pybind.cc 126.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
42 43 44
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
45
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/op_info.h"
47
#include "paddle/fluid/framework/op_registry.h"
48
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
51
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
52
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/framework/selected_rows.h"
55
#include "paddle/fluid/framework/tensor_util.h"
56
#include "paddle/fluid/framework/trainer.h"
57
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
58
#include "paddle/fluid/framework/version.h"
H
hong 已提交
59
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
61
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
62
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
63
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
64
#include "paddle/fluid/operators/py_func_op.h"
65
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
66
#include "paddle/fluid/platform/cpu_info.h"
67
#include "paddle/fluid/platform/device_context.h"
68
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/platform/enforce.h"
70
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
71
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
72 73
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
74
#include "paddle/fluid/pybind/cuda_streams_py.h"
75
#include "paddle/fluid/pybind/io.h"
76
#include "paddle/utils/none.h"
77 78 79
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
80
#include "paddle/fluid/pybind/box_helper_py.h"
81
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
83
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
84
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
85
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
86
#include "paddle/fluid/pybind/generator_py.h"
87
#include "paddle/fluid/pybind/global_value_getter_setter.h"
88
#include "paddle/fluid/pybind/gloo_context_py.h"
89
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/heter_wrapper_py.h"
91
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
92
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
93
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
94
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
95
#include "paddle/fluid/pybind/pybind_boost_headers.h"
96

97
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
98
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
99
#endif
100
#include "paddle/fluid/framework/data_type.h"
101 102
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
103
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
104
#include "paddle/fluid/pybind/tensor_py.h"
105
#include "paddle/fluid/string/to_string.h"
106 107
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
108
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
109
#endif
110
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
111
#include "paddle/fluid/platform/cuda_profiler.h"
112
#endif
Y
Yi Wang 已提交
113
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
114 115
#endif

116 117
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
118
#include "paddle/fluid/platform/npu_profiler.h"
119 120
#endif

121
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
122
#include "paddle/fluid/platform/xpu/xpu_info.h"
123 124
#endif

Y
Yanghello 已提交
125 126 127 128
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
129
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
130 131 132
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
133 134
#include "pybind11/stl.h"

135
DECLARE_bool(use_mkldnn);
136

Q
Qiao Longfei 已提交
137 138
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
139 140 141
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
142

143
namespace paddle {
144
namespace pybind {
145
bool IsCompiledWithCUDA() {
146 147 148 149 150 151 152 153 154
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
155 156 157 158 159 160
  return false;
#else
  return true;
#endif
}

161 162 163 164 165 166 167 168
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

169 170 171 172 173 174 175 176
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

177 178 179 180 181 182 183 184
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

185 186 187 188 189 190 191 192
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

193 194 195 196 197 198 199 200
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

201 202 203 204 205 206 207 208 209 210 211
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

212 213 214 215 216 217 218 219 220 221 222
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
241 242 243
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
244
      {"NPU", &platform::is_npu_place},
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

284
bool IsCompiledWithBrpc() {
285
#ifndef PADDLE_WITH_DISTRIBUTE
286 287
  return false;
#endif
288
  return true;
289 290
}

Y
update  
Yancey1989 已提交
291
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
292
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
293 294 295 296 297 298
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
299 300 301 302 303 304 305 306 307 308
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
331 332 333
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
347 348
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
349 350
    }
    vec_res.emplace_back(
351
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
352 353 354 355 356 357 358 359 360 361 362 363
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
364 365
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
366 367 368 369 370 371 372 373 374 375 376 377
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
378 379 380
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
381 382 383 384
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
385 386
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
387 388 389 390
  }
  return vec_res;
}

391 392 393 394 395 396 397 398
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
399 400
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
401 402 403 404 405 406 407 408 409 410 411 412 413
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
414 415 416
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
417 418 419 420 421
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
422 423 424 425 426
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
427 428
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
429 430 431
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
432 433 434 435 436 437 438 439 440
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
441 442
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
443 444 445 446 447
  }

  return;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

485 486 487 488 489 490
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

491 492
  BindCudaStream(&m);

Y
Yu Yang 已提交
493 494 495
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
496
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
497

498 499
  AssertStaticGraphAndDygraphGradMakerNoDiff();

500
  m.doc() = "C++ core of PaddlePaddle";
501

502 503 504 505
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

506
  BindException(&m);
Y
Yu Yang 已提交
507

508 509
  m.def("set_num_threads", &platform::SetNumThreads);

510 511
  m.def("disable_signal_handler", &DisableSignalHandler);

512
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
513 514 515
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
516 517 518 519 520 521 522 523
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
524 525 526 527 528
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
529
    framework::Tensor tensor;
6
633WHU 已提交
530 531 532 533

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
534
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
535 536 537 538 539 540
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
541

542 543 544 545 546 547
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

548 549 550 551 552 553
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
554 555
  });

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
581 582 583 584 585 586
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
587
  m.def(
S
sneaxiy 已提交
588
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
589 590 591 592
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
593 594 595
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
612 613 614
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
615
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
616

617
  m.def("_set_fuse_parameter_group_size",
618
        &paddle::framework::ir::SetFuseParameterGroupsSize);
619
  m.def("_set_fuse_parameter_memory_size",
620
        &paddle::framework::ir::SetFuseParameterMemorySize);
621

S
sneaxiy 已提交
622 623 624
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

625 626
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

627 628 629
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

630
  BindImperative(&m);
631

632 633 634
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
635
      .def("_is_initialized",
636
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
637
      .def("_get_dims",
638
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
639
      .def("_set_dims",
640
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
641
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
642
           })
Y
yuyang18 已提交
643
      .def("_set_layout",
644
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
645 646
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
647
      .def("_alloc_float",
648
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
649
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
650
           })
651
      .def("_alloc_float",
652
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
653 654
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
655
      .def("_alloc_float",
656
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
657
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
658
           })
659 660 661 662
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
663
      .def("_alloc_double",
664
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
665 666
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
667
      .def("_alloc_int",
668
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
669
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
670
           })
671
      .def("_alloc_int",
672
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
673 674
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
675
      .def("_alloc_int",
676
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
677
             self.mutable_data<int>(place);
Q
qijun 已提交
678
           })
Y
yuyang18 已提交
679
      .def("_alloc_int",
680 681
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
682 683
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
684
      .def("_alloc_float",
685 686
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
687 688
             self.mutable_data<float>(place);
           })
689
      .def("_mutable_data",
690
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
691 692 693
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
694
      .def("_mutable_data",
695
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
696 697 698
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
699
      .def("_mutable_data",
700
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
701 702 703 704
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
705
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
706 707 708
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
709
      .def("_clear", &framework::Tensor::clear)
710 711 712 713 714
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
715
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
716
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
717 718
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
719
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
720
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
721 722
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
723
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
724 725
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
726 727 728 729
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
730
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
731
          LoDTensor is to be set.
732 733
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
747

748 749 750
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
767
      .def("_to_dlpack",
768
           [](framework::Tensor &self) {
6
633WHU 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
789 790 791 792
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
793 794
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
795
      .def("_layout",
796 797 798 799
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
800
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
801
      .def("__str__", [](const framework::Tensor &self) {
802 803 804 805
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
806

L
Leo Chen 已提交
807
  // TODO(cql): add reference: en_user_guide_lod_tensor
808
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
883 884 885 886 887 888 889

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
890 891

        )DOC")
892 893
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
894 895 896 897 898 899 900 901 902
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
903 904
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
905 906 907 908
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
909 910
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
911
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
912
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
913 914
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
915 916 917
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
918
      .def("set_lod",
919
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
920
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
921
             LoD new_lod;
922 923
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
924 925
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
926 927
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
928
             self.set_lod(new_lod);
S
sneaxiy 已提交
929 930 931 932 933
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
934 935 936 937
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
938 939 940 941 942 943 944 945 946 947

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
948
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
949
           )DOC")
950 951 952 953 954 955 956 957 958 959 960
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
961 962
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
963 964 965 966 967
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
968
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
969 970
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
971
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
972

L
Leo Chen 已提交
973
           For example, if recursive_sequence_lengths=[[2, 3]], which means
974
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
975
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
976 977

           Args:
L
Leo Chen 已提交
978 979 980 981
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
982 983 984 985 986 987 988 989 990 991

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
992 993
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
994
           )DOC")
995 996 997 998 999 1000 1001 1002
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1003 1004 1005 1006 1007
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1008 1009
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1020
           )DOC")
G
gongweibao 已提交
1021
      // Set above comments of set_lod.
1022 1023 1024 1025 1026 1027 1028 1029
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1030 1031
           },
           R"DOC(
L
Leo Chen 已提交
1032 1033
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1034 1035

           Returns:
L
Leo Chen 已提交
1036
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1048 1049 1050 1051 1052 1053 1054 1055
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1056
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1057 1058

           Returns:
L
Leo Chen 已提交
1059
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1071 1072 1073 1074 1075 1076 1077
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1078
           )DOC")
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1097
#ifdef _WIN32
1098
      });
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1149

Q
qijun 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1161 1162
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1163 1164
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1165 1166
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1167
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1168 1169 1170 1171 1172 1173
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1174
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1175
      .def("rows", [](SelectedRows &self) {
1176 1177 1178 1179 1180
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1181
      });
Q
qijun 已提交
1182

1183
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1184 1185 1186

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1187
      .def(py::init<>())
1188
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1189
      .def("set_int",
1190 1191
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1192 1193 1194 1195 1196 1197 1198
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1199
      .def("get_tensor",
1200 1201
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1202 1203
           },
           py::return_value_policy::reference)
1204 1205 1206 1207
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1208 1209 1210
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1211 1212 1213 1214 1215
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1216 1217 1218
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1219 1220 1221
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1222
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1223 1224 1225 1226 1227
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1228
#endif
Y
Refine  
Yu Yang 已提交
1229 1230
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1231 1232 1233 1234
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1235 1236
             return self.GetMutable<framework::ReaderHolder>();
           },
1237 1238 1239 1240 1241
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1242

S
sneaxiy 已提交
1243
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1244

S
sneaxiy 已提交
1245
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1259
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1260 1261 1262 1263 1264 1265
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1266 1267
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1268
      .def("var",
1269
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1270
             return self.Var(name);
Y
Yu Yang 已提交
1271
           },
S
sneaxiy 已提交
1272 1273
           py::arg("name"),
           R"DOC(
1274
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1275

1276
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1277
           current scope, the variable would be created. Otherwise,
1278
           return the existing variable.
S
sneaxiy 已提交
1279 1280

           Args:
1281 1282
               name (str): the variable name.

S
sneaxiy 已提交
1283
           Returns:
1284
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1285 1286 1287 1288
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1289
           Find variable named :code:`name` in the current scope or
1290
           its parent scope. Return None if not found. 
1291

S
sneaxiy 已提交
1292 1293
           Args:
               name (str): the variable name.
1294

S
sneaxiy 已提交
1295
           Returns:
1296
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1297
           )DOC",
1298
           py::return_value_policy::reference)
1299
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1300 1301 1302 1303 1304 1305
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1306
           py::return_value_policy::reference)
S
sneaxiy 已提交
1307 1308 1309
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1310 1311
           )DOC")
      .def("_kids", &Scope::kids);
1312

S
sneaxiy 已提交
1313 1314 1315 1316 1317 1318
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1319 1320
        R"DOC(
        Create a new scope.
1321

S
sneaxiy 已提交
1322 1323 1324
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1325 1326
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1327 1328
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1329 1330
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1331 1332 1333 1334
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1335 1336
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1337 1338
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1339 1340 1341
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1342 1343
    return ret_values;
  });
1344 1345 1346 1347 1348 1349 1350 1351
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1352
              res = op_checker->GetDefaultAttrsMap();
1353 1354 1355 1356
            }
          }
          return res;
        });
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1373 1374 1375
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1376 1377 1378 1379 1380
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1381 1382 1383
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1398
  m.def("prune", [](const ProgramDesc &origin,
1399
                    const std::set<std::string> &feeded_var_names,
1400
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1401
    ProgramDesc prog_with_targets(origin);
1402

1403
    for (const auto &t : targets) {
1404
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1405
    }
1406
    proto::ProgramDesc pruned_desc;
1407 1408 1409 1410
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1411
  });
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1429 1430 1431 1432
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1433 1434 1435
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1436 1437
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1438

Q
qijun 已提交
1439
  // clang-format off
Y
Yu Yang 已提交
1440
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1441 1442
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1443
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1444 1445
                    return new paddle::platform::CPUDeviceContext();
                  })
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1470
      .def_static("create",
D
dzhwinter 已提交
1471
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1472
                      -> paddle::platform::DeviceContext* {
1473
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1474 1475 1476 1477
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1478
#else
Q
qijun 已提交
1479
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1480
#endif
C
chengduoZH 已提交
1481 1482 1483 1484
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1485
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1486 1487 1488 1489
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1490 1491 1492 1493
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1494
// clang-format on
1495
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1496 1497
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1498
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1499 1500 1501 1502 1503

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1504
    The memory of CUDAPlace with different dev_id is not accessible.
1505 1506 1507 1508 1509 1510 1511 1512
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1513 1514 1515 1516

    Examples:
        .. code-block:: python

1517 1518 1519
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1520

1521
        )DOC")
S
sneaxiy 已提交
1522 1523
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1524
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1549 1550
             new (&self) platform::CUDAPlace(dev_id);
#else
1551 1552 1553 1554 1555 1556 1557 1558 1559
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1560 1561
#endif
           })
1562
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1563 1564
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1565 1566 1567 1568
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1569
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1570
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1571 1572
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1573 1574 1575
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1576
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1577
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1624
#ifdef PADDLE_WITH_XPU
1625 1626 1627 1628 1629 1630 1631
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1632 1633 1634
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1635
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1636
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1637
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1638 1639 1640 1641
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1642
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1643 1644
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1645
#endif
1646

1647
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1648
    CPUPlace is a descriptor of a device.
1649
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1650 1651 1652 1653

    Examples:
        .. code-block:: python

1654 1655
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1656

1657
        )DOC")
1658
      .def(py::init<>())
S
sneaxiy 已提交
1659 1660
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1661
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1662
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1663 1664 1665 1666
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1667
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1668
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1669

1670
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1671 1672 1673 1674 1675 1676
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1677 1678 1679 1680

    Examples:
        .. code-block:: python

1681 1682
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1683

1684
        )DOC")
S
sneaxiy 已提交
1685
      .def("__init__",
S
sneaxiy 已提交
1686
           [](platform::CUDAPinnedPlace &self) {
1687
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1688 1689 1690
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1691
#endif
S
sneaxiy 已提交
1692
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1693
           })
S
sneaxiy 已提交
1694 1695 1696 1697
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1698 1699
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1700 1701
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1702 1703 1704 1705
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1706
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1707 1708
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1751
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1766 1767
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1768 1769
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1770 1771
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1772 1773 1774 1775
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1776
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1777
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1778
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1779 1780
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1781 1782
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1783 1784
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1785 1786
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1787 1788 1789 1790
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1791 1792
      .def("gpu_device_id",
           [](platform::Place &self) {
1793
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1794
           })
1795 1796 1797 1798
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1799 1800 1801 1802
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1803 1804
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1805 1806 1807 1808
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1809 1810 1811 1812
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1813
      .def("set_place",
D
dzhwinter 已提交
1814
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1815
             self = gpu_place;
C
chengduoZH 已提交
1816
           })
1817 1818 1819 1820 1821
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1822 1823 1824 1825
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1826 1827
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1828

Y
Yu Yang 已提交
1829
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1844
      .def("run",
1845
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1846
              const platform::CPUPlace &place) { self.Run(scope, place); })
1847 1848 1849
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1850 1851 1852
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1853 1854
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1855
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1856 1857 1858 1859 1860
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1861 1862 1863 1864 1865 1866 1867
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1868 1869
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1870
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1871
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1872 1873 1874 1875
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1876

1877 1878 1879
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1880 1881 1882 1883 1884 1885 1886 1887 1888
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1889 1890
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1891
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1892
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1893
      .def("close", &Executor::Close)
1894 1895
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1896 1897
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1898 1899 1900 1901
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1902
             pybind11::gil_scoped_release release;
1903 1904 1905 1906 1907 1908 1909
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1910 1911 1912
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1913
              std::map<std::string, FetchType *> *fetch_targets,
1914 1915 1916 1917 1918 1919 1920 1921
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1922
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1923 1924 1925 1926 1927 1928 1929
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1940
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1941 1942
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1943
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1944 1945
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1946
      });
S
sneaxiy 已提交
1947

1948
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
1949 1950 1951
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
1952
           [](StandaloneExecutor &self,
H
hong 已提交
1953
              const std::unordered_map<std::string, py::array> &input_dict,
1954 1955 1956
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
1957 1958 1959 1960 1961

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
1962 1963
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
1964 1965
             }

W
wanghuancoder 已提交
1966 1967 1968 1969
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
1970
             }
W
wanghuancoder 已提交
1971 1972

             return py::cast(std::move(ret));
H
hong 已提交
1973 1974
           });

D
dzhwinter 已提交
1975
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1976
  m.def("init_glog", framework::InitGLOG);
1977 1978
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1979
  m.def("init_devices", []() { framework::InitDevices(); });
1980

1981
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1982
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1983
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1984
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1985
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1986
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1987
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1988
  m.def("supports_bfloat16", SupportsBfloat16);
1989
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1990
  m.def("op_supported_infos", OpSupportedInfos);
1991
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1992
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1993 1994 1995
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2015 2016 2017 2018 2019 2020 2021
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2031
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2032 2033 2034 2035 2036
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2037

2038
  m.def("set_feed_variable", framework::SetFeedVariable);
2039 2040 2041 2042 2043
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2044
            return py::cast(BOOST_GET(LoDTensor, var));
2045
          } else {
2046
            return py::cast(BOOST_GET(LoDTensorArray, var));
2047 2048
          }
        });
2049
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2050

X
Xin Pan 已提交
2051 2052
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2053 2054 2055 2056 2057
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2058
  BindGlobalValueGetterSetter(&m);
2059
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2060

Y
Yu Yang 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2070
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2071
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2072 2073 2074

    Examples:
        .. code-block:: python
2075

Z
Zeng Jinle 已提交
2076 2077 2078 2079
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2080 2081
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2082 2083 2084 2085 2086 2087
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2088 2089 2090 2091
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2092 2093 2094
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2095 2096 2097 2098 2099 2100
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2101 2102
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2103 2104 2105 2106 2107 2108
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2131

2132 2133 2134 2135 2136 2137 2138 2139
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2140
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2141 2142
                 res[i] = py::cast(std::move(data));
               } else {
2143
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2159
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2160 2161 2162 2163 2164 2165 2166 2167
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2168
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2169 2170 2171 2172 2173 2174 2175 2176 2177
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2178 2179
        )DOC")
      .def("_move_to_list",
2180
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2181 2182 2183 2184
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2185
                 if (data_is_lod_tensor(self[i][j])) {
2186
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2187 2188
                   tmp[j] = py::cast(std::move(var));
                 } else {
2189
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2190 2191 2192 2193 2194 2195
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2205
  m.def("op_support_gpu", OpSupportGPU);
2206
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2207
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2208

2209
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2210 2211 2212
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2213 2214 2215 2216
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2217
#endif
P
peizhilin 已提交
2218
#endif
Y
Yu Yang 已提交
2219

2220 2221
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2222 2223 2224 2225
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2226
      platform::NPUDeviceGuard guard(devices[i]);
2227 2228 2229 2230
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2251 2252 2253 2254 2255 2256
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2257 2258 2259 2260
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2261
      .value("kAll", platform::ProfilerState::kAll)
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2273
  m.def("set_tracer_option", platform::SetTracerOption);
2274 2275
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2276
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2277
  m.def("reset_profiler", platform::ResetProfiler);
2278
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2279 2280 2281
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2282

2283 2284
  m.def("size_of_dtype", framework::SizeOfType);

2285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2286 2287
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2288 2289
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2290
#endif  // PADDLE_WITH_CUDA
2291 2292
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2293

2294 2295 2296
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2297 2298
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2299
      .def("has", &ir::Pass::Has)
2300 2301 2302
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2303
           })
2304
      .def(
2305
          "set",
2306 2307 2308
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2309 2310
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2311 2312
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2327 2328
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2329
        self.Apply(graph.get());
F
flame 已提交
2330
      });
2331

X
fix  
Xin Pan 已提交
2332 2333
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2348
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2349

Y
yuyang18 已提交
2350
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2351 2352 2353 2354
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2355 2356 2357
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2358 2359 2360
    Examples:
        .. code-block:: python

2361 2362 2363 2364 2365 2366 2367 2368 2369
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2370

2371 2372
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2373

2374
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2375 2376
          sgd_optimizer.minimize(avg_loss)

2377
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2378 2379
          exec_strategy.num_threads = 4

2380 2381 2382
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2383 2384
        )DOC");

2385 2386 2387 2388
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2389

Y
yuyang18 已提交
2390
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2391 2392 2393 2394 2395
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2396
          },
2397 2398
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2399 2400 2401 2402 2403 2404 2405
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2419
      .def_property(
2420 2421
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2422
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2423 2424 2425
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2426 2427 2428 2429 2430
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2431 2432 2433
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2434 2435
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2436 2437 2438 2439 2440 2441 2442
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2443 2444 2445 2446
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2447
                because the temp variable's shape maybe the same between two iterations.
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2458

2459 2460 2461 2462 2463 2464 2465
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2466
              )DOC")
Q
Qiao Longfei 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2488
              )DOC")
2489 2490 2491 2492 2493 2494 2495 2496
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2497 2498 2499 2500 2501
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2502

Y
yuyang18 已提交
2503
  exec_strategy.def_property(
Y
yuyang18 已提交
2504 2505 2506 2507 2508 2509 2510
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2511 2512
      });

C
chengduo 已提交
2513 2514 2515 2516
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2517 2518 2519
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2520 2521 2522
    Examples:
        .. code-block:: python

2523
            import os
2524 2525 2526 2527
            import paddle
            import paddle.static as static

            paddle.enable_static()
2528

2529 2530
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2531

2532 2533 2534 2535
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2536

2537
            build_strategy = static.BuildStrategy()
2538 2539
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2540 2541
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2542
            program = program.with_data_parallel(loss_name=loss.name,
2543 2544
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2545
)DOC");
Y
yuyang18 已提交
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2558
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2559 2560 2561 2562
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2563 2564 2565 2566
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2567
            self.reduce_ = strategy;
C
chengduo 已提交
2568
          },
2569
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2570 2571
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2572
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2573 2574
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2575
                Default is 'AllReduce'.
F
flame 已提交
2576 2577 2578 2579

                Examples:
                    .. code-block:: python

2580 2581 2582 2583 2584 2585 2586
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2587
                  )DOC")
Y
yuyang18 已提交
2588 2589 2590 2591 2592
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2593 2594 2595 2596
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2597
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2598
          },
2599
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2600
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2601 2602
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2603
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2604 2605 2606 2607

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2608 2609
                        import numpy
                        import os
2610 2611 2612 2613
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2614 2615

                        use_cuda = True
2616 2617
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2618 2619

                        # NOTE: If you use CPU to run the program, you need
2620
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2621 2622 2623 2624 2625 2626
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2627
                            places = static.cpu_places()
C
chengduo 已提交
2628
                        else:
2629
                            places = static.cuda_places()
C
chengduo 已提交
2630

2631 2632 2633 2634
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2635

2636
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2637

2638
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2639
                        build_strategy.gradient_scale_strategy = \
2640 2641 2642
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2643
                                          loss_name=loss.name, build_strategy=build_strategy,
2644
                                          places=places)
C
chengduo 已提交
2645 2646 2647 2648 2649 2650

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2651 2652
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2653
                   )DOC")
Y
yuyang18 已提交
2654 2655 2656 2657
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2658 2659 2660 2661
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2662
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2663
          },
2664
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2665
                writing the SSA Graph to file in the form of graphviz.
2666
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2667 2668 2669 2670

                Examples:
                    .. code-block:: python

2671 2672 2673 2674
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2675

2676 2677
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2678
                    )DOC")
S
sneaxiy 已提交
2679 2680 2681 2682 2683 2684
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2685 2686 2687 2688
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2689 2690
            self.enable_sequential_execution_ = b;
          },
2691 2692
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2693 2694 2695 2696

                Examples:
                    .. code-block:: python

2697 2698 2699 2700 2701 2702
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2703 2704
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2705 2706 2707 2708 2709 2710
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2711 2712 2713 2714
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2715 2716
            self.remove_unnecessary_lock_ = b;
          },
2717 2718
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2719 2720 2721 2722

                Examples:
                    .. code-block:: python

2723 2724 2725 2726 2727 2728
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2729 2730
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2731 2732 2733 2734
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2735
#ifdef WIN32
2736
            PADDLE_THROW(platform::errors::Unavailable(
2737
                "Distribution mode is not supported on Windows platform."));
2738
#endif
2739 2740
            self.num_trainers_ = num_trainers;
          })
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2753 2754 2755 2756 2757 2758
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2759 2760 2761 2762 2763 2764
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2765
      .def_property("use_hierarchical_allreduce",
2766 2767 2768 2769 2770 2771
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2772
      .def_property("hierarchical_allreduce_inter_nranks",
2773 2774 2775 2776 2777 2778 2779
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2780 2781 2782 2783 2784 2785
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2786 2787 2788 2789
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2790 2791
            self.fuse_elewise_add_act_ops_ = b;
          },
2792
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2793
                to fuse elementwise_add_op and activation_op,
2794
                it may make the execution faster. Default is False.
F
flame 已提交
2795 2796 2797 2798

                Examples:
                    .. code-block:: python

2799 2800 2801 2802 2803 2804
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2805 2806
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2807 2808 2809 2810
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2811
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2812
                              platform::errors::PreconditionNotMet(
2813 2814
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2824 2825 2826 2827 2828 2829
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2830 2831
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2857 2858 2859 2860
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2861
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2862
                              platform::errors::PreconditionNotMet(
2863 2864
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2875 2876 2877 2878 2879 2880
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2881 2882
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2883 2884 2885 2886 2887 2888
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2889 2890 2891 2892
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2893 2894
            self.fuse_relu_depthwise_conv_ = b;
          },
2895
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2896 2897 2898
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2899
                Default is False.
F
flame 已提交
2900 2901 2902 2903

                Examples:
                    .. code-block:: python

2904 2905 2906 2907 2908 2909
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2910 2911
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2912 2913 2914
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
2915
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
2916 2917
                    },
                    [](BuildStrategy &self, bool b) {
2918 2919 2920 2921
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2922 2923
                      self.fuse_broadcast_ops_ = b;
                    },
2924
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2925 2926 2927 2928
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2929 2930 2931 2932 2933
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2934 2935 2936 2937 2938 2939
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2940 2941
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2942 2943
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2944
                      return self.fuse_all_optimizer_ops_ == true ||
2945
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
2946 2947
                    },
                    [](BuildStrategy &self, bool b) {
2948 2949 2950 2951
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2952 2953
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2954 2955 2956 2957
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2958 2959 2960 2961
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2962 2963
            self.sync_batch_norm_ = b;
          },
2964
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2965 2966 2967
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2968 2969
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2970 2971 2972 2973

                Examples:
                    .. code-block:: python

2974 2975 2976 2977 2978 2979
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2980 2981
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2982 2983
      .def_property(
          "memory_optimize",
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
2994
              self.memory_optimize_ = paddle::none;
2995 2996 2997
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2998
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
2999 3000
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3001 3002
            }
          },
3003
          R"DOC((bool, optional): memory opitimize aims to save total memory
3004
                consumption, set to True to enable it.
3005

3006 3007 3008
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3023 3024 3025
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3026 3027 3028
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3029
              PADDLE_THROW(platform::errors::Unavailable(
3030
                  "Distribution mode is not supported on Windows platform."));
3031 3032 3033 3034 3035
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3036 3037 3038
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3039
      .def_property(
D
dzhwinter 已提交
3040 3041 3042
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3043 3044 3045 3046
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3047 3048
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3049 3050
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3051
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3052
          },
C
chengduo 已提交
3053
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3054 3055 3056 3057 3058 3059 3060
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3061 3062 3063 3064
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3065 3066 3067 3068 3069 3070 3071 3072 3073
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3074 3075 3076 3077 3078 3079
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3080 3081 3082 3083 3084 3085
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3086
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3087
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3088 3089 3090 3091 3092
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3093

3094 3095 3096 3097 3098 3099
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3100
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3101
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3102
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3103
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3104 3105 3106 3107
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3108 3109 3110 3111 3112
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3113 3114 3115
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3116 3117 3118 3119
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3120 3121
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3122 3123 3124 3125 3126 3127 3128 3129
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3130
               return py::cast(
3131
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3132 3133
             } else {
               return py::cast(std::move(
3134
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3135
             }
3136 3137
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3138

D
dongdaxiang 已提交
3139
  BindFleetWrapper(&m);
3140
  BindIO(&m);
T
Thunderbrook 已提交
3141

T
Thunderbrook 已提交
3142 3143
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3144
#endif
T
Thunderbrook 已提交
3145
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3146
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3147
#endif
3148
  BindGlooWrapper(&m);
H
hutuxian 已提交
3149
  BindBoxHelper(&m);
H
hutuxian 已提交
3150 3151 3152
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3153
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3154
  BindNCCLWrapper(&m);
3155 3156 3157
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3158
#endif
F
flame 已提交
3159 3160
  BindGraph(&m);
  BindNode(&m);
3161
  BindPass(&m);
F
flame 已提交
3162
  BindInferenceApi(&m);
3163
  BindCompatible(&m);
3164
  BindDataset(&m);
Y
yaoxuefeng 已提交
3165
  BindGenerator(&m);
3166 3167 3168
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3169
  BindAscendDevice(&m);
3170
#endif
Y
Yanghello 已提交
3171 3172 3173
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3174

T
tangwei12 已提交
3175
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3176 3177
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3178
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3179 3180
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3181 3182 3183 3184 3185
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3186 3187 3188 3189
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3190
  BindSparseShardingTools(&m);
3191
#endif
L
Luo Tao 已提交
3192
}
3193
}  // namespace pybind
3194
}  // namespace paddle