unsigned long *imbalance, enum cpu_idle_type idle,
3259
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3260 3261 3262
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3263
	unsigned long max_pull;
3264 3265
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3266
	int load_idx, group_imb = 0;
3267 3268 3269 3270 3271 3272
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3273 3274

	max_load = this_load = total_load = total_pwr = 0;
3275 3276
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3277
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3278
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3279
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3280 3281 3282
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3283 3284

	do {
3285
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3286 3287
		int local_group;
		int i;
3288
		int __group_imb = 0;
3289
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3290
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3291 3292 3293

		local_group = cpu_isset(this_cpu, group->cpumask);

3294 3295 3296
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3297
		/* Tally up the load of all CPUs in the group */
3298
		sum_weighted_load = sum_nr_running = avg_load = 0;
3299 3300
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3301 3302

		for_each_cpu_mask(i, group->cpumask) {
3303 3304 3305 3306 3307 3308
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3309

3310
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3311 3312
				*sd_idle = 0;

L
Linus Torvalds 已提交
3313
			/* Bias balancing toward cpus of our domain */
3314 3315 3316 3317 3318 3319
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3320
				load = target_load(i, load_idx);
3321
			} else {
N
Nick Piggin 已提交
3322
				load = source_load(i, load_idx);
3323 3324 3325 3326 3327
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3328 3329

			avg_load += load;
3330
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3331
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3332 3333
		}

3334 3335 3336
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3337 3338
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3339
		 */
3340 3341
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3342 3343 3344 3345
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3346
		total_load += avg_load;
3347
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3348 3349

		/* Adjust by relative CPU power of the group */
3350 3351
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3352

3353 3354 3355
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3356
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3357

L
Linus Torvalds 已提交
3358 3359 3360
		if (local_group) {
			this_load = avg_load;
			this = group;
3361 3362 3363
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3364
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3365 3366
			max_load = avg_load;
			busiest = group;
3367 3368
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3369
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3370
		}
3371 3372 3373 3374 3375 3376

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3377 3378 3379
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3380 3381 3382 3383 3384 3385 3386 3387 3388

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3389
		/*
3390 3391
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3392 3393
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3394
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3395
			goto group_next;
3396

I
Ingo Molnar 已提交
3397
		/*
3398
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3399 3400 3401 3402 3403
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3404 3405
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3406 3407
			group_min = group;
			min_nr_running = sum_nr_running;
3408 3409
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3410
		}
3411

I
Ingo Molnar 已提交
3412
		/*
3413
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3425
		}
3426 3427
group_next:
#endif
L
Linus Torvalds 已提交
3428 3429 3430
		group = group->next;
	} while (group != sd->groups);

3431
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438 3439
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3440
	busiest_load_per_task /= busiest_nr_running;
3441 3442 3443
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3444 3445 3446 3447 3448 3449 3450 3451
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3452
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3453 3454
	 * appear as very large values with unsigned longs.
	 */
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3467 3468

	/* Don't want to pull so many tasks that a group would go idle */
3469
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3470

L
Linus Torvalds 已提交
3471
	/* How much load to actually move to equalise the imbalance */
3472 3473
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3474 3475
			/ SCHED_LOAD_SCALE;

3476 3477 3478 3479 3480 3481
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3482
	if (*imbalance < busiest_load_per_task) {
3483
		unsigned long tmp, pwr_now, pwr_move;
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3495

I
Ingo Molnar 已提交
3496 3497
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3498
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3508 3509 3510 3511
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3512 3513 3514
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3515 3516
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3517
		if (max_load > tmp)
3518
			pwr_move += busiest->__cpu_power *
3519
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3520 3521

		/* Amount of load we'd add */
3522
		if (max_load * busiest->__cpu_power <
3523
				busiest_load_per_task * SCHED_LOAD_SCALE)
3524 3525
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3526
		else
3527 3528 3529 3530
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3531 3532 3533
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3534 3535
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540
	}

	return busiest;

out_balanced:
3541
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3542
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3543
		goto ret;
L
Linus Torvalds 已提交
3544

3545 3546 3547 3548 3549
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3550
ret:
L
Linus Torvalds 已提交
3551 3552 3553 3554 3555 3556 3557
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3558
static struct rq *
I
Ingo Molnar 已提交
3559
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3560
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3561
{
3562
	struct rq *busiest = NULL, *rq;
3563
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3564 3565 3566
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3567
		unsigned long wl;
3568 3569 3570 3571

		if (!cpu_isset(i, *cpus))
			continue;

3572
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3573
		wl = weighted_cpuload(i);
3574

I
Ingo Molnar 已提交
3575
		if (rq->nr_running == 1 && wl > imbalance)
3576
			continue;
L
Linus Torvalds 已提交
3577

I
Ingo Molnar 已提交
3578 3579
		if (wl > max_load) {
			max_load = wl;
3580
			busiest = rq;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586
		}
	}

	return busiest;
}

3587 3588 3589 3590 3591 3592
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3593 3594 3595 3596
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3597
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3598
			struct sched_domain *sd, enum cpu_idle_type idle,
3599
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3600
{
P
Peter Williams 已提交
3601
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3602 3603
	struct sched_group *group;
	unsigned long imbalance;
3604
	struct rq *busiest;
3605
	unsigned long flags;
3606
	int unlock_aggregate;
N
Nick Piggin 已提交
3607

3608 3609
	cpus_setall(*cpus);

3610 3611
	unlock_aggregate = get_aggregate(sd);

3612 3613 3614
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3615
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3616
	 * portraying it as CPU_NOT_IDLE.
3617
	 */
I
Ingo Molnar 已提交
3618
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3619
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3620
		sd_idle = 1;
L
Linus Torvalds 已提交
3621

3622
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3623

3624 3625
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3626
				   cpus, balance);
3627

3628
	if (*balance == 0)
3629 3630
		goto out_balanced;

L
Linus Torvalds 已提交
3631 3632 3633 3634 3635
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3636
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3642
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3643 3644 3645

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3646
	ld_moved = 0;
L
Linus Torvalds 已提交
3647 3648 3649 3650
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3651
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3652 3653
		 * correctly treated as an imbalance.
		 */
3654
		local_irq_save(flags);
N
Nick Piggin 已提交
3655
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3656
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3657
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3658
		double_rq_unlock(this_rq, busiest);
3659
		local_irq_restore(flags);
3660

3661 3662 3663
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3664
		if (ld_moved && this_cpu != smp_processor_id())
3665 3666
			resched_cpu(this_cpu);

3667
		/* All tasks on this runqueue were pinned by CPU affinity */
3668
		if (unlikely(all_pinned)) {
3669 3670
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3671
				goto redo;
3672
			goto out_balanced;
3673
		}
L
Linus Torvalds 已提交
3674
	}
3675

P
Peter Williams 已提交
3676
	if (!ld_moved) {
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3682
			spin_lock_irqsave(&busiest->lock, flags);
3683 3684 3685 3686 3687

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3688
				spin_unlock_irqrestore(&busiest->lock, flags);
3689 3690 3691 3692
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3693 3694 3695
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3696
				active_balance = 1;
L
Linus Torvalds 已提交
3697
			}
3698
			spin_unlock_irqrestore(&busiest->lock, flags);
3699
			if (active_balance)
L
Linus Torvalds 已提交
3700 3701 3702 3703 3704 3705
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3706
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3707
		}
3708
	} else
L
Linus Torvalds 已提交
3709 3710
		sd->nr_balance_failed = 0;

3711
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3712 3713
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3714 3715 3716 3717 3718 3719 3720 3721 3722
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3723 3724
	}

P
Peter Williams 已提交
3725
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3726
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3727 3728 3729
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3730 3731 3732 3733

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3734
	sd->nr_balance_failed = 0;
3735 3736

out_one_pinned:
L
Linus Torvalds 已提交
3737
	/* tune up the balancing interval */
3738 3739
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3740 3741
		sd->balance_interval *= 2;

3742
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3743
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3744 3745 3746 3747 3748 3749 3750
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3751 3752 3753 3754 3755 3756
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3757
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3758 3759
 * this_rq is locked.
 */
3760
static int
3761 3762
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3763 3764
{
	struct sched_group *group;
3765
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3766
	unsigned long imbalance;
P
Peter Williams 已提交
3767
	int ld_moved = 0;
N
Nick Piggin 已提交
3768
	int sd_idle = 0;
3769
	int all_pinned = 0;
3770 3771

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3772

3773 3774 3775 3776
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3777
	 * portraying it as CPU_NOT_IDLE.
3778 3779 3780
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3781
		sd_idle = 1;
L
Linus Torvalds 已提交
3782

3783
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3784
redo:
I
Ingo Molnar 已提交
3785
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3786
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3787
	if (!group) {
I
Ingo Molnar 已提交
3788
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3789
		goto out_balanced;
L
Linus Torvalds 已提交
3790 3791
	}

3792
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3793
	if (!busiest) {
I
Ingo Molnar 已提交
3794
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3795
		goto out_balanced;
L
Linus Torvalds 已提交
3796 3797
	}

N
Nick Piggin 已提交
3798 3799
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3800
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3801

P
Peter Williams 已提交
3802
	ld_moved = 0;
3803 3804 3805
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3806 3807
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3808
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3809 3810
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3811
		spin_unlock(&busiest->lock);
3812

3813
		if (unlikely(all_pinned)) {
3814 3815
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3816 3817
				goto redo;
		}
3818 3819
	}

P
Peter Williams 已提交
3820
	if (!ld_moved) {
I
Ingo Molnar 已提交
3821
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3822 3823
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3824 3825
			return -1;
	} else
3826
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3827

P
Peter Williams 已提交
3828
	return ld_moved;
3829 3830

out_balanced:
I
Ingo Molnar 已提交
3831
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3832
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3833
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3834
		return -1;
3835
	sd->nr_balance_failed = 0;
3836

3837
	return 0;
L
Linus Torvalds 已提交
3838 3839 3840 3841 3842 3843
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3844
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3845 3846
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3847 3848
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3849
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3850 3851

	for_each_domain(this_cpu, sd) {
3852 3853 3854 3855 3856 3857
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3858
			/* If we've pulled tasks over stop searching: */
3859 3860
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3861 3862 3863 3864 3865 3866

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3867
	}
I
Ingo Molnar 已提交
3868
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3869 3870 3871 3872 3873
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3874
	}
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3885
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3886
{
3887
	int target_cpu = busiest_rq->push_cpu;
3888 3889
	struct sched_domain *sd;
	struct rq *target_rq;
3890

3891
	/* Is there any task to move? */
3892 3893 3894 3895
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3896 3897

	/*
3898
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3899
	 * we need to fix it. Originally reported by
3900
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3901
	 */
3902
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3903

3904 3905
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3906 3907
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3908 3909

	/* Search for an sd spanning us and the target CPU. */
3910
	for_each_domain(target_cpu, sd) {
3911
		if ((sd->flags & SD_LOAD_BALANCE) &&
3912
		    cpu_isset(busiest_cpu, sd->span))
3913
				break;
3914
	}
3915

3916
	if (likely(sd)) {
3917
		schedstat_inc(sd, alb_count);
3918

P
Peter Williams 已提交
3919 3920
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3921 3922 3923 3924
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3925
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3926 3927
}

3928 3929 3930
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3931
	cpumask_t cpu_mask;
3932 3933 3934 3935 3936
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3937
/*
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3948
 *
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4005 4006 4007 4008 4009
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4010
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4011
{
4012 4013
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4014 4015
	unsigned long interval;
	struct sched_domain *sd;
4016
	/* Earliest time when we have to do rebalance again */
4017
	unsigned long next_balance = jiffies + 60*HZ;
4018
	int update_next_balance = 0;
4019
	cpumask_t tmp;
L
Linus Torvalds 已提交
4020

4021
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4022 4023 4024 4025
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4026
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4033 4034 4035
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4036

4037 4038 4039 4040 4041
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4042
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4043
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4044 4045
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4046 4047 4048
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4049
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4050
			}
4051
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4052
		}
4053 4054 4055
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4056
		if (time_after(next_balance, sd->last_balance + interval)) {
4057
			next_balance = sd->last_balance + interval;
4058 4059
			update_next_balance = 1;
		}
4060 4061 4062 4063 4064 4065 4066 4067

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4068
	}
4069 4070 4071 4072 4073 4074 4075 4076

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4077 4078 4079 4080 4081 4082 4083 4084 4085
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4086 4087 4088 4089
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4090

I
Ingo Molnar 已提交
4091
	rebalance_domains(this_cpu, idle);
4092 4093 4094 4095 4096 4097 4098

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4099 4100
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4101 4102 4103 4104
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4105
		cpu_clear(this_cpu, cpus);
4106 4107 4108 4109 4110 4111 4112 4113 4114
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4115
			rebalance_domains(balance_cpu, CPU_IDLE);
4116 4117

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4118 4119
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4132
static inline void trigger_load_balance(struct rq *rq, int cpu)
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4159
			if (ilb < nr_cpu_ids)
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4184
}
I
Ingo Molnar 已提交
4185 4186 4187

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4188 4189 4190
/*
 * on UP we do not need to balance between CPUs:
 */
4191
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4192 4193
{
}
I
Ingo Molnar 已提交
4194

L
Linus Torvalds 已提交
4195 4196 4197 4198 4199 4200 4201
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4202 4203
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4204
 */
4205
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4206 4207
{
	unsigned long flags;
4208 4209
	u64 ns, delta_exec;
	struct rq *rq;
4210

4211 4212
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4213
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4214 4215
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4216 4217 4218 4219
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4220

L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4244 4245 4246 4247 4248
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4249
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4283
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4284 4285
	cputime64_t tmp;

4286 4287 4288 4289
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4290

L
Linus Torvalds 已提交
4291 4292 4293 4294 4295 4296 4297 4298
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4299
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4300
		cpustat->system = cputime64_add(cpustat->system, tmp);
4301
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307 4308
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4329
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4330 4331 4332 4333 4334 4335 4336

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4337
	} else
L
Linus Torvalds 已提交
4338 4339 4340
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4352
	struct task_struct *curr = rq->curr;
4353 4354

	sched_clock_tick();
I
Ingo Molnar 已提交
4355 4356

	spin_lock(&rq->lock);
4357
	update_rq_clock(rq);
4358
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4359
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4360
	spin_unlock(&rq->lock);
4361

4362
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4363 4364
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4365
#endif
L
Linus Torvalds 已提交
4366 4367 4368 4369
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4370
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4371 4372 4373 4374
{
	/*
	 * Underflow?
	 */
4375 4376
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4377 4378 4379 4380
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4381 4382
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4383 4384 4385
}
EXPORT_SYMBOL(add_preempt_count);

4386
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4387 4388 4389 4390
{
	/*
	 * Underflow?
	 */
4391 4392
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4393 4394 4395
	/*
	 * Is the spinlock portion underflowing?
	 */
4396 4397 4398 4399
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4400 4401 4402 4403 4404 4405 4406
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4407
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4408
 */
I
Ingo Molnar 已提交
4409
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4410
{
4411 4412 4413 4414 4415
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4416 4417 4418
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4419 4420 4421 4422 4423

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4424
}
L
Linus Torvalds 已提交
4425

I
Ingo Molnar 已提交
4426 4427 4428 4429 4430
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4431
	/*
I
Ingo Molnar 已提交
4432
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4433 4434 4435
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4436
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4437 4438
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4439 4440
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4441
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4442 4443
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4444 4445
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4446 4447
	}
#endif
I
Ingo Molnar 已提交
4448 4449 4450 4451 4452 4453
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4454
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4455
{
4456
	const struct sched_class *class;
I
Ingo Molnar 已提交
4457
	struct task_struct *p;
L
Linus Torvalds 已提交
4458 4459

	/*
I
Ingo Molnar 已提交
4460 4461
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4462
	 */
I
Ingo Molnar 已提交
4463
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4464
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4465 4466
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4467 4468
	}

I
Ingo Molnar 已提交
4469 4470
	class = sched_class_highest;
	for ( ; ; ) {
4471
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4472 4473 4474 4475 4476 4477 4478 4479 4480
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4481

I
Ingo Molnar 已提交
4482 4483 4484 4485 4486 4487
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4488
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4504

P
Peter Zijlstra 已提交
4505 4506
	hrtick_clear(rq);

4507 4508 4509 4510
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4511
	update_rq_clock(rq);
4512 4513
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4514 4515 4516

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4517
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4518
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4519
		} else {
4520
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4521
		}
I
Ingo Molnar 已提交
4522
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4523 4524
	}

4525 4526 4527 4528
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4529

I
Ingo Molnar 已提交
4530
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4531 4532
		idle_balance(cpu, rq);

4533
	prev->sched_class->put_prev_task(rq, prev);
4534
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4535 4536

	if (likely(prev != next)) {
4537 4538
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4539 4540 4541 4542
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4543
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4544 4545 4546 4547 4548 4549
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4550 4551 4552
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4553 4554 4555
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4556
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4557

L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564 4565
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4566
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4567
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4568 4569 4570 4571 4572
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4573

L
Linus Torvalds 已提交
4574 4575
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4576
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4577
	 */
N
Nick Piggin 已提交
4578
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4579 4580
		return;

4581 4582 4583 4584
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4585

4586 4587 4588 4589 4590 4591
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4592 4593 4594 4595
}
EXPORT_SYMBOL(preempt_schedule);

/*
4596
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4604

4605
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4606 4607
	BUG_ON(ti->preempt_count || !irqs_disabled());

4608 4609 4610 4611 4612 4613
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4614

4615 4616 4617 4618 4619 4620
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4621 4622 4623 4624
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4625 4626
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4627
{
4628
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4629 4630 4631 4632
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4633 4634
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4635 4636 4637
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4638
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4639 4640 4641 4642 4643
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4644
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4645

4646
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4647 4648
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4649
		if (curr->func(curr, mode, sync, key) &&
4650
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4660
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4661
 */
4662
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4663
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4676
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4682
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4694
void
I
Ingo Molnar 已提交
4695
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4712
void complete(struct completion *x)
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4718
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4719 4720 4721 4722
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4723
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4724 4725 4726 4727 4728
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4729
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4730 4731 4732 4733
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4734 4735
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741 4742
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4743 4744 4745 4746
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4747 4748 4749 4750
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4751 4752 4753 4754 4755
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4756
				return timeout;
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762 4763 4764
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4765 4766
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4767 4768 4769 4770
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4771
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4772
	spin_unlock_irq(&x->wait.lock);
4773 4774
	return timeout;
}
L
Linus Torvalds 已提交
4775

4776
void __sched wait_for_completion(struct completion *x)
4777 4778
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4779
}
4780
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4781

4782
unsigned long __sched
4783
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4784
{
4785
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4786
}
4787
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4788

4789
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4790
{
4791 4792 4793 4794
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4795
}
4796
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4797

4798
unsigned long __sched
4799 4800
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4801
{
4802
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4803
}
4804
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4805

M
Matthew Wilcox 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4815 4816
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4817
{
I
Ingo Molnar 已提交
4818 4819 4820 4821
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4822

4823
	__set_current_state(state);
L
Linus Torvalds 已提交
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4839 4840 4841
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4842
long __sched
I
Ingo Molnar 已提交
4843
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4844
{
4845
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4846 4847 4848
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4849
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4850
{
4851
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4852 4853 4854
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4855
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4856
{
4857
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4858 4859 4860
}
EXPORT_SYMBOL(sleep_on_timeout);

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4873
void rt_mutex_setprio(struct task_struct *p, int prio)
4874 4875
{
	unsigned long flags;
4876
	int oldprio, on_rq, running;
4877
	struct rq *rq;
4878
	const struct sched_class *prev_class = p->sched_class;
4879 4880 4881 4882

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4883
	update_rq_clock(rq);
4884

4885
	oldprio = p->prio;
I
Ingo Molnar 已提交
4886
	on_rq = p->se.on_rq;
4887
	running = task_current(rq, p);
4888
	if (on_rq)
4889
		dequeue_task(rq, p, 0);
4890 4891
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4892 4893 4894 4895 4896 4897

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4898 4899
	p->prio = prio;

4900 4901
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4902
	if (on_rq) {
4903
		enqueue_task(rq, p, 0);
4904 4905

		check_class_changed(rq, p, prev_class, oldprio, running);
4906 4907 4908 4909 4910 4911
	}
	task_rq_unlock(rq, &flags);
}

#endif

4912
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4913
{
I
Ingo Molnar 已提交
4914
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4915
	unsigned long flags;
4916
	struct rq *rq;
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4925
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4926 4927 4928 4929
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4930
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4931
	 */
4932
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4933 4934 4935
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4936
	on_rq = p->se.on_rq;
4937
	if (on_rq)
4938
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4939 4940

	p->static_prio = NICE_TO_PRIO(nice);
4941
	set_load_weight(p);
4942 4943 4944
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4945

I
Ingo Molnar 已提交
4946
	if (on_rq) {
4947
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4948
		/*
4949 4950
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4951
		 */
4952
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4953 4954 4955 4956 4957 4958 4959
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4960 4961 4962 4963 4964
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4965
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4966
{
4967 4968
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4969

M
Matt Mackall 已提交
4970 4971 4972 4973
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4985
	long nice, retval;
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4992 4993
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5003 5004 5005
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5024
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031 5032
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5033
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5034 5035 5036
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5037
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5052
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5053 5054 5055 5056 5057 5058 5059 5060
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5061
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5062
{
5063
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5064 5065 5066
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5067 5068
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5069
{
I
Ingo Molnar 已提交
5070
	BUG_ON(p->se.on_rq);
5071

L
Linus Torvalds 已提交
5072
	p->policy = policy;
I
Ingo Molnar 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5085
	p->rt_priority = prio;
5086 5087 5088
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5089
	set_load_weight(p);
L
Linus Torvalds 已提交
5090 5091 5092
}

/**
5093
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5094 5095 5096
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5097
 *
5098
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5099
 */
I
Ingo Molnar 已提交
5100 5101
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5102
{
5103
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5104
	unsigned long flags;
5105
	const struct sched_class *prev_class = p->sched_class;
5106
	struct rq *rq;
L
Linus Torvalds 已提交
5107

5108 5109
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5115 5116
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5117
		return -EINVAL;
L
Linus Torvalds 已提交
5118 5119
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5120 5121
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5122 5123
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5124
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5125
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5126
		return -EINVAL;
5127
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5128 5129
		return -EINVAL;

5130 5131 5132 5133
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5134
		if (rt_policy(policy)) {
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5151 5152 5153 5154 5155 5156
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5157

5158 5159 5160 5161 5162
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5163

5164 5165 5166 5167 5168
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5169
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5170 5171 5172
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5173 5174 5175
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5176 5177 5178 5179 5180
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5181 5182 5183 5184
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5185
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5186 5187 5188
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5189 5190
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5191 5192
		goto recheck;
	}
I
Ingo Molnar 已提交
5193
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5194
	on_rq = p->se.on_rq;
5195
	running = task_current(rq, p);
5196
	if (on_rq)
5197
		deactivate_task(rq, p, 0);
5198 5199
	if (running)
		p->sched_class->put_prev_task(rq, p);
5200

L
Linus Torvalds 已提交
5201
	oldprio = p->prio;
I
Ingo Molnar 已提交
5202
	__setscheduler(rq, p, policy, param->sched_priority);
5203

5204 5205
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5206 5207
	if (on_rq) {
		activate_task(rq, p, 0);
5208 5209

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5210
	}
5211 5212 5213
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5214 5215
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5216 5217 5218 5219
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5220 5221
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5222 5223 5224
{
	struct sched_param lparam;
	struct task_struct *p;
5225
	int retval;
L
Linus Torvalds 已提交
5226 5227 5228 5229 5230

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5231 5232 5233

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5234
	p = find_process_by_pid(pid);
5235 5236 5237
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5238

L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5248 5249
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5250
{
5251 5252 5253 5254
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5274
	struct task_struct *p;
5275
	int retval;
L
Linus Torvalds 已提交
5276 5277

	if (pid < 0)
5278
		return -EINVAL;
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5300
	struct task_struct *p;
5301
	int retval;
L
Linus Torvalds 已提交
5302 5303

	if (!param || pid < 0)
5304
		return -EINVAL;
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5331
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5332 5333
{
	cpumask_t cpus_allowed;
5334
	cpumask_t new_mask = *in_mask;
5335 5336
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5337

5338
	get_online_cpus();
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5344
		put_online_cpus();
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5350
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5361 5362 5363 5364
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5365
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5366
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5367
 again:
5368
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5369

P
Paul Menage 已提交
5370
	if (!retval) {
5371
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5382 5383
out_unlock:
	put_task_struct(p);
5384
	put_online_cpus();
L
Linus Torvalds 已提交
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5415
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5425
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5426 5427 5428
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5429
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5430 5431
EXPORT_SYMBOL(cpu_online_map);

5432
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5433
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5434 5435 5436 5437
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5438
	struct task_struct *p;
L
Linus Torvalds 已提交
5439 5440
	int retval;

5441
	get_online_cpus();
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5449 5450 5451 5452
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5453
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5454 5455 5456

out_unlock:
	read_unlock(&tasklist_lock);
5457
	put_online_cpus();
L
Linus Torvalds 已提交
5458

5459
	return retval;
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5490 5491
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5492 5493 5494
 */
asmlinkage long sys_sched_yield(void)
{
5495
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5496

5497
	schedstat_inc(rq, yld_count);
5498
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5499 5500 5501 5502 5503 5504

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5505
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512 5513
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5514
static void __cond_resched(void)
L
Linus Torvalds 已提交
5515
{
5516 5517 5518
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5519 5520 5521 5522 5523
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5524 5525 5526 5527 5528 5529 5530
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5531
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5532
{
5533 5534
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539
		__cond_resched();
		return 1;
	}
	return 0;
}
5540
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5546
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5547 5548 5549
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5550
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5551
{
N
Nick Piggin 已提交
5552
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5553 5554
	int ret = 0;

N
Nick Piggin 已提交
5555
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5556
		spin_unlock(lock);
N
Nick Piggin 已提交
5557 5558 5559 5560
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5561
		ret = 1;
L
Linus Torvalds 已提交
5562 5563
		spin_lock(lock);
	}
J
Jan Kara 已提交
5564
	return ret;
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570 5571
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5572
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5573
		local_bh_enable();
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5585
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5596
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5597 5598 5599 5600 5601 5602 5603
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5604
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5605

5606
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5607 5608 5609
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5610
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5616
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5617 5618
	long ret;

5619
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5620 5621 5622
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5623
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5644
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5645
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5669
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5670
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5687
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5688
	unsigned int time_slice;
5689
	int retval;
L
Linus Torvalds 已提交
5690 5691 5692
	struct timespec t;

	if (pid < 0)
5693
		return -EINVAL;
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5705 5706 5707 5708 5709 5710
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5711
		time_slice = DEF_TIMESLICE;
5712
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5713 5714 5715 5716 5717
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5718 5719
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5720 5721
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5722
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5723
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5724 5725
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5726

L
Linus Torvalds 已提交
5727 5728 5729 5730 5731
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5732
static const char stat_nam[] = "RSDTtZX";
5733

5734
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5735 5736
{
	unsigned long free = 0;
5737
	unsigned state;
L
Linus Torvalds 已提交
5738 5739

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5740
	printk(KERN_INFO "%-13.13s %c", p->comm,
5741
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5742
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5743
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5744
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5745
	else
I
Ingo Molnar 已提交
5746
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5747 5748
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5749
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5750
	else
I
Ingo Molnar 已提交
5751
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5752 5753 5754
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5755
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5756 5757
		while (!*n)
			n++;
5758
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5759 5760
	}
#endif
5761
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5762
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5763

5764
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5765 5766
}

I
Ingo Molnar 已提交
5767
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5768
{
5769
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5770

5771 5772 5773
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5774
#else
5775 5776
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5777 5778 5779 5780 5781 5782 5783 5784
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5785
		if (!state_filter || (p->state & state_filter))
5786
			sched_show_task(p);
L
Linus Torvalds 已提交
5787 5788
	} while_each_thread(g, p);

5789 5790
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5791 5792 5793
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5794
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5795 5796 5797 5798 5799
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5800 5801
}

I
Ingo Molnar 已提交
5802 5803
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5804
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5805 5806
}

5807 5808 5809 5810 5811 5812 5813 5814
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5815
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5816
{
5817
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5818 5819
	unsigned long flags;

I
Ingo Molnar 已提交
5820 5821 5822
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5823
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5824
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5825
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5826 5827 5828

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5829 5830 5831
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5832 5833 5834
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5835 5836 5837
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5838
	task_thread_info(idle)->preempt_count = 0;
5839
#endif
I
Ingo Molnar 已提交
5840 5841 5842 5843
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5880 5881 5882 5883
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5884
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5903
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5904 5905
 * call is not atomic; no spinlocks may be held.
 */
5906
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5907
{
5908
	struct migration_req req;
L
Linus Torvalds 已提交
5909
	unsigned long flags;
5910
	struct rq *rq;
5911
	int ret = 0;
L
Linus Torvalds 已提交
5912 5913

	rq = task_rq_lock(p, &flags);
5914
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5915 5916 5917 5918
		ret = -EINVAL;
		goto out;
	}

5919
	if (p->sched_class->set_cpus_allowed)
5920
		p->sched_class->set_cpus_allowed(p, new_mask);
5921
	else {
5922 5923
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5924 5925
	}

L
Linus Torvalds 已提交
5926
	/* Can the task run on the task's current CPU? If so, we're done */
5927
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5928 5929
		goto out;

5930
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5940

L
Linus Torvalds 已提交
5941 5942
	return ret;
}
5943
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5944 5945

/*
I
Ingo Molnar 已提交
5946
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951 5952
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5953 5954
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5955
 */
5956
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5957
{
5958
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5959
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5960 5961

	if (unlikely(cpu_is_offline(dest_cpu)))
5962
		return ret;
L
Linus Torvalds 已提交
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5975
	on_rq = p->se.on_rq;
5976
	if (on_rq)
5977
		deactivate_task(rq_src, p, 0);
5978

L
Linus Torvalds 已提交
5979
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5980 5981 5982
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5983
	}
5984
	ret = 1;
L
Linus Torvalds 已提交
5985 5986
out:
	double_rq_unlock(rq_src, rq_dest);
5987
	return ret;
L
Linus Torvalds 已提交
5988 5989 5990 5991 5992 5993 5994
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5995
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5996 5997
{
	int cpu = (long)data;
5998
	struct rq *rq;
L
Linus Torvalds 已提交
5999 6000 6001 6002 6003 6004

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6005
		struct migration_req *req;
L
Linus Torvalds 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6028
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6029 6030
		list_del_init(head->next);

N
Nick Piggin 已提交
6031 6032 6033
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6063
/*
6064
 * Figure out where task on dead CPU should go, use force if necessary.
6065 6066
 * NOTE: interrupts should be disabled by the caller
 */
6067
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6068
{
6069
	unsigned long flags;
L
Linus Torvalds 已提交
6070
	cpumask_t mask;
6071 6072
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6073

6074 6075 6076 6077 6078 6079 6080
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6081
		if (dest_cpu >= nr_cpu_ids)
6082 6083 6084
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6085
		if (dest_cpu >= nr_cpu_ids) {
6086 6087 6088
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6089 6090 6091 6092
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6093
			 * cpuset_cpus_allowed() will not block. It must be
6094 6095
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6096
			rq = task_rq_lock(p, &flags);
6097
			p->cpus_allowed = cpus_allowed;
6098 6099
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6100

6101 6102 6103 6104 6105
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6106
			if (p->mm && printk_ratelimit()) {
6107 6108
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6109 6110
					task_pid_nr(p), p->comm, dead_cpu);
			}
6111
		}
6112
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6113 6114 6115 6116 6117 6118 6119 6120 6121
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6122
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6123
{
6124
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6138
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6139

6140
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6141

6142 6143
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6144 6145
			continue;

6146 6147 6148
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6149

6150
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6151 6152
}

I
Ingo Molnar 已提交
6153 6154
/*
 * Schedules idle task to be the next runnable task on current CPU.
6155 6156
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6157 6158 6159
 */
void sched_idle_next(void)
{
6160
	int this_cpu = smp_processor_id();
6161
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6162 6163 6164 6165
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6166
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6167

6168 6169 6170
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6171 6172 6173
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6174
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6175

6176 6177
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6178 6179 6180 6181

	spin_unlock_irqrestore(&rq->lock, flags);
}

6182 6183
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6197
/* called under rq->lock with disabled interrupts */
6198
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6199
{
6200
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6201 6202

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6203
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6204 6205

	/* Cannot have done final schedule yet: would have vanished. */
6206
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6207

6208
	get_task_struct(p);
L
Linus Torvalds 已提交
6209 6210 6211

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6212
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6213 6214
	 * fine.
	 */
6215
	spin_unlock_irq(&rq->lock);
6216
	move_task_off_dead_cpu(dead_cpu, p);
6217
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6218

6219
	put_task_struct(p);
L
Linus Torvalds 已提交
6220 6221 6222 6223 6224
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6225
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6226
	struct task_struct *next;
6227

I
Ingo Molnar 已提交
6228 6229 6230
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6231
		update_rq_clock(rq);
6232
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6233 6234 6235
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6236

L
Linus Torvalds 已提交
6237 6238 6239 6240
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6241 6242 6243
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6244 6245
	{
		.procname	= "sched_domain",
6246
		.mode		= 0555,
6247
	},
I
Ingo Molnar 已提交
6248
	{0, },
6249 6250 6251
};

static struct ctl_table sd_ctl_root[] = {
6252
	{
6253
		.ctl_name	= CTL_KERN,
6254
		.procname	= "kernel",
6255
		.mode		= 0555,
6256 6257
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6258
	{0, },
6259 6260 6261 6262 6263
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6264
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6265 6266 6267 6268

	return entry;
}

6269 6270
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6271
	struct ctl_table *entry;
6272

6273 6274 6275
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6276
	 * will always be set. In the lowest directory the names are
6277 6278 6279
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6280 6281
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6282 6283 6284
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6285 6286 6287 6288 6289

	kfree(*tablep);
	*tablep = NULL;
}

6290
static void
6291
set_table_entry(struct ctl_table *entry,
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6305
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6306

6307 6308 6309
	if (table == NULL)
		return NULL;

6310
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6311
		sizeof(long), 0644, proc_doulongvec_minmax);
6312
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6313
		sizeof(long), 0644, proc_doulongvec_minmax);
6314
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6315
		sizeof(int), 0644, proc_dointvec_minmax);
6316
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6317
		sizeof(int), 0644, proc_dointvec_minmax);
6318
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6319
		sizeof(int), 0644, proc_dointvec_minmax);
6320
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6321
		sizeof(int), 0644, proc_dointvec_minmax);
6322
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6323
		sizeof(int), 0644, proc_dointvec_minmax);
6324
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6325
		sizeof(int), 0644, proc_dointvec_minmax);
6326
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6327
		sizeof(int), 0644, proc_dointvec_minmax);
6328
	set_table_entry(&table[9], "cache_nice_tries",
6329 6330
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6331
	set_table_entry(&table[10], "flags", &sd->flags,
6332
		sizeof(int), 0644, proc_dointvec_minmax);
6333
	/* &table[11] is terminator */
6334 6335 6336 6337

	return table;
}

6338
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6339 6340 6341 6342 6343 6344 6345 6346 6347
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6348 6349
	if (table == NULL)
		return NULL;
6350 6351 6352 6353 6354

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6355
		entry->mode = 0555;
6356 6357 6358 6359 6360 6361 6362 6363
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6364
static void register_sched_domain_sysctl(void)
6365 6366 6367 6368 6369
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6370 6371 6372
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6373 6374 6375
	if (entry == NULL)
		return;

6376
	for_each_online_cpu(i) {
6377 6378
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6379
		entry->mode = 0555;
6380
		entry->child = sd_alloc_ctl_cpu_table(i);
6381
		entry++;
6382
	}
6383 6384

	WARN_ON(sd_sysctl_header);
6385 6386
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6387

6388
/* may be called multiple times per register */
6389 6390
static void unregister_sched_domain_sysctl(void)
{
6391 6392
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6393
	sd_sysctl_header = NULL;
6394 6395
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6396
}
6397
#else
6398 6399 6400 6401
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6402 6403 6404 6405
{
}
#endif

L
Linus Torvalds 已提交
6406 6407 6408 6409
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6410 6411
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6412 6413
{
	struct task_struct *p;
6414
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6415
	unsigned long flags;
6416
	struct rq *rq;
L
Linus Torvalds 已提交
6417 6418

	switch (action) {
6419

L
Linus Torvalds 已提交
6420
	case CPU_UP_PREPARE:
6421
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6422
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6423 6424 6425 6426 6427
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6428
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6429 6430 6431
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6432

L
Linus Torvalds 已提交
6433
	case CPU_ONLINE:
6434
	case CPU_ONLINE_FROZEN:
6435
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6436
		wake_up_process(cpu_rq(cpu)->migration_thread);
6437 6438 6439 6440 6441 6442 6443 6444 6445

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6446
		break;
6447

L
Linus Torvalds 已提交
6448 6449
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6450
	case CPU_UP_CANCELED_FROZEN:
6451 6452
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6453
		/* Unbind it from offline cpu so it can run. Fall thru. */
6454 6455
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6456 6457 6458
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6459

L
Linus Torvalds 已提交
6460
	case CPU_DEAD:
6461
	case CPU_DEAD_FROZEN:
6462
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6468
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6469
		update_rq_clock(rq);
6470
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6471
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6472 6473
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6474
		migrate_dead_tasks(cpu);
6475
		spin_unlock_irq(&rq->lock);
6476
		cpuset_unlock();
L
Linus Torvalds 已提交
6477 6478 6479
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6480 6481 6482 6483 6484
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6485 6486
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6487 6488
			struct migration_req *req;

L
Linus Torvalds 已提交
6489
			req = list_entry(rq->migration_queue.next,
6490
					 struct migration_req, list);
L
Linus Torvalds 已提交
6491 6492 6493 6494 6495
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6496

6497 6498
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6508 6509 6510 6511 6512 6513 6514 6515
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6516
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6517 6518 6519 6520
	.notifier_call = migration_call,
	.priority = 10
};

6521
void __init migration_init(void)
L
Linus Torvalds 已提交
6522 6523
{
	void *cpu = (void *)(long)smp_processor_id();
6524
	int err;
6525 6526

	/* Start one for the boot CPU: */
6527 6528
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6529 6530 6531 6532 6533 6534
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6535

6536
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6537

6538 6539
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6540
{
I
Ingo Molnar 已提交
6541
	struct sched_group *group = sd->groups;
6542
	char str[256];
L
Linus Torvalds 已提交
6543

6544
	cpulist_scnprintf(str, sizeof(str), sd->span);
6545
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6546 6547 6548 6549 6550 6551 6552 6553 6554

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6555 6556
	}

I
Ingo Molnar 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6567

I
Ingo Molnar 已提交
6568
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6569
	do {
I
Ingo Molnar 已提交
6570 6571 6572
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6573 6574 6575
			break;
		}

I
Ingo Molnar 已提交
6576 6577 6578 6579 6580 6581
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6582

I
Ingo Molnar 已提交
6583 6584 6585 6586 6587
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6588

6589
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6590 6591 6592 6593
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6594

6595
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6596

6597
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6598
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6599

I
Ingo Molnar 已提交
6600 6601 6602
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6603

6604
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6605
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6606

6607
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6608 6609 6610 6611
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6612

I
Ingo Molnar 已提交
6613 6614
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6615
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6616
	int level = 0;
L
Linus Torvalds 已提交
6617

I
Ingo Molnar 已提交
6618 6619 6620 6621
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6622

I
Ingo Molnar 已提交
6623 6624
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6625 6626 6627 6628 6629 6630
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6631
	for (;;) {
6632
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6633
			break;
L
Linus Torvalds 已提交
6634 6635
		level++;
		sd = sd->parent;
6636
		if (!sd)
I
Ingo Molnar 已提交
6637 6638
			break;
	}
6639
	kfree(groupmask);
L
Linus Torvalds 已提交
6640 6641
}
#else
6642
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6643 6644
#endif

6645
static int sd_degenerate(struct sched_domain *sd)
6646 6647 6648 6649 6650 6651 6652 6653
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6654 6655 6656
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6670 6671
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6690 6691 6692
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6693 6694 6695 6696 6697 6698 6699
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6710
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6711 6712
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6713
		}
G
Gregory Haskins 已提交
6714

6715 6716 6717
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6718 6719 6720 6721 6722 6723 6724
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6725
	cpu_set(rq->cpu, rd->span);
6726 6727
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6728

I
Ingo Molnar 已提交
6729
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6730 6731
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6732
	}
G
Gregory Haskins 已提交
6733 6734 6735 6736

	spin_unlock_irqrestore(&rq->lock, flags);
}

6737
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6738 6739 6740
{
	memset(rd, 0, sizeof(*rd));

6741 6742
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6743 6744 6745 6746
}

static void init_defrootdomain(void)
{
6747
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6748 6749 6750
	atomic_set(&def_root_domain.refcount, 1);
}

6751
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6752 6753 6754 6755 6756 6757 6758
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6759
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6760 6761 6762 6763

	return rd;
}

L
Linus Torvalds 已提交
6764
/*
I
Ingo Molnar 已提交
6765
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6766 6767
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6768 6769
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6770
{
6771
	struct rq *rq = cpu_rq(cpu);
6772 6773 6774 6775 6776 6777 6778
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6779
		if (sd_parent_degenerate(tmp, parent)) {
6780
			tmp->parent = parent->parent;
6781 6782 6783
			if (parent->parent)
				parent->parent->child = tmp;
		}
6784 6785
	}

6786
	if (sd && sd_degenerate(sd)) {
6787
		sd = sd->parent;
6788 6789 6790
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6791 6792 6793

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6794
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6795
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6796 6797 6798
}

/* cpus with isolated domains */
6799
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6814
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6815 6816

/*
6817 6818 6819 6820
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6826
static void
6827
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6828
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6829 6830 6831
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6832 6833 6834 6835
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6836 6837 6838
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6839
		struct sched_group *sg;
6840
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6841 6842
		int j;

6843
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6844 6845
			continue;

6846
		cpus_clear(sg->cpumask);
6847
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6848

6849 6850
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6851 6852
				continue;

6853
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6865
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6866

6867
#ifdef CONFIG_NUMA
6868

6869 6870 6871 6872 6873
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6874
 * Find the next node to include in a given scheduling domain. Simply
6875 6876 6877 6878
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6879
static int find_next_best_node(int node, nodemask_t *used_nodes)
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6893
		if (node_isset(n, *used_nodes))
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6905
	node_set(best_node, *used_nodes);
6906 6907 6908 6909 6910 6911
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6912
 * @span: resulting cpumask
6913
 *
I
Ingo Molnar 已提交
6914
 * Given a node, construct a good cpumask for its sched_domain to span. It
6915 6916 6917
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6918
static void sched_domain_node_span(int node, cpumask_t *span)
6919
{
6920 6921
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6922
	int i;
6923

6924
	cpus_clear(*span);
6925
	nodes_clear(used_nodes);
6926

6927
	cpus_or(*span, *span, *nodemask);
6928
	node_set(node, used_nodes);
6929 6930

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6931
		int next_node = find_next_best_node(node, &used_nodes);
6932

6933
		node_to_cpumask_ptr_next(nodemask, next_node);
6934
		cpus_or(*span, *span, *nodemask);
6935 6936 6937 6938
	}
}
#endif

6939
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6940

6941
/*
6942
 * SMT sched-domains:
6943
 */
L
Linus Torvalds 已提交
6944 6945
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6946
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6947

I
Ingo Molnar 已提交
6948
static int
6949 6950
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6951
{
6952 6953
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6954 6955 6956 6957
	return cpu;
}
#endif

6958 6959 6960
/*
 * multi-core sched-domains:
 */
6961 6962
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6963
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6964 6965 6966
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6967
static int
6968 6969
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6970
{
6971
	int group;
6972 6973 6974 6975

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6976 6977 6978
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6979 6980
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6981
static int
6982 6983
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6984
{
6985 6986
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6987 6988 6989 6990
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6991
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6992
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6993

I
Ingo Molnar 已提交
6994
static int
6995 6996
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6997
{
6998
	int group;
6999
#ifdef CONFIG_SCHED_MC
7000 7001 7002
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7003
#elif defined(CONFIG_SCHED_SMT)
7004 7005 7006
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7007
#else
7008
	group = cpu;
L
Linus Torvalds 已提交
7009
#endif
7010 7011 7012
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7013 7014 7015 7016
}

#ifdef CONFIG_NUMA
/*
7017 7018 7019
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7020
 */
7021
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7022
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7023

7024
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7025
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7026

7027
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7028
				 struct sched_group **sg, cpumask_t *nodemask)
7029
{
7030 7031
	int group;

7032 7033 7034
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7035 7036 7037 7038

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7039
}
7040

7041 7042 7043 7044 7045 7046 7047
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7048 7049 7050
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7051

7052 7053 7054 7055 7056 7057 7058 7059
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7060

7061 7062 7063 7064
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7065
}
L
Linus Torvalds 已提交
7066 7067
#endif

7068
#ifdef CONFIG_NUMA
7069
/* Free memory allocated for various sched_group structures */
7070
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7071
{
7072
	int cpu, i;
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7084 7085 7086
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7103
#else
7104
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7105 7106 7107
{
}
#endif
7108

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7135 7136
	sd->groups->__cpu_power = 0;

7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7147
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7148 7149 7150 7151 7152 7153 7154 7155
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7156
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7157 7158 7159 7160
		group = group->next;
	} while (group != child->groups);
}

7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7172
	sd->level = SD_LV_##type;				\
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7251
/*
7252 7253
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7254
 */
7255 7256
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7257 7258
{
	int i;
G
Gregory Haskins 已提交
7259
	struct root_domain *rd;
7260 7261
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7262 7263
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7264
	int sd_allnodes = 0;
7265 7266 7267 7268

	/*
	 * Allocate the per-node list of sched groups
	 */
7269
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7270
				    GFP_KERNEL);
7271 7272
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7273
		return -ENOMEM;
7274 7275
	}
#endif
L
Linus Torvalds 已提交
7276

7277
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7278 7279
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7280 7281 7282
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7283 7284 7285
		return -ENOMEM;
	}

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7305
	/*
7306
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7307
	 */
7308
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7309
		struct sched_domain *sd = NULL, *p;
7310
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7311

7312 7313
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7314 7315

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7316
		if (cpus_weight(*cpu_map) >
7317
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7318
			sd = &per_cpu(allnodes_domains, i);
7319
			SD_INIT(sd, ALLNODES);
7320
			set_domain_attribute(sd, attr);
7321
			sd->span = *cpu_map;
7322
			sd->first_cpu = first_cpu(sd->span);
7323
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7324
			p = sd;
7325
			sd_allnodes = 1;
7326 7327 7328
		} else
			p = NULL;

L
Linus Torvalds 已提交
7329
		sd = &per_cpu(node_domains, i);
7330
		SD_INIT(sd, NODE);
7331
		set_domain_attribute(sd, attr);
7332
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7333
		sd->first_cpu = first_cpu(sd->span);
7334
		sd->parent = p;
7335 7336
		if (p)
			p->child = sd;
7337
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7338 7339 7340 7341
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7342
		SD_INIT(sd, CPU);
7343
		set_domain_attribute(sd, attr);
7344
		sd->span = *nodemask;
7345
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7346
		sd->parent = p;
7347 7348
		if (p)
			p->child = sd;
7349
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7350

7351 7352 7353
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7354
		SD_INIT(sd, MC);
7355
		set_domain_attribute(sd, attr);
7356
		sd->span = cpu_coregroup_map(i);
7357
		sd->first_cpu = first_cpu(sd->span);
7358 7359
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7360
		p->child = sd;
7361
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7362 7363
#endif

L
Linus Torvalds 已提交
7364 7365 7366
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7367
		SD_INIT(sd, SIBLING);
7368
		set_domain_attribute(sd, attr);
7369
		sd->span = per_cpu(cpu_sibling_map, i);
7370
		sd->first_cpu = first_cpu(sd->span);
7371
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7372
		sd->parent = p;
7373
		p->child = sd;
7374
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7375 7376 7377 7378 7379
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7380
	for_each_cpu_mask(i, *cpu_map) {
7381 7382 7383 7384 7385 7386
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7387 7388
			continue;

I
Ingo Molnar 已提交
7389
		init_sched_build_groups(this_sibling_map, cpu_map,
7390 7391
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7392 7393 7394
	}
#endif

7395 7396 7397
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7398 7399 7400 7401 7402 7403
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7404
			continue;
7405

I
Ingo Molnar 已提交
7406
		init_sched_build_groups(this_core_map, cpu_map,
7407 7408
					&cpu_to_core_group,
					send_covered, tmpmask);
7409 7410 7411
	}
#endif

L
Linus Torvalds 已提交
7412 7413
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7414 7415
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7416

7417 7418 7419
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7420 7421
			continue;

7422 7423 7424
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7425 7426 7427 7428
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7429 7430 7431 7432 7433 7434 7435
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7436 7437 7438 7439

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7440 7441 7442
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7443 7444
		int j;

7445 7446 7447 7448 7449
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7450
			sched_group_nodes[i] = NULL;
7451
			continue;
7452
		}
7453

7454
		sched_domain_node_span(i, domainspan);
7455
		cpus_and(*domainspan, *domainspan, *cpu_map);
7456

7457
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7458 7459 7460 7461 7462
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7463
		sched_group_nodes[i] = sg;
7464
		for_each_cpu_mask(j, *nodemask) {
7465
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7466

7467 7468 7469
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7470
		sg->__cpu_power = 0;
7471
		sg->cpumask = *nodemask;
7472
		sg->next = sg;
7473
		cpus_or(*covered, *covered, *nodemask);
7474 7475 7476
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7477
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7478
			int n = (i + j) % MAX_NUMNODES;
7479
			node_to_cpumask_ptr(pnodemask, n);
7480

7481 7482 7483 7484
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7485 7486
				break;

7487 7488
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7489 7490
				continue;

7491 7492
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7493 7494 7495
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7496
				goto error;
7497
			}
7498
			sg->__cpu_power = 0;
7499
			sg->cpumask = *tmpmask;
7500
			sg->next = prev->next;
7501
			cpus_or(*covered, *covered, *tmpmask);
7502 7503 7504 7505
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7506 7507 7508
#endif

	/* Calculate CPU power for physical packages and nodes */
7509
#ifdef CONFIG_SCHED_SMT
7510
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7511 7512
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7513
		init_sched_groups_power(i, sd);
7514
	}
L
Linus Torvalds 已提交
7515
#endif
7516
#ifdef CONFIG_SCHED_MC
7517
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7518 7519
		struct sched_domain *sd = &per_cpu(core_domains, i);

7520
		init_sched_groups_power(i, sd);
7521 7522
	}
#endif
7523

7524
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7525 7526
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7527
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7528 7529
	}

7530
#ifdef CONFIG_NUMA
7531 7532
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7533

7534 7535
	if (sd_allnodes) {
		struct sched_group *sg;
7536

7537 7538
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7539 7540
		init_numa_sched_groups_power(sg);
	}
7541 7542
#endif

L
Linus Torvalds 已提交
7543
	/* Attach the domains */
7544
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7545 7546 7547
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7548 7549
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7550 7551 7552
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7553
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7554
	}
7555

7556
	SCHED_CPUMASK_FREE((void *)allmasks);
7557 7558
	return 0;

7559
#ifdef CONFIG_NUMA
7560
error:
7561 7562
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7563
	return -ENOMEM;
7564
#endif
L
Linus Torvalds 已提交
7565
}
P
Paul Jackson 已提交
7566

7567 7568 7569 7570 7571
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7572 7573
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7574 7575
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7576 7577 7578 7579 7580 7581 7582 7583

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7584 7585 7586 7587
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7588
/*
I
Ingo Molnar 已提交
7589
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7590 7591
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7592
 */
7593
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7594
{
7595 7596
	int err;

7597
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7598 7599 7600 7601 7602
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7603
	dattr_cur = NULL;
7604
	err = build_sched_domains(doms_cur);
7605
	register_sched_domain_sysctl();
7606 7607

	return err;
7608 7609
}

7610 7611
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7612
{
7613
	free_sched_groups(cpu_map, tmpmask);
7614
}
L
Linus Torvalds 已提交
7615

7616 7617 7618 7619
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7620
static void detach_destroy_domains(const cpumask_t *cpu_map)
7621
{
7622
	cpumask_t tmpmask;
7623 7624
	int i;

7625 7626
	unregister_sched_domain_sysctl();

7627
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7628
		cpu_attach_domain(NULL, &def_root_domain, i);
7629
	synchronize_sched();
7630
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7631 7632
}

7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7649 7650
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7651
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7652 7653 7654 7655
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7656 7657 7658
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7659 7660 7661
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7662 7663
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7664 7665 7666 7667 7668 7669
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7670 7671
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7672 7673 7674
{
	int i, j;

7675
	mutex_lock(&sched_domains_mutex);
7676

7677 7678 7679
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7680 7681 7682 7683
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7684
		dattr_new = NULL;
P
Paul Jackson 已提交
7685 7686 7687 7688 7689
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7690 7691
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7703 7704
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7705 7706 7707
				goto match2;
		}
		/* no match - add a new doms_new */
7708 7709
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7710 7711 7712 7713 7714 7715 7716
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7717
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7718
	doms_cur = doms_new;
7719
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7720
	ndoms_cur = ndoms_new;
7721 7722

	register_sched_domain_sysctl();
7723

7724
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7725 7726
}

7727
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7728
int arch_reinit_sched_domains(void)
7729 7730 7731
{
	int err;

7732
	get_online_cpus();
7733
	mutex_lock(&sched_domains_mutex);
7734 7735
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7736
	mutex_unlock(&sched_domains_mutex);
7737
	put_online_cpus();
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7764 7765
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7766 7767 7768
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7769 7770
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7771 7772 7773 7774 7775 7776 7777
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7778 7779
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7780 7781 7782
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7803 7804
#endif

L
Linus Torvalds 已提交
7805
/*
I
Ingo Molnar 已提交
7806
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7807
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7808
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7809 7810 7811 7812 7813 7814 7815
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7816
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7817
	case CPU_DOWN_PREPARE:
7818
	case CPU_DOWN_PREPARE_FROZEN:
7819
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7820 7821 7822
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7823
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7824
	case CPU_DOWN_FAILED:
7825
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7826
	case CPU_ONLINE:
7827
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7828
	case CPU_DEAD:
7829
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7830 7831 7832 7833 7834 7835 7836 7837 7838
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7839
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7840 7841 7842 7843 7844 7845

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7846 7847
	cpumask_t non_isolated_cpus;

7848 7849 7850 7851 7852
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7853
	get_online_cpus();
7854
	mutex_lock(&sched_domains_mutex);
7855
	arch_init_sched_domains(&cpu_online_map);
7856
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7857 7858
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7859
	mutex_unlock(&sched_domains_mutex);
7860
	put_online_cpus();
L
Linus Torvalds 已提交
7861 7862
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7863
	init_hrtick();
7864 7865

	/* Move init over to a non-isolated CPU */
7866
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7867
		BUG();
I
Ingo Molnar 已提交
7868
	sched_init_granularity();
L
Linus Torvalds 已提交
7869 7870 7871 7872
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7873
	sched_init_granularity();
L
Linus Torvalds 已提交
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7884
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7885 7886
{
	cfs_rq->tasks_timeline = RB_ROOT;
7887
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7888 7889 7890
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7891
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7892 7893
}

P
Peter Zijlstra 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7907
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7908 7909
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7910 7911 7912 7913 7914 7915 7916
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7917 7918
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7919

7920
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7921
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7922 7923
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7924 7925
}

P
Peter Zijlstra 已提交
7926
#ifdef CONFIG_FAIR_GROUP_SCHED
7927 7928 7929
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7930
{
7931
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7932 7933 7934 7935 7936 7937 7938
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7939 7940 7941 7942
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7943 7944 7945 7946 7947
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7948 7949
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7950
	se->load.inv_weight = 0;
7951
	se->parent = parent;
P
Peter Zijlstra 已提交
7952
}
7953
#endif
P
Peter Zijlstra 已提交
7954

7955
#ifdef CONFIG_RT_GROUP_SCHED
7956 7957 7958
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7959
{
7960 7961
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7962 7963 7964 7965
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7966
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7967 7968 7969 7970
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7971 7972 7973
	if (!rt_se)
		return;

7974 7975 7976 7977 7978
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7979 7980
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7981
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7982 7983 7984 7985
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7986 7987
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7988
	int i, j;
7989 7990 7991 7992 7993 7994 7995
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7996 7997 7998
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7999 8000 8001 8002 8003 8004
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8005
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8006 8007 8008 8009 8010 8011 8012

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8013 8014 8015 8016 8017 8018 8019 8020

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8021 8022 8023 8024 8025 8026
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8027 8028 8029 8030 8031 8032 8033 8034 8035
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8036 8037
#endif
	}
I
Ingo Molnar 已提交
8038

G
Gregory Haskins 已提交
8039
#ifdef CONFIG_SMP
8040
	init_aggregate();
G
Gregory Haskins 已提交
8041 8042 8043
	init_defrootdomain();
#endif

8044 8045 8046 8047 8048 8049
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8050 8051 8052 8053
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8054 8055
#endif

8056
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8057
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8058 8059 8060 8061 8062 8063 8064
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8065 8066
#endif

8067
	for_each_possible_cpu(i) {
8068
		struct rq *rq;
L
Linus Torvalds 已提交
8069 8070 8071

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8072
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8073
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8074
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8075
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8076
#ifdef CONFIG_FAIR_GROUP_SCHED
8077
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8078
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8099
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8100
#elif defined CONFIG_USER_SCHED
8101 8102
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8114
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8115
				&per_cpu(init_cfs_rq, i),
8116 8117
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8118

8119
#endif
D
Dhaval Giani 已提交
8120 8121 8122
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8123
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8124
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8125
#ifdef CONFIG_CGROUP_SCHED
8126
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8127
#elif defined CONFIG_USER_SCHED
8128
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8129
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8130
				&per_cpu(init_rt_rq, i),
8131 8132
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8133
#endif
I
Ingo Molnar 已提交
8134
#endif
L
Linus Torvalds 已提交
8135

I
Ingo Molnar 已提交
8136 8137
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8138
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8139
		rq->sd = NULL;
G
Gregory Haskins 已提交
8140
		rq->rd = NULL;
L
Linus Torvalds 已提交
8141
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8142
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8143
		rq->push_cpu = 0;
8144
		rq->cpu = i;
L
Linus Torvalds 已提交
8145 8146
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8147
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8148
#endif
P
Peter Zijlstra 已提交
8149
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8150 8151 8152
		atomic_set(&rq->nr_iowait, 0);
	}

8153
	set_load_weight(&init_task);
8154

8155 8156 8157 8158
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8159 8160 8161 8162
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8163 8164 8165 8166
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8180 8181 8182 8183
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8184 8185

	scheduler_running = 1;
L
Linus Torvalds 已提交
8186 8187 8188 8189 8190
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8191
#ifdef in_atomic
L
Linus Torvalds 已提交
8192 8193 8194 8195 8196 8197 8198
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8199
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8200 8201 8202
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8203
		debug_show_held_locks(current);
8204 8205
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8206 8207 8208 8209 8210 8211 8212 8213
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8214 8215 8216
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8217

8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8229 8230
void normalize_rt_tasks(void)
{
8231
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8232
	unsigned long flags;
8233
	struct rq *rq;
L
Linus Torvalds 已提交
8234

8235
	read_lock_irqsave(&tasklist_lock, flags);
8236
	do_each_thread(g, p) {
8237 8238 8239 8240 8241 8242
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8243 8244
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8245 8246 8247
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8248
#endif
I
Ingo Molnar 已提交
8249 8250 8251 8252 8253 8254 8255 8256

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8257
			continue;
I
Ingo Molnar 已提交
8258
		}
L
Linus Torvalds 已提交
8259

8260
		spin_lock(&p->pi_lock);
8261
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8262

8263
		normalize_task(rq, p);
8264

8265
		__task_rq_unlock(rq);
8266
		spin_unlock(&p->pi_lock);
8267 8268
	} while_each_thread(g, p);

8269
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8270 8271 8272
}

#endif /* CONFIG_MAGIC_SYSRQ */
8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8291
struct task_struct *curr_task(int cpu)
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8302 8303
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8304 8305 8306 8307 8308 8309 8310
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8311
void set_curr_task(int cpu, struct task_struct *p)
8312 8313 8314 8315 8316
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8317

8318 8319
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8334 8335
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8336 8337
{
	struct cfs_rq *cfs_rq;
8338
	struct sched_entity *se, *parent_se;
8339
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8340 8341
	int i;

8342
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8343 8344
	if (!tg->cfs_rq)
		goto err;
8345
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8346 8347
	if (!tg->se)
		goto err;
8348 8349

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8350 8351

	for_each_possible_cpu(i) {
8352
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8353

P
Peter Zijlstra 已提交
8354 8355
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8356 8357 8358
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8359 8360
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8361 8362 8363
		if (!se)
			goto err;

8364 8365
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8389 8390
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8402 8403 8404
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8405 8406 8407 8408
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8409 8410
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8422 8423
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8424 8425
{
	struct rt_rq *rt_rq;
8426
	struct sched_rt_entity *rt_se, *parent_se;
8427 8428 8429
	struct rq *rq;
	int i;

8430
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8431 8432
	if (!tg->rt_rq)
		goto err;
8433
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8434 8435 8436
	if (!tg->rt_se)
		goto err;

8437 8438
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8439 8440 8441 8442

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8443 8444 8445 8446
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8447

P
Peter Zijlstra 已提交
8448 8449 8450 8451
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8452

8453 8454
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8455 8456
	}

8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8478 8479
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8493
#ifdef CONFIG_GROUP_SCHED
8494 8495 8496 8497 8498 8499 8500 8501
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8502
struct task_group *sched_create_group(struct task_group *parent)
8503 8504 8505 8506 8507 8508 8509 8510 8511
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8512
	if (!alloc_fair_sched_group(tg, parent))
8513 8514
		goto err;

8515
	if (!alloc_rt_sched_group(tg, parent))
8516 8517
		goto err;

8518
	spin_lock_irqsave(&task_group_lock, flags);
8519
	for_each_possible_cpu(i) {
8520 8521
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8522
	}
P
Peter Zijlstra 已提交
8523
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8524 8525 8526 8527 8528 8529

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8530
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8531

8532
	return tg;
S
Srivatsa Vaddagiri 已提交
8533 8534

err:
P
Peter Zijlstra 已提交
8535
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8536 8537 8538
	return ERR_PTR(-ENOMEM);
}

8539
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8540
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8541 8542
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8543
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8544 8545
}

8546
/* Destroy runqueue etc associated with a task group */
8547
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8548
{
8549
	unsigned long flags;
8550
	int i;
S
Srivatsa Vaddagiri 已提交
8551

8552
	spin_lock_irqsave(&task_group_lock, flags);
8553
	for_each_possible_cpu(i) {
8554 8555
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8556
	}
P
Peter Zijlstra 已提交
8557
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8558
	list_del_rcu(&tg->siblings);
8559
	spin_unlock_irqrestore(&task_group_lock, flags);
8560 8561

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8562
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8563 8564
}

8565
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8566 8567 8568
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8569 8570
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8571 8572 8573 8574 8575 8576 8577 8578 8579
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8580
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8581 8582
	on_rq = tsk->se.on_rq;

8583
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8584
		dequeue_task(rq, tsk, 0);
8585 8586
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8587

P
Peter Zijlstra 已提交
8588
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8589

P
Peter Zijlstra 已提交
8590 8591 8592 8593 8594
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8595 8596 8597
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8598
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8599 8600 8601

	task_rq_unlock(rq, &flags);
}
8602
#endif
S
Srivatsa Vaddagiri 已提交
8603

8604
#ifdef CONFIG_FAIR_GROUP_SCHED
8605
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8606 8607 8608 8609 8610
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8611
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8612 8613 8614
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8615
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8616

8617
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8618
		enqueue_entity(cfs_rq, se, 0);
8619
}
8620

8621 8622 8623 8624 8625 8626 8627 8628 8629
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8630 8631
}

8632 8633
static DEFINE_MUTEX(shares_mutex);

8634
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8635 8636
{
	int i;
8637
	unsigned long flags;
8638

8639 8640 8641 8642 8643 8644
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8645 8646
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8647 8648
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8649

8650
	mutex_lock(&shares_mutex);
8651
	if (tg->shares == shares)
8652
		goto done;
S
Srivatsa Vaddagiri 已提交
8653

8654
	spin_lock_irqsave(&task_group_lock, flags);
8655 8656
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8657
	list_del_rcu(&tg->siblings);
8658
	spin_unlock_irqrestore(&task_group_lock, flags);
8659 8660 8661 8662 8663 8664 8665 8666

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8667
	tg->shares = shares;
8668 8669 8670 8671 8672
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8673
		set_se_shares(tg->se[i], shares);
8674
	}
S
Srivatsa Vaddagiri 已提交
8675

8676 8677 8678 8679
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8680
	spin_lock_irqsave(&task_group_lock, flags);
8681 8682
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8683
	list_add_rcu(&tg->siblings, &tg->parent->children);
8684
	spin_unlock_irqrestore(&task_group_lock, flags);
8685
done:
8686
	mutex_unlock(&shares_mutex);
8687
	return 0;
S
Srivatsa Vaddagiri 已提交
8688 8689
}

8690 8691 8692 8693
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8694
#endif
8695

8696
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8697
/*
P
Peter Zijlstra 已提交
8698
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8699
 */
P
Peter Zijlstra 已提交
8700 8701 8702 8703 8704 8705 8706
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8707
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8708 8709
}

8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8742
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8743 8744 8745
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8746
	unsigned long global_ratio =
8747
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8748 8749

	rcu_read_lock();
P
Peter Zijlstra 已提交
8750 8751 8752
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8753

8754 8755
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8756 8757
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8758

P
Peter Zijlstra 已提交
8759
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8760
}
8761
#endif
P
Peter Zijlstra 已提交
8762

8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8774 8775
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8776
{
P
Peter Zijlstra 已提交
8777
	int i, err = 0;
P
Peter Zijlstra 已提交
8778 8779

	mutex_lock(&rt_constraints_mutex);
8780
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8781
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8782 8783 8784
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8785 8786 8787 8788
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8789 8790

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8791 8792
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8793 8794 8795 8796 8797 8798 8799 8800 8801

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8802
 unlock:
8803
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8804 8805 8806
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8807 8808
}

8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8821 8822 8823 8824
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8825
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8826 8827
		return -1;

8828
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8829 8830 8831
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8879 8880
	return 0;
}
8881
#endif
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8912

8913
#ifdef CONFIG_CGROUP_SCHED
8914 8915

/* return corresponding task_group object of a cgroup */
8916
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8917
{
8918 8919
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8920 8921 8922
}

static struct cgroup_subsys_state *
8923
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8924
{
8925
	struct task_group *tg, *parent;
8926

8927
	if (!cgrp->parent) {
8928
		/* This is early initialization for the top cgroup */
8929
		init_task_group.css.cgroup = cgrp;
8930 8931 8932
		return &init_task_group.css;
	}

8933 8934
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8935 8936 8937 8938
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8939
	tg->css.cgroup = cgrp;
8940 8941 8942 8943

	return &tg->css;
}

I
Ingo Molnar 已提交
8944 8945
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8946
{
8947
	struct task_group *tg = cgroup_tg(cgrp);
8948 8949 8950 8951

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8952 8953 8954
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8955
{
8956 8957
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8958
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8959 8960
		return -EINVAL;
#else
8961 8962 8963
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8964
#endif
8965 8966 8967 8968 8969

	return 0;
}

static void
8970
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8971 8972 8973 8974 8975
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8976
#ifdef CONFIG_FAIR_GROUP_SCHED
8977
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8978
				u64 shareval)
8979
{
8980
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8981 8982
}

8983
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8984
{
8985
	struct task_group *tg = cgroup_tg(cgrp);
8986 8987 8988

	return (u64) tg->shares;
}
8989
#endif
8990

8991
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8992
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8993
				s64 val)
P
Peter Zijlstra 已提交
8994
{
8995
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8996 8997
}

8998
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8999
{
9000
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9001
}
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9013
#endif
P
Peter Zijlstra 已提交
9014

9015
static struct cftype cpu_files[] = {
9016
#ifdef CONFIG_FAIR_GROUP_SCHED
9017 9018
	{
		.name = "shares",
9019 9020
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9021
	},
9022 9023
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9024
	{
P
Peter Zijlstra 已提交
9025
		.name = "rt_runtime_us",
9026 9027
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9028
	},
9029 9030
	{
		.name = "rt_period_us",
9031 9032
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9033
	},
9034
#endif
9035 9036 9037 9038
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9039
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9040 9041 9042
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9043 9044 9045 9046 9047 9048 9049
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9050 9051 9052
	.early_init	= 1,
};

9053
#endif	/* CONFIG_CGROUP_SCHED */
9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9074
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9075
{
9076
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9089
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9106
static void
9107
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9108
{
9109
	struct cpuacct *ca = cgroup_ca(cgrp);
9110 9111 9112 9113 9114 9115

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9116
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9117
{
9118
	struct cpuacct *ca = cgroup_ca(cgrp);
9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9160 9161 9162
static struct cftype files[] = {
	{
		.name = "usage",
9163 9164
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9165 9166 9167
	},
};

9168
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9169
{
9170
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */