Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
697ba4b1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
697ba4b1
编写于
6月 25, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Python array reader op
上级
2c12af76
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
664 addition
and
37 deletion
+664
-37
benchmark/fluid/args.py
benchmark/fluid/args.py
+10
-0
benchmark/fluid/fluid_benchmark.py
benchmark/fluid/fluid_benchmark.py
+73
-13
benchmark/fluid/models/machine_translation.py
benchmark/fluid/models/machine_translation.py
+1
-1
benchmark/fluid/models/mnist.py
benchmark/fluid/models/mnist.py
+24
-5
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+18
-2
benchmark/fluid/models/stacked_dynamic_lstm.py
benchmark/fluid/models/stacked_dynamic_lstm.py
+1
-1
benchmark/fluid/models/vgg.py
benchmark/fluid/models/vgg.py
+22
-7
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+1
-0
paddle/fluid/operators/reader/create_py_array_reader_op.cc
paddle/fluid/operators/reader/create_py_array_reader_op.cc
+80
-0
paddle/fluid/operators/reader/py_array_feed_queue.h
paddle/fluid/operators/reader/py_array_feed_queue.h
+207
-0
paddle/fluid/operators/reader/py_blocking_queue.h
paddle/fluid/operators/reader/py_blocking_queue.h
+125
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+42
-4
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+3
-3
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+57
-1
未找到文件。
benchmark/fluid/args.py
浏览文件 @
697ba4b1
...
...
@@ -122,5 +122,15 @@ def parse_args():
type
=
str
,
default
=
""
,
help
=
'Directory that contains all the training recordio files.'
)
parser
.
add_argument
(
'--use_py_reader_op'
,
action
=
'store_true'
,
help
=
'Whether to use Python reader op, omitted when use_reader_op is true'
)
parser
.
add_argument
(
'--feed_queue_capacity'
,
type
=
int
,
default
=
64
,
help
=
'Capacity of feed queue when use_py_reader_op is true'
)
args
=
parser
.
parse_args
()
return
args
benchmark/fluid/fluid_benchmark.py
浏览文件 @
697ba4b1
...
...
@@ -25,6 +25,9 @@ import paddle.fluid.profiler as profiler
import
paddle.fluid.transpiler.distribute_transpiler
as
distribute_transpiler
from
args
import
*
import
threading
feed_queue
=
None
def
append_nccl2_prepare
(
trainer_id
):
...
...
@@ -131,7 +134,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
...
...
@@ -141,12 +144,12 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
iters
,
num_samples
,
start_time
=
0
,
0
,
time
.
time
()
for
pass_id
in
range
(
args
.
pass_num
):
train_losses
=
[]
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
...
...
@@ -156,7 +159,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
start_time
=
time
.
time
()
num_samples
=
0
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
try
:
loss
=
exe
.
run
(
train_prog
,
fetch_list
=
[
avg_loss
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
...
...
@@ -170,7 +173,7 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
...
...
@@ -180,12 +183,13 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
print
(
"Pass: %d, Loss: %f"
%
(
pass_id
,
np
.
mean
(
train_losses
))),
# evaluation
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
pass_test_acc
=
test
(
exe
,
infer_prog
,
test_reader
,
feeder
,
batch_acc
)
print
(
", Test Accuracy: %f"
%
pass_test_acc
)
print
(
"
\n
"
)
# TODO(wuyi): add warmup passes to get better perf data.
close_feed_queue
()
exit
(
0
)
...
...
@@ -195,7 +199,7 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc
,
args
,
train_prog
,
startup_prog
,
nccl_id_var
,
num_trainers
,
trainer_id
):
place
=
core
.
CPUPlace
()
if
args
.
device
==
'CPU'
else
core
.
CUDAPlace
(
0
)
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
feed_var_list
=
[
var
for
var
in
train_prog
.
global_block
().
vars
.
itervalues
()
if
var
.
is_data
...
...
@@ -238,12 +242,12 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_samples
=
0
iters
=
0
start_time
=
time
.
time
()
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
reader_generator
=
train_reader
()
batch_id
=
0
data
=
None
while
True
:
if
not
args
.
use_reader_op
:
if
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
data
=
next
(
reader_generator
,
None
)
if
data
==
None
:
break
...
...
@@ -257,14 +261,14 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if
iters
==
args
.
skip_batch_num
:
start_time
=
time
.
time
()
num_samples
=
0
if
args
.
use_fake_data
or
args
.
use_reader_op
:
if
args
.
use_fake_data
or
args
.
use_reader_op
or
args
.
use_py_reader_op
:
try
:
loss
,
=
exe
.
run
([
avg_loss
.
name
])
except
fluid
.
core
.
EnforceNotMet
as
ex
:
break
else
:
loss
,
=
exe
.
run
([
avg_loss
.
name
],
feed
=
feeder
.
feed
(
data
))
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
num_samples
+=
args
.
batch_size
*
args
.
gpus
else
:
num_samples
+=
len
(
data
)
...
...
@@ -275,7 +279,7 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_id
+=
1
print_train_time
(
start_time
,
time
.
time
(),
num_samples
)
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
:
if
not
args
.
no_test
and
batch_acc
and
not
args
.
use_reader_op
and
not
args
.
use_py_reader_op
:
# we have not implement record io for test
# skip test when use args.use_reader_op
test_acc
=
test
(
startup_exe
,
infer_prog
,
test_reader
,
feeder
,
...
...
@@ -307,7 +311,46 @@ def print_paddle_envs():
print
(
'------------------------------------------------'
)
def
feed_data
(
feed_queue
,
train_reader
,
test_reader
,
dshapes
,
args
):
train_cnt
=
0
test_cnt
=
0
print_per_train_batch
=
1
train_data_generator
=
train_reader
()
start
=
time
.
time
()
while
True
:
next_data
=
next
(
train_data_generator
,
None
)
if
next_data
is
None
:
break
next_data
=
list
(
next_data
)
for
i
in
range
(
len
(
next_data
)):
if
not
isinstance
(
next_data
[
i
],
np
.
ndarray
):
next_data
[
i
]
=
np
.
array
(
next_data
[
i
])
next_data
[
i
]
=
next_data
[
i
].
reshape
([
-
1
]
+
dshapes
[
i
])
if
not
feed_queue
.
enqueue
(
next_data
):
break
train_cnt
+=
1
'''
if train_cnt % print_per_train_batch == 0:
end = time.time()
print('Feed queue size: %d, capacity: %d, speed: %.5fsec/batch'
% (feed_queue.size(), feed_queue.capacity(), (end-start)/print_per_train_batch))
start = end
'''
feed_queue
.
close
()
def
close_feed_queue
():
global
feed_queue
if
feed_queue
is
not
None
:
feed_queue
.
close
()
def
main
():
global
feed_queue
args
=
parse_args
()
print_arguments
(
args
)
print_paddle_envs
()
...
...
@@ -321,8 +364,23 @@ def main():
pr
=
cProfile
.
Profile
()
pr
.
enable
()
model_def
=
__import__
(
"models.%s"
%
args
.
model
,
fromlist
=
[
"models"
])
train_args
=
list
(
model_def
.
get_model
(
args
))
model
=
model_def
.
get_model
(
args
)
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
feed_queue
=
model
[
-
4
]
train_reader
=
model
[
-
3
]
test_reader
=
model
[
-
2
]
dshapes
=
model
[
-
1
]
feed_thread
=
threading
.
Thread
(
target
=
feed_data
,
args
=
(
feed_queue
,
train_reader
,
test_reader
,
dshapes
,
args
))
#feed_thread.setDaemon(True)
feed_thread
.
start
()
model
=
model
[:
-
4
]
train_args
=
list
(
model
)
train_args
.
append
(
args
)
# Run optimizer.minimize(avg_loss)
train_args
[
2
].
minimize
(
train_args
[
0
])
if
args
.
memory_optimize
:
...
...
@@ -338,6 +396,7 @@ def main():
train_args
.
extend
([
nccl_id_var
,
num_trainers
,
trainer_id
])
train_parallel
(
*
train_args
)
train
(
*
train_args
)
close_feed_queue
()
exit
(
0
)
# for other update methods, use default programs
...
...
@@ -362,3 +421,4 @@ def main():
if
__name__
==
"__main__"
:
main
()
close_feed_queue
()
benchmark/fluid/models/machine_translation.py
浏览文件 @
697ba4b1
...
...
@@ -182,7 +182,7 @@ def lodtensor_to_ndarray(lod_tensor):
def
get_model
(
args
):
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
raise
Exception
(
"machine_translation do not support reader op for now."
)
embedding_dim
=
512
encoder_size
=
512
...
...
benchmark/fluid/models/mnist.py
浏览文件 @
697ba4b1
...
...
@@ -66,13 +66,14 @@ def cnn_model(data):
def
get_model
(
args
):
dshape
=
[
1
,
28
,
28
]
if
args
.
use_reader_op
:
filelist
=
[
os
.
path
.
join
(
args
.
data_path
,
f
)
for
f
in
os
.
listdir
(
args
.
data_path
)
]
data_file
=
fluid
.
layers
.
open_files
(
filenames
=
filelist
,
shapes
=
[[
-
1
,
1
,
28
,
28
]
,
(
-
1
,
1
)],
shapes
=
[[
-
1
]
+
dshape
,
(
-
1
,
1
)],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
],
thread_num
=
args
.
gpus
,
...
...
@@ -81,8 +82,18 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
dshape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
]
,
dtype
=
DTYPE
)
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
dshape
,
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
if
args
.
device
==
'CPU'
and
args
.
cpus
>
1
:
...
...
@@ -118,8 +129,16 @@ def get_model(args):
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
underlying_train_reader
=
paddle
.
dataset
.
mnist
.
train
()
underlying_test_reader
=
paddle
.
dataset
.
mnist
.
test
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
()
,
batch_size
=
args
.
batch_size
*
args
.
gpus
)
underlying_train_reader
,
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
underlying_test_reader
,
batch_size
=
args
.
batch_size
)
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
,
\
feed_queue
,
underlying_train_reader
,
underlying_test_reader
,
\
(
dshape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
opt
,
train_reader
,
test_reader
,
batch_acc
benchmark/fluid/models/resnet.py
浏览文件 @
697ba4b1
...
...
@@ -163,6 +163,16 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
dshape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
input
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
input
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
dshape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
...
...
@@ -204,5 +214,11 @@ def get_model(args):
batched_test_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
,
\
feed_queue
,
train_reader
,
test_reader
,
\
(
dshape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
optimizer
,
batched_train_reader
,
\
batched_test_reader
,
batch_acc
benchmark/fluid/models/stacked_dynamic_lstm.py
浏览文件 @
697ba4b1
...
...
@@ -44,7 +44,7 @@ def crop_sentence(reader, crop_size):
def
get_model
(
args
):
if
args
.
use_reader_op
:
if
args
.
use_reader_op
or
args
.
use_py_reader_op
:
raise
Exception
(
"stacked_dynamic_lstm do not support reader op for now."
)
lstm_size
=
512
...
...
benchmark/fluid/models/vgg.py
浏览文件 @
697ba4b1
...
...
@@ -54,12 +54,16 @@ def vgg16_bn_drop(input):
def
get_model
(
args
):
if
args
.
data_set
==
"cifar10"
:
underlying_train_reader
=
paddle
.
dataset
.
cifar
.
train10
()
underlying_test_reader
=
paddle
.
dataset
.
cifar
.
test10
()
classdim
=
10
if
args
.
data_format
==
'NCHW'
:
data_shape
=
[
3
,
32
,
32
]
else
:
data_shape
=
[
32
,
32
,
3
]
else
:
underlying_train_reader
=
paddle
.
dataset
.
flowers
.
train
()
underlying_test_reader
=
paddle
.
dataset
.
flowers
.
test
()
classdim
=
102
if
args
.
data_format
==
'NCHW'
:
data_shape
=
[
3
,
224
,
224
]
...
...
@@ -81,6 +85,16 @@ def get_model(args):
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
elif
args
.
use_py_reader_op
:
data_file
,
feed_queue
=
fluid
.
layers
.
py_array_reader
(
capacity
=
args
.
feed_queue_capacity
,
shapes
=
[[
-
1
]
+
data_shape
,
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
"float32"
,
"int64"
])
data_file
=
fluid
.
layers
.
double_buffer
(
fluid
.
layers
.
batch
(
data_file
,
batch_size
=
args
.
batch_size
))
images
,
label
=
fluid
.
layers
.
read_file
(
data_file
)
else
:
images
=
fluid
.
layers
.
data
(
name
=
'data'
,
shape
=
data_shape
,
dtype
=
'float32'
)
...
...
@@ -109,13 +123,14 @@ def get_model(args):
# data reader
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
5120
),
underlying_train_reader
,
buf_size
=
5120
),
batch_size
=
args
.
batch_size
*
args
.
gpus
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
args
.
batch_size
)
underlying_test_reader
,
batch_size
=
args
.
batch_size
)
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
if
not
args
.
use_reader_op
and
args
.
use_py_reader_op
:
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
,
\
feed_queue
,
underlying_train_reader
,
underlying_test_reader
,
\
(
data_shape
,
[
1
])
else
:
return
avg_cost
,
inference_program
,
optimizer
,
train_reader
,
test_reader
,
batch_acc
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
697ba4b1
...
...
@@ -24,6 +24,7 @@ reader_library(create_double_buffer_reader_op SRCS create_double_buffer_reader_o
reader_library
(
create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc
)
reader_library
(
create_threaded_reader_op SRCS create_threaded_reader_op.cc
)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_array_reader_op SRCS create_py_array_reader_op.cc
)
cc_test
(
reader_blocking_queue_test SRCS reader_blocking_queue_test.cc
)
# Export local libraries to parent
...
...
paddle/fluid/operators/reader/create_py_array_reader_op.cc
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/py_array_feed_queue.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
PyArrayReader
:
public
framework
::
ReaderBase
{
public:
explicit
PyArrayReader
(
const
std
::
shared_ptr
<
PyArrayFeedQueue
>&
queue
)
{
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"PyArrayFeedQueue must not be null"
);
queue_
=
queue
;
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
*
out
=
queue_
->
Dequeue
();
}
void
ReInit
()
override
{
// PADDLE_THROW("PyArrayReader does not support ReInit()");
}
private:
std
::
shared_ptr
<
PyArrayFeedQueue
>
queue_
;
};
class
CreatePyArrayReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
std
::
string
&
feeder_name
=
Attr
<
std
::
string
>
(
"feeder_name"
);
auto
*
feeder_holder_var
=
scope
.
FindVar
(
feeder_name
);
PADDLE_ENFORCE
(
feeder_holder_var
!=
nullptr
,
"No PyArrayFeedQueue variable with name %s found"
,
feeder_name
);
auto
*
feeder_holder
=
feeder_holder_var
->
template
GetMutable
<
PyArrayFeedQueueHolder
>();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
out
->
Reset
(
new
PyArrayReader
(
feeder_holder
->
GetFeeder
()));
}
};
class
CreatePyArrayReaderOpMaker
:
public
FileReaderMakerBase
{
protected:
void
Apply
()
override
{
AddAttr
<
std
::
string
>
(
"feeder_name"
,
"Name of the `PyArrayFeedQueueHolder` variable"
);
AddComment
(
R"DOC(
Create PyArrayReader to accept Python data feeding.
)DOC"
);
}
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
namespace
reader
=
::
paddle
::
operators
::
reader
;
REGISTER_FILE_READER_OPERATOR
(
create_py_array_reader
,
reader
::
CreatePyArrayReaderOp
,
reader
::
CreatePyArrayReaderOpMaker
);
paddle/fluid/operators/reader/py_array_feed_queue.h
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <condition_variable> //NOLINT
#include <memory>
#include <mutex> // NOLINT
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/reader/py_blocking_queue.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
#include "paddle/fluid/pybind/tensor_py.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
using
PyTuple
=
::
pybind11
::
tuple
;
using
PyArray
=
::
pybind11
::
array
;
template
<
typename
T
>
using
PyArrayT
=
::
pybind11
::
array_t
<
T
,
::
pybind11
::
array
::
c_style
|
::
pybind11
::
array
::
forcecast
>
;
class
PyArrayToTensorVisitor
:
public
boost
::
static_visitor
<
void
>
{
public:
#define PY_ARRAY_TO_TENSOR_WITH_TYPE(dtype, func_name) \
pybind::func_name(tensor_, static_cast<const PyArrayT<dtype>&>(py_array_), \
place)
#define PY_ARRAY_TO_TENSOR(func_name) \
if (IsType<size_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(size_t, func_name); \
} else if (IsType<int64_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int64_t, func_name); \
} else if (IsType<int32_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int32_t, func_name); \
} else if (IsType<int16_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(int16_t, func_name); \
} else if (IsType<uint8_t>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(uint8_t, func_name); \
} else if (IsType<float>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(float, func_name); \
} else if (IsType<double>()) { \
PY_ARRAY_TO_TENSOR_WITH_TYPE(double, func_name); \
} else { \
PADDLE_THROW("unsupported dtype of python array"); \
}
PyArrayToTensorVisitor
(
const
PyArray
&
py_array
,
framework
::
Tensor
*
tensor
)
:
py_array_
(
py_array
),
tensor_
(
tensor
)
{}
void
operator
()(
const
platform
::
CPUPlace
&
place
)
{
PY_ARRAY_TO_TENSOR
(
PyCPUTensorSetFromArray
);
}
void
operator
()(
const
platform
::
CUDAPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
PY_ARRAY_TO_TENSOR
(
PyCUDATensorSetFromArray
);
#else
PADDLE_THROW
(
"CUDAPlace is not supported in CPU only version"
);
#endif
}
void
operator
()(
const
platform
::
CUDAPinnedPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
PY_ARRAY_TO_TENSOR
(
PyCUDAPinnedTensorSetFromArray
);
#else
PADDLE_THROW
(
"CUDAPinnedPlace is not supported in CPU only version"
);
#endif
}
#undef PY_ARRAY_TO_TENSOR
#undef PY_ARRAY_TO_TENSOR_WITH_TYPE
private:
template
<
typename
T
>
inline
bool
IsType
()
const
{
return
::
pybind11
::
isinstance
<
PyArrayT
<
T
>>
(
py_array_
);
}
private:
const
PyArray
&
py_array_
;
framework
::
Tensor
*
tensor_
;
};
class
PyArrayFeedQueueHolder
;
// PyArrayFeedQueue must be thread-safe
class
PyArrayFeedQueue
{
friend
class
PyArrayFeedQueueHolder
;
private:
PyArrayFeedQueue
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
const
platform
::
Place
&
place
)
:
dims_
(
dims
),
place_
(
place
)
{
queue_
.
reset
(
new
PyBlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>
(
capacity
));
}
public:
~
PyArrayFeedQueue
()
{
Close
();
}
bool
Enqueue
(
const
std
::
vector
<
PyArray
>&
py_array_vec
)
{
auto
lod_tensor_vec
=
PyArrayVecToLoDTensorVec
(
py_array_vec
);
VLOG
(
5
)
<<
"Enqueue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
return
queue_
->
Send
(
std
::
move
(
lod_tensor_vec
));
}
bool
Enqueue
(
const
std
::
vector
<
framework
::
LoDTensor
>&
tensor_vec
)
{
VLOG
(
5
)
<<
"Enqueue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
return
queue_
->
Send
(
tensor_vec
);
}
std
::
vector
<
framework
::
LoDTensor
>
Dequeue
()
{
VLOG
(
5
)
<<
"Dequeue at address "
<<
reinterpret_cast
<
void
*>
(
this
);
std
::
vector
<
framework
::
LoDTensor
>
ret
;
return
queue_
->
Receive
(
&
ret
)
?
ret
:
std
::
vector
<
framework
::
LoDTensor
>
();
}
inline
size_t
Size
()
const
{
return
queue_
->
Size
();
}
inline
size_t
Cap
()
const
{
return
queue_
->
Cap
();
}
inline
bool
IsClosed
()
const
{
return
queue_
->
IsClosed
();
}
inline
void
Close
()
{
queue_
->
Close
();
}
private:
std
::
vector
<
framework
::
LoDTensor
>
PyArrayVecToLoDTensorVec
(
const
std
::
vector
<
PyArray
>&
py_array_vec
)
{
PADDLE_ENFORCE
(
dims_
.
size
()
==
py_array_vec
.
size
(),
"expected input tensor number %d but found %d"
,
dims_
.
size
(),
py_array_vec
.
size
());
size_t
i
=
0
;
if
(
py_array_vec
.
size
()
>
1
)
{
size_t
dim0
=
py_array_vec
[
0
].
shape
()[
0
];
for
(
size_t
j
=
1
;
j
<
py_array_vec
.
size
();
++
j
)
{
PADDLE_ENFORCE
(
dim0
==
py_array_vec
[
j
].
shape
()[
0
],
"0-dim of the %d-th input tensor is %d, but 0-dim of "
"the 0-th input tensor is %d"
,
j
,
py_array_vec
[
j
].
shape
()[
0
],
dim0
);
}
}
std
::
vector
<
framework
::
LoDTensor
>
lod_tensor_vec
;
lod_tensor_vec
.
reserve
(
py_array_vec
.
size
());
std
::
for_each
(
py_array_vec
.
begin
(),
py_array_vec
.
end
(),
[
&
](
const
PyArray
&
py_array
)
{
for
(
int64_t
j
=
1
;
j
<
dims_
[
i
].
size
();
++
j
)
{
PADDLE_ENFORCE
(
dims_
[
i
][
j
]
==
static_cast
<
int64_t
>
(
py_array
.
shape
()[
j
]),
"expected %d-dim of %d-th input tensor is %d but found %d"
,
j
,
i
,
dims_
[
i
][
j
],
py_array
.
shape
()[
j
]);
}
lod_tensor_vec
.
emplace_back
(
framework
::
LoDTensor
());
PyArrayToTensorVisitor
visitor
(
py_array
,
&
(
lod_tensor_vec
.
back
()));
boost
::
apply_visitor
(
visitor
,
place_
);
++
i
;
});
return
lod_tensor_vec
;
}
std
::
unique_ptr
<
PyBlockingQueue
<
std
::
vector
<
framework
::
LoDTensor
>>>
queue_
;
std
::
vector
<
framework
::
DDim
>
dims_
;
platform
::
Place
place_
;
};
class
PyArrayFeedQueueHolder
{
public:
PyArrayFeedQueueHolder
()
{}
void
InitOnce
(
size_t
capacity
,
const
std
::
vector
<
framework
::
DDim
>&
dims
,
const
platform
::
Place
&
place
)
{
PADDLE_ENFORCE
(
feeder_
==
nullptr
,
"PyArrayFeedQueueHolder::InitOnce() can only be called once"
);
feeder_
.
reset
(
new
PyArrayFeedQueue
(
capacity
,
dims
,
place
));
}
std
::
shared_ptr
<
PyArrayFeedQueue
>
GetFeeder
()
{
return
feeder_
;
}
const
std
::
shared_ptr
<
PyArrayFeedQueue
>&
GetFeeder
()
const
{
return
feeder_
;
}
private:
std
::
shared_ptr
<
PyArrayFeedQueue
>
feeder_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/py_blocking_queue.h
0 → 100644
浏览文件 @
697ba4b1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <condition_variable> // NOLINT
#include <deque>
#include "Python.h"
#include "paddle/fluid/platform/enforce.h"
#include "pybind11/pybind11.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
// PyBlockingQueue is designed for PyArrayFeedQueue
// PyBlockingQueue would release GIL of Python when
// the queue is full to avoid deadlock.
template
<
typename
T
>
class
PyBlockingQueue
{
public:
explicit
PyBlockingQueue
(
size_t
capacity
)
:
capacity_
(
capacity
),
closed_
(
false
)
{
PADDLE_ENFORCE_GT
(
capacity_
,
0
,
"The capacity of a reader::PyBlockingQueue must be greater than 0."
);
}
~
PyBlockingQueue
()
{
Close
();
}
bool
Send
(
const
T
&
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
receive_cv_
.
notify_one
();
if
(
queue_
.
size
()
>=
capacity_
&&
(
!
closed_
))
{
pybind11
::
gil_scoped_release
release
;
send_cv_
.
wait
(
lock
,
[
&
]
{
return
queue_
.
size
()
<
capacity_
||
closed_
;
});
}
if
(
closed_
)
{
VLOG
(
5
)
<<
"WARNING: Sending an element to a closed reader::BlockingQueue."
;
return
false
;
}
PADDLE_ENFORCE_LT
(
queue_
.
size
(),
capacity_
);
queue_
.
push_back
(
elem
);
return
true
;
}
bool
Send
(
T
&&
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
receive_cv_
.
notify_one
();
if
(
queue_
.
size
()
>=
capacity_
&&
(
!
closed_
))
{
pybind11
::
gil_scoped_release
release
;
send_cv_
.
wait
(
lock
,
[
&
]
{
return
queue_
.
size
()
<
capacity_
||
closed_
;
});
}
if
(
closed_
)
{
VLOG
(
5
)
<<
"WARNING: Sending an element to a closed reader::BlokcingQueue."
;
return
false
;
}
PADDLE_ENFORCE_LT
(
queue_
.
size
(),
capacity_
);
queue_
.
emplace_back
(
std
::
move
(
elem
));
return
true
;
}
bool
Receive
(
T
*
elem
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
send_cv_
.
notify_one
();
receive_cv_
.
wait
(
lock
,
[
&
]
{
return
!
queue_
.
empty
()
||
closed_
;
});
if
(
!
queue_
.
empty
())
{
PADDLE_ENFORCE_NOT_NULL
(
elem
);
*
elem
=
queue_
.
front
();
queue_
.
pop_front
();
return
true
;
}
else
{
PADDLE_ENFORCE
(
closed_
);
return
false
;
}
}
void
Close
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
closed_
=
true
;
send_cv_
.
notify_all
();
receive_cv_
.
notify_all
();
}
bool
IsClosed
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
closed_
;
}
size_t
Cap
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
capacity_
;
}
size_t
Size
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
return
queue_
.
size
();
}
private:
size_t
capacity_
;
bool
closed_
;
std
::
deque
<
T
>
queue_
;
mutable
std
::
mutex
mutex_
;
mutable
std
::
condition_variable
receive_cv_
;
mutable
std
::
condition_variable
send_cv_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
697ba4b1
...
...
@@ -34,6 +34,7 @@ limitations under the License. */
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/reader/py_array_feed_queue.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -297,6 +298,42 @@ All parameter, weight, gradient are variables in Paddle.
py
::
class_
<
framework
::
ReaderHolder
>
(
m
,
"Reader"
,
""
)
.
def
(
"reset"
,
&
framework
::
ReaderHolder
::
ReInit
);
using
PyArrayFeedQueue
=
::
paddle
::
operators
::
reader
::
PyArrayFeedQueue
;
using
PyArrayFeedQueueHolder
=
::
paddle
::
operators
::
reader
::
PyArrayFeedQueueHolder
;
using
PyArray
=
::
paddle
::
operators
::
reader
::
PyArray
;
py
::
class_
<
PyArrayFeedQueue
>
(
m
,
"PyArrayFeedQueue"
,
""
)
.
def
(
"enqueue"
,
[](
PyArrayFeedQueue
&
self
,
const
std
::
vector
<
PyArray
>
&
py_array_vec
)
{
return
self
.
Enqueue
(
py_array_vec
);
})
.
def
(
"enqueue"
,
[](
PyArrayFeedQueue
&
self
,
const
std
::
vector
<
framework
::
LoDTensor
>
&
lod_tensor_vec
)
{
return
self
.
Enqueue
(
lod_tensor_vec
);
})
.
def
(
"size"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
Size
();
})
.
def
(
"capacity"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
Cap
();
})
.
def
(
"close"
,
[](
PyArrayFeedQueue
&
self
)
{
return
self
.
Close
();
})
.
def
(
"is_closed"
,
[](
const
PyArrayFeedQueue
&
self
)
{
return
self
.
IsClosed
();
});
m
.
def
(
"init_py_array_feed_queue"
,
[](
Variable
&
var
,
size_t
capacity
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
shapes
,
const
::
paddle
::
platform
::
Place
&
place
)
->
PyArrayFeedQueue
*
{
std
::
vector
<
DDim
>
dims
(
shapes
.
size
());
std
::
transform
(
shapes
.
begin
(),
shapes
.
end
(),
dims
.
begin
(),
[](
const
std
::
vector
<
int64_t
>
&
shape
)
{
return
make_ddim
(
shape
);
});
auto
*
holder
=
var
.
GetMutable
<
PyArrayFeedQueueHolder
>
();
holder
->
InitOnce
(
capacity
,
dims
,
place
);
return
holder
->
GetFeeder
().
get
();
},
py
::
return_value_policy
::
reference
);
py
::
class_
<
Scope
>
(
m
,
"Scope"
,
""
)
.
def
(
"var"
,
[](
Scope
&
self
,
const
std
::
string
&
name
)
->
Variable
*
{
...
...
@@ -463,10 +500,11 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_DISTRIBUTE
.
def
(
"complete"
,
&
Executor
::
Complete
)
#endif
.
def
(
"run"
,
(
void
(
Executor
::*
)(
const
ProgramDesc
&
,
Scope
*
,
int
,
bool
,
bool
))
&
Executor
::
Run
);
.
def
(
"run"
,
[](
Executor
&
self
,
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
,
bool
create_vars
)
{
pybind11
::
gil_scoped_release
release
;
self
.
Run
(
prog
,
scope
,
block_id
,
create_local_scope
,
create_vars
);
});
m
.
def
(
"init_gflags"
,
framework
::
InitGflags
);
m
.
def
(
"init_glog"
,
framework
::
InitGLOG
);
m
.
def
(
"init_devices"
,
...
...
paddle/fluid/pybind/tensor_py.h
浏览文件 @
697ba4b1
...
...
@@ -146,7 +146,7 @@ void PyCPUTensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCPUTensorSetFromArray
(
inline
void
PyCPUTensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
@@ -185,7 +185,7 @@ void PyCUDATensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCUDATensorSetFromArray
(
inline
void
PyCUDATensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
@@ -224,7 +224,7 @@ void PyCUDAPinnedTensorSetFromArray(
template
<
>
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
void
PyCUDAPinnedTensorSetFromArray
(
inline
void
PyCUDAPinnedTensorSetFromArray
(
framework
::
Tensor
*
self
,
pybind11
::
array_t
<
uint16_t
,
pybind11
::
array
::
c_style
|
pybind11
::
array
::
forcecast
>
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
697ba4b1
...
...
@@ -24,7 +24,8 @@ from layer_function_generator import generate_layer_fn, templatedoc
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
'open_recordio_file'
,
'open_files'
,
'read_file'
,
'shuffle'
,
'batch'
,
'double_buffer'
,
'random_data_generator'
,
'Preprocessor'
,
'load'
'double_buffer'
,
'random_data_generator'
,
'py_array_reader'
,
'Preprocessor'
,
'load'
]
...
...
@@ -448,6 +449,61 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
# UNCHECK(zengjinle)
def
py_array_reader
(
capacity
,
shapes
,
lod_levels
,
dtypes
,
place
=
None
,
for_parallel
=
True
):
if
place
is
None
:
place
=
core
.
CPUPlace
()
if
not
isinstance
(
place
,
core
.
Place
):
new_place
=
core
.
Place
()
new_place
.
set_place
(
place
)
place
=
new_place
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
ranks
=
[]
for
shape
in
shapes
:
shape_concat
.
extend
(
shape
)
ranks
.
append
(
len
(
shape
))
feeder_name
=
unique_name
(
'py_array_feed_queue'
)
var
=
global_scope
().
var
(
feeder_name
)
#feed_shapes = [shape[1:] for shape in shapes]
feed_queue
=
core
.
init_py_array_feed_queue
(
var
,
capacity
,
shapes
,
place
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_array_reader'
))
startup_blk
.
append_op
(
type
=
'create_py_array_reader'
,
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
'lod_levels'
:
lod_levels
,
'ranks'
:
ranks
,
'feeder_name'
:
feeder_name
})
startup_var
.
desc
.
set_dtypes
(
dtypes
)
startup_var
.
persistable
=
True
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
if
for_parallel
:
main_prog_var
=
parallel
(
reader
=
main_prog_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
def
open_files
(
filenames
,
shapes
,
lod_levels
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录