nn.py 274.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
M
minqiyang 已提交
159
    'hash',
D
dengkaipeng 已提交
160
    'grid_sampler',
G
gmcather 已提交
161 162
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
172
       is_test=False,
173
       name=None):
Y
Yu Yang 已提交
174
    """
175
    **Fully Connected Layer**
Y
Yu Yang 已提交
176

177 178 179 180 181 182 183 184
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
185
    to the output as well.
C
caoying03 已提交
186

C
caoying03 已提交
187
    This process can be formulated as follows:
188 189 190

    .. math::

191
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
192 193 194

    In the above equation:

C
caoying03 已提交
195 196 197 198
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
199
    * :math:`Act`: The activation function.
C
caoying03 已提交
200
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
201 202

    Args:
R
ranqiu 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
218 219
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
220
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
221
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
222
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
223

224
    Returns:
F
fengjiayi 已提交
225
        Variable: The transformation result.
226 227

    Raises:
C
caoying03 已提交
228
        ValueError: If rank of the input tensor is less than 2.
229 230 231 232

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
233
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
234
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
235
    """
C
caoying03 已提交
236

C
caoying03 已提交
237
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
238 239 240 241

    dtype = helper.input_dtype()

    mul_results = []
242 243
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
244 245 246
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
247

Y
Yu Yang 已提交
248
        w = helper.create_parameter(
249
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
250
        tmp = helper.create_variable_for_type_inference(dtype)
251
        helper.append_op(
252 253 254
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
255
            outputs={"Out": tmp},
M
mozga-intel 已提交
256 257
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
258 259 260 261
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
262
    else:
X
Xin Pan 已提交
263
        pre_bias = helper.create_variable_for_type_inference(dtype)
264
        helper.append_op(
265 266 267
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
268
            attrs={"use_mkldnn": False})
269 270 271 272
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
273 274


275 276 277
def embedding(input,
              size,
              is_sparse=False,
278
              is_distributed=False,
279 280 281
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
282
    """
283 284
    **Embedding Layer**

285
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
286 287
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
288 289 290

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
291 292

    Args:
293 294 295 296 297
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
298
        is_distributed(bool): Whether to run lookup table from remote parameter server.
299 300
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
301
            with zeros whenever lookup encounters it in :attr:`input`. If
302
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
303 304
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
305
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
306

307 308 309
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
310

311 312
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
313

C
chengduoZH 已提交
314
          dict_size = len(dataset.ids)
315
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
316
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
317 318 319 320 321
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
322
    tmp = helper.create_variable_for_type_inference(dtype)
323 324
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
325 326 327 328 329
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
330 331 332 333 334
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
335 336 337
    return tmp


Y
yi.wu 已提交
338
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
339 340
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
341 342
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
343 344 345 346 347 348 349
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
350 351
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
352
    """
Y
yi.wu 已提交
353
    ${comment}
Y
Yibing Liu 已提交
354 355

    Args:
Y
yi.wu 已提交
356 357
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
358 359 360 361 362 363
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
364
        param_attr(ParamAttr|None): The parameter attribute for the learnable
365
                               hidden-hidden weights.
Y
Yibing Liu 已提交
366 367 368

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
369 370
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
371 372 373 374 375

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
376
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
377 378 379
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
380

381
                              1. `use_peepholes = False`
Y
yi.wu 已提交
382 383
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
384
                              2. `use_peepholes = True`
Y
yi.wu 已提交
385
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
386
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
387
                                 - The shape is (1 x 7D).
C
chengduo 已提交
388 389 390 391 392

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
393 394 395 396 397 398 399 400
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
401 402

    Returns:
Y
Yibing Liu 已提交
403 404
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
405

Y
Yibing Liu 已提交
406
    Examples:
Y
Yibing Liu 已提交
407 408
        .. code-block:: python

Y
Yibing Liu 已提交
409 410
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
411
                                           bias_attr=False)
Y
Yibing Liu 已提交
412 413
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
414
    """
C
chengduo 已提交
415
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
416
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
417
    size = size // 4
Y
Yu Yang 已提交
418 419 420 421 422 423 424 425
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
426 427 428 429
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
430 431 432 433 434 435 436 437 438 439
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
440 441 442

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
443
        inputs=inputs,
Y
Yu Yang 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
460 461 462 463 464 465 466 467 468 469 470
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
471 472
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
473 474 475
    """
    **Dynamic LSTMP Layer**

476 477 478 479 480 481
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
482 483 484 485 486

    The formula is as follows:

    .. math::

487
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
488

489
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
490

491
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
492

493
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
494

495
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
496

497
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
498

499
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
500

Y
Yibing Liu 已提交
501 502 503 504 505 506
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
507
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
508
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
509
          bias vector).
Y
Yibing Liu 已提交
510 511 512
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
513
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
514
    * :math:`h`: The hidden state.
515
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
516 517
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
518
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
519
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
520
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
521 522
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
523 524 525 526

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
527

Y
Yibing Liu 已提交
528 529 530 531 532 533 534 535 536 537 538 539
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
540
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
541 542
                               hidden-hidden weight and projection weight.

543 544
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
545 546
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
547 548
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
549
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
550 551 552 553 554

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
555
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
556 557 558 559 560 561
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
562
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
563 564 565
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
566
                                - The shape is (1 x 7D).
C
chengduo 已提交
567 568 569 570 571

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
572 573 574 575 576 577 578 579 580
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
581
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
582 583
                              default "tanh".
        proj_activation(str): The activation for projection output.
584
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
585 586
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
587 588
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
589 590

    Returns:
591 592 593 594
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
595 596

    Examples:
597

Y
Yibing Liu 已提交
598 599
        .. code-block:: python

600 601 602 603
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
604
            hidden_dim, proj_dim = 512, 256
605
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
606
                                     act=None, bias_attr=None)
607 608 609
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
610 611 612 613
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
614
    """
615

C
chengduo 已提交
616
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
617
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
618
    size = size // 4
Y
Yibing Liu 已提交
619 620 621 622 623 624 625 626 627 628
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
629 630 631 632 633 634
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
663 664 665 666 667 668 669 670 671
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
672
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
673

674
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
675
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
676

G
guosheng 已提交
677 678 679 680 681 682 683 684 685
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
686

G
guosheng 已提交
687
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
688

G
guosheng 已提交
689
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
690 691
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
692 693 694 695
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
696
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
697 698

    Args:
699 700
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
701
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
702
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
703 704
            is the hidden size.
        size(int): The dimension of the gru cell.
705
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
706 707
            hidden-hidden weight matrix. Note:

708
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
709
              :math:`D` is the hidden size.
710
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
711
              The first part are weights of the update gate and reset gate with
712
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
713
              candidate hidden state with shape :math:`(D \\times D)`.
714
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
715
            hidden-hidden bias.
716
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
717 718 719
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
720
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
721
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
722 723 724 725
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
726 727

    Returns:
G
guosheng 已提交
728
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
729
            and sequence length is the same with the input.
730

G
guosheng 已提交
731
    Examples:
732

G
guosheng 已提交
733 734
        .. code-block:: python

735 736 737 738
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
739
            hidden_dim = 512
740
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
741 742 743 744 745 746 747 748 749 750
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
751
    batch_size = input.shape[0]
G
guosheng 已提交
752 753 754
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
755 756 757
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
758

X
Xin Pan 已提交
759 760 761 762
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
781 782 783
def gru_unit(input,
             hidden,
             size,
784 785
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
786
             activation='tanh',
787
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
788
    """
789
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
790

791 792
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
793

794
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
795

796
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
797

798
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
799 800

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
801 802 803
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
804 805
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

806 807
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
808 809 810
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
811 812 813 814 815

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
816 817
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
818 819 820 821
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
822

823 824 825 826 827 828
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
829

830
             # assuming we have x_t_data and prev_hidden of size=10
831
             x_t = fluid.layers.fc(input=x_t_data, size=30)
832 833
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
834 835 836 837 838 839 840 841 842 843 844 845

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
846
    size = size // 3
Y
Yu Yang 已提交
847 848

    # create weight
849 850
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
851

X
Xin Pan 已提交
852 853 854
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
855
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
856
    # create bias
857
    if helper.bias_attr:
Y
Yu Yang 已提交
858 859 860
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
861
        inputs['Bias'] = bias
Y
Yu Yang 已提交
862 863 864

    helper.append_op(
        type='gru_unit',
865
        inputs=inputs,
Y
Yu Yang 已提交
866 867 868 869 870 871
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
872 873
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
874 875 876 877 878
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
879
@templatedoc()
880
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
881 882 883 884 885 886 887
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
888
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
889 890 891 892
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
893 894 895
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
896 897

    """
Y
Yu Yang 已提交
898 899 900 901 902 903
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
904 905 906 907 908 909 910 911
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
927
@templatedoc()
928
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
929 930 931 932 933
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
934

Y
yuyang18 已提交
935
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
936

Y
yuyang18 已提交
937 938 939
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
940
        Variable: ${viterbi_path_comment}
941

Y
yi.wu 已提交
942 943 944 945 946
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
947
    """
Y
Yu Yang 已提交
948 949
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
950 951
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
952 953 954 955 956 957 958 959 960 961
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
962
@templatedoc()
F
fengjiayi 已提交
963
def cos_sim(X, Y):
Y
Yu Yang 已提交
964
    """
Y
yi.wu 已提交
965 966 967
    ${comment}

    Args:
968 969
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
970

Y
yi.wu 已提交
971
    Returns:
972
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
973
    """
F
fengjiayi 已提交
974
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
975 976 977
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
978 979 980 981 982 983 984 985 986 987
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
988 989 990 991 992
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
993
            dropout_implementation="downgrade_in_infer"):
994 995 996 997 998
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
999
    training. The dropout operator randomly sets (according to the given dropout
1000 1001 1002 1003
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1004 1005
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1006 1007 1008 1009 1010 1011 1012
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1027

1028 1029

    Returns:
1030
        Variable: A tensor variable is the shape with `x`.
1031 1032

    Examples:
1033

1034 1035
        .. code-block:: python

1036 1037
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1038 1039
    """

F
fengjiayi 已提交
1040
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1041 1042 1043
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1044 1045 1046 1047

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1048 1049 1050 1051 1052
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1053 1054 1055 1056
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1057 1058
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1059
        })
1060 1061 1062
    return out


1063
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1064
    """
Y
Yibing Liu 已提交
1065 1066
    **Cross Entropy Layer**

1067 1068 1069
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1070 1071

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1072
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1073

Y
Yibing Liu 已提交
1074
        .. math::
Y
yangyaming 已提交
1075

Y
Yibing Liu 已提交
1076 1077 1078
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1079 1080
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1081 1082 1083 1084 1085

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1086
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1087 1088 1089
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1090 1091
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1092
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1093

Y
Yibing Liu 已提交
1094
    Args:
Y
yangyaming 已提交
1095
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1096 1097 1098 1099
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1100
        label (Variable|list): the ground truth which is a 2-D tensor. When
1101 1102 1103 1104
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1105
        soft_label (bool): a flag indicating whether to
1106
                                           interpretate the given labels as soft
1107
                                           labels. Default: `False`.
M
minqiyang 已提交
1108 1109
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1110
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1111 1112 1113 1114 1115

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1116 1117 1118 1119 1120
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1121 1122 1123 1124 1125 1126

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1127
    """
F
fengjiayi 已提交
1128
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1129
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1130 1131 1132 1133 1134
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1135 1136
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1137 1138 1139
    return out


F
fengjiayi 已提交
1140
def square_error_cost(input, label):
Y
Yu Yang 已提交
1141
    """
1142 1143
    **Square error cost layer**

1144 1145
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1160 1161
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1162 1163

    Returns:
G
guosheng 已提交
1164
        Variable: The tensor variable storing the element-wise squared error \
1165
                  difference of input and label.
1166 1167 1168 1169 1170 1171 1172 1173

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1174
    """
F
fengjiayi 已提交
1175
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1176
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1183
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1184
    helper.append_op(
F
fengjiayi 已提交
1185 1186
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1187 1188 1189
    return square_out


Y
yi.wu 已提交
1190
@templatedoc()
Y
Yu Yang 已提交
1191 1192 1193 1194
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1195
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1196
    """
Y
yi.wu 已提交
1197
    **Chunk Evaluator**
Y
yi.wu 已提交
1198

Y
yangyaming 已提交
1199
    This function computes and outputs the precision, recall and
1200
    F1-score of chunk detection.
Y
yi.wu 已提交
1201

Y
yi.wu 已提交
1202 1203 1204 1205 1206 1207 1208 1209
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1210

Y
yi.wu 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1236

Y
yi.wu 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1261
    Args:
1262 1263 1264 1265 1266
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1267

Y
yi.wu 已提交
1268
    Returns:
Y
update  
yi.wu 已提交
1269 1270 1271
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1272

Y
yi.wu 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1285
    """
F
fengjiayi 已提交
1286
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1287 1288

    # prepare output
X
Xin Pan 已提交
1289 1290 1291 1292 1293 1294 1295
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1296 1297 1298 1299 1300 1301 1302 1303

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1304 1305 1306 1307
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1308 1309 1310
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1311 1312
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1313
        })
1314 1315
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1316 1317


1318
@templatedoc()
Y
Yu Yang 已提交
1319 1320 1321 1322 1323 1324 1325
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1326 1327
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1328 1329 1330 1331
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1332 1333 1334 1335 1336 1337 1338

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1352

1353 1354
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1355 1356 1357 1358 1359 1360 1361
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1362
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1373
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1374 1375 1376 1377 1378 1379
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1380
def sequence_softmax(input, use_cudnn=False, name=None):
1381 1382 1383
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1384
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1401 1402 1403
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1416 1417
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1418
    softmax_out = helper.create_variable_for_type_inference(dtype)
1419 1420 1421 1422 1423 1424 1425 1426
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1427
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1428
    """
1429
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1430
    has the same shape as the input.
Q
qiaolongfei 已提交
1431

1432 1433 1434 1435 1436 1437
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1438
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1439 1440 1441 1442 1443 1444 1445

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1446
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1447 1448 1449 1450 1451 1452 1453 1454

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1455 1456 1457
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1470 1471
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1472
    softmax_out = helper.create_variable_for_type_inference(dtype)
1473 1474 1475 1476 1477 1478 1479 1480
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1481 1482 1483
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1484 1485
           stride=1,
           padding=0,
1486
           dilation=1,
Y
Yu Yang 已提交
1487 1488 1489
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1490
           use_cudnn=True,
1491 1492
           act=None,
           name=None):
Y
Yu Yang 已提交
1493
    """
C
chengduoZH 已提交
1494
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1495 1496
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1497
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1498 1499 1500 1501 1502 1503 1504
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1505 1506 1507
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1508

1509
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1510

C
chengduoZH 已提交
1511 1512
    .. math::

C
refine  
chengduoZH 已提交
1513
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1514

T
tensor-tang 已提交
1515
    Where:
C
chengduoZH 已提交
1516

1517 1518 1519 1520 1521
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1522
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1523 1524 1525

    Example:

1526 1527
        - Input:

W
weixing02 已提交
1528
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1529

W
weixing02 已提交
1530
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1531

1532
        - Output:
T
tensor-tang 已提交
1533

W
weixing02 已提交
1534
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1535

C
chengduoZH 已提交
1536
        Where
1537 1538

        .. math::
C
chengduoZH 已提交
1539

W
weixing02 已提交
1540 1541
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1542 1543

    Args:
1544
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1545
        num_filters(int): The number of filter. It is as same as the output
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1574 1575
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1576 1577
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1578
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1579
            will be named automatically. Default: None
C
chengduoZH 已提交
1580 1581

    Returns:
G
guosheng 已提交
1582
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1583 1584
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1585
    Raises:
1586 1587
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1588

C
chengduoZH 已提交
1589 1590 1591
    Examples:
        .. code-block:: python

1592 1593
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1594 1595 1596
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1597
    assert param_attr is not False, "param_attr should not be False here."
1598
    l_type = 'conv2d'
X
xzl 已提交
1599 1600
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1601
        l_type = 'depthwise_conv2d'
1602 1603 1604 1605

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1606 1607 1608 1609 1610
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1611
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1612

C
chengduoZH 已提交
1613 1614 1615
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1616
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1617

C
chengduoZH 已提交
1618 1619
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1620 1621

    input_shape = input.shape
M
minqiyang 已提交
1622
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1623 1624

    def _get_default_param_initializer():
C
chengduo 已提交
1625 1626
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1627 1628 1629 1630 1631 1632 1633 1634
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1635
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1636 1637

    helper.append_op(
1638
        type=l_type,
Y
Yu Yang 已提交
1639 1640 1641 1642 1643
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1644 1645 1646
        attrs={
            'strides': stride,
            'paddings': padding,
1647
            'dilations': dilation,
C
chengduoZH 已提交
1648
            'groups': groups,
1649
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1650
            'use_mkldnn': False
C
chengduoZH 已提交
1651
        })
Y
Yu Yang 已提交
1652 1653 1654 1655 1656 1657

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1675 1676 1677 1678 1679 1680
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1690 1691
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1692 1693 1694
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1695
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1721
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1722 1723
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1724
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1725 1726
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1727
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1728 1729
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1730
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1731 1732 1733 1734 1735 1736
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1747 1748
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1749 1750
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1751
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1752
            will be named automatically. Default: None.
C
chengduoZH 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1765 1766
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1767 1768 1769
    """

    l_type = 'conv3d'
C
chengduo 已提交
1770
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1781
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1795 1796 1797
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1798 1799 1800 1801 1802 1803 1804 1805
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1806
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1821
            'use_mkldnn': False
C
chengduoZH 已提交
1822 1823
        })

1824
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1825 1826 1827 1828

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1829
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1830
    """
Y
yangyaming 已提交
1831 1832 1833
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1845
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1846 1847 1848 1849 1850
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1851
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1852 1853 1854 1855 1856 1857 1858

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1859 1860
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1861

L
Luo Tao 已提交
1862 1863
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1864
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1865 1866 1867 1868 1869 1870 1871 1872
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1873

Y
yangyaming 已提交
1874
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1875 1876 1877 1878 1879
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1880 1881
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1882
    """
F
fengjiayi 已提交
1883
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1884
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1885 1886
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1887 1888 1889 1890 1891 1892 1893 1894

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1895 1896 1897 1898 1899
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1900 1901 1902
    return pool_out


C
add doc  
chengduoZH 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1922
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1923 1924 1925 1926 1927
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1928
def sequence_first_step(input):
L
Luo Tao 已提交
1929
    """
L
Luo Tao 已提交
1930
    This function gets the first step of sequence.
L
Luo Tao 已提交
1931 1932 1933 1934

    .. code-block:: text

       x is a 1-level LoDTensor:
1935
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1936 1937 1938 1939 1940
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1941
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1942
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1943

L
Luo Tao 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1953

Y
yangyaming 已提交
1954
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1955 1956 1957
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1958 1959 1960
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1961
def sequence_last_step(input):
L
Luo Tao 已提交
1962
    """
L
Luo Tao 已提交
1963
    This function gets the last step of sequence.
L
Luo Tao 已提交
1964 1965 1966 1967

    .. code-block:: text

       x is a 1-level LoDTensor:
1968
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1969 1970 1971 1972 1973
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1974
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1975
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1976

L
Luo Tao 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1986

Y
yangyaming 已提交
1987
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1988 1989 1990
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1991 1992 1993
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1994 1995 1996 1997
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

1998
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
1999 2000 2001 2002 2003
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2004

Y
Yibing Liu 已提交
2005 2006
	- Case:

2007
            Given the input Variable **input**:
2008

2009 2010 2011
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2012

2013
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2014

2015
            the output Variable will be
2016

2017 2018 2019
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2020 2021

    NOTE: The first dimension size of **input**, **offset** and **length**
2022
          should be equal. The **offset** should start from 0.
2023

Y
Yibing Liu 已提交
2024
    Args:
2025
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2026
                         sequences.
Y
Yibing Liu 已提交
2027 2028 2029 2030 2031 2032
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2033
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2044
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2045 2046 2047 2048
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2049
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2064
@templatedoc()
Y
Yu Yang 已提交
2065
def pool2d(input,
C
chengduoZH 已提交
2066 2067
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2068 2069
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2070
           global_pooling=False,
C
chengduoZH 已提交
2071
           use_cudnn=True,
2072
           ceil_mode=False,
C
caoying03 已提交
2073
           name=None):
Y
Yu Yang 已提交
2074
    """
F
fengjiayi 已提交
2075
    ${comment}
2076 2077

    Args:
2078 2079 2080
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2081
                          feature, and W is the width of the feature.
2082
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2083
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2084
        pool_type: ${pooling_type_comment}
2085 2086
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2087 2088 2089
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2090
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2091 2092
                        layer will be named automatically.

2093
    Returns:
F
fengjiayi 已提交
2094
        Variable: The pooling result.
F
fengjiayi 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2108 2109 2110 2111
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2112
                            global_pooling=False)
Y
Yu Yang 已提交
2113 2114 2115 2116 2117
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2118

C
chengduoZH 已提交
2119 2120 2121 2122 2123
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2124 2125 2126 2127
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2128 2129
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2130

C
Add doc  
chengduoZH 已提交
2131
    l_type = 'pool2d'
2132 2133

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2134
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2135
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2136 2137

    helper.append_op(
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2149
            "use_mkldnn": False
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2166
    pooling configurations mentioned in input parameters.
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2179

2180
    Returns:
2181
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2182 2183 2184 2185 2186
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2187

C
chengduoZH 已提交
2188 2189 2190 2191 2192
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2193 2194 2195
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2196

C
chengduoZH 已提交
2197 2198
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2199

2200 2201
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2202
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2203
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2204 2205

    helper.append_op(
2206
        type=l_type,
Y
Yu Yang 已提交
2207 2208 2209 2210 2211 2212 2213
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2214
            "paddings": pool_padding,
2215
            "use_cudnn": use_cudnn,
2216
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2217
            "use_mkldnn": False
Y
Yu Yang 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2230
               data_layout='NCHW',
Y
Yang Yang 已提交
2231
               in_place=False,
2232 2233
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2234
               moving_variance_name=None,
2235 2236
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2237
    """
Q
qiaolongfei 已提交
2238 2239 2240 2241
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2242

Q
qiaolongfei 已提交
2243
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2244

Q
qiaolongfei 已提交
2245 2246
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2247 2248 2249
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2262 2263

    Args:
Q
qiaolongfei 已提交
2264
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2265 2266 2267 2268
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2269 2270 2271 2272 2273 2274 2275 2276
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2277
        data_layout(string, default NCHW): NCHW|NHWC
2278
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2279 2280 2281 2282
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2283
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2284
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2285 2286

    Returns:
Q
qiaolongfei 已提交
2287
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2288 2289 2290 2291 2292 2293 2294

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2295
    """
C
chengduo 已提交
2296
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2319
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2320

2321 2322
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2323 2324 2325
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2326
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2327
        shape=param_shape,
2328 2329 2330 2331 2332 2333 2334
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2335
            trainable=False,
W
wanghaoshuang 已提交
2336
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2337
        shape=param_shape,
2338 2339
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2340 2341 2342 2343 2344 2345

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2346 2347 2348 2349
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2350

X
Xin Pan 已提交
2351 2352
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2370 2371 2372 2373
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2374
            "use_mkldnn": False,
2375
            "fuse_with_relu": fuse_with_relu
2376
        })
Y
Yu Yang 已提交
2377 2378 2379 2380

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2381
@templatedoc()
G
guosheng 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2392
    ${comment}
G
guosheng 已提交
2393 2394 2395

    The formula is as follows:

Y
yuyang18 已提交
2396
    ..  math::
G
guosheng 已提交
2397 2398 2399 2400 2401 2402 2403

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2404 2405 2406 2407 2408 2409 2410 2411
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2412

G
guosheng 已提交
2413 2414
    Args:
        input(Variable): The input tensor variable.
2415
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2416
            normalization. Default True.
2417
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2418 2419
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2420
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2421
            Default 1.
2422
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2423
            division by zero. Default 1e-05.
G
guosheng 已提交
2424
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2425 2426
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2427 2428
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2429
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2430 2431
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2432
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2433
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2434
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2435 2436 2437
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2438 2439

    Returns:
Y
yuyang18 已提交
2440
        ${y_comment}
G
guosheng 已提交
2441 2442 2443

    Examples:

Y
yuyang18 已提交
2444 2445 2446
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2462
    if shift:
G
guosheng 已提交
2463 2464 2465 2466 2467 2468
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2469 2470 2471 2472 2473
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2489 2490 2491 2492
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2493 2494 2495
                     padding=0,
                     stride=1,
                     dilation=1,
2496
                     groups=None,
C
caoying03 已提交
2497
                     param_attr=None,
2498
                     bias_attr=None,
C
chengduoZH 已提交
2499
                     use_cudnn=True,
2500
                     act=None,
C
caoying03 已提交
2501
                     name=None):
Y
Yu Yang 已提交
2502
    """
2503 2504 2505 2506 2507 2508 2509 2510
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2511 2512
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2513 2514 2515
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2516 2517 2518 2519 2520

    For each input :math:`X`, the equation is:

    .. math::

2521
        Out = \sigma (W \\ast X + b)
2522

2523
    Where:
2524 2525 2526

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2527 2528 2529 2530
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2531

2532 2533 2534 2535
    Example:

        - Input:

2536
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2537

2538
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2539 2540 2541

        - Output:

2542
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2543 2544

        Where
Y
Yu Yang 已提交
2545

2546 2547
        .. math::

2548 2549 2550 2551
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2552 2553

    Args:
2554 2555 2556 2557
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2558 2559 2560 2561
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2590
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2591 2592 2593
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2594
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2595
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2596 2597

    Returns:
2598
        Variable: The tensor variable storing the convolution transpose result.
2599 2600

    Raises:
2601 2602
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2603 2604 2605 2606

    Examples:
       .. code-block:: python

2607 2608
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2609
    """
C
chengduo 已提交
2610
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2611 2612 2613 2614 2615 2616 2617 2618
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2619 2620 2621
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2622 2623 2624
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2625

C
chengduoZH 已提交
2626 2627
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2628

Y
Yu Yang 已提交
2629 2630 2631 2632 2633
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2634

Y
Yu Yang 已提交
2635 2636
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2637

C
chengduoZH 已提交
2638
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2639
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2640
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2641
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2642
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2643 2644 2645
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2646

2647 2648 2649 2650 2651 2652 2653
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2654
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2655
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2656

Y
Yu Yang 已提交
2657 2658 2659
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2660
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2661
    helper.append_op(
2662
        type=op_type,
Y
Yu Yang 已提交
2663 2664
        inputs={'Input': [input],
                'Filter': [img_filter]},
2665
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2666
        attrs={
2667
            'output_size': output_size,
2668 2669 2670 2671 2672
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2673 2674
        })

2675 2676 2677
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2678 2679


2680
def conv3d_transpose(input,
Y
Yu Yang 已提交
2681 2682 2683
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2684 2685 2686
                     padding=0,
                     stride=1,
                     dilation=1,
2687
                     groups=None,
C
caoying03 已提交
2688
                     param_attr=None,
2689
                     bias_attr=None,
C
chengduoZH 已提交
2690
                     use_cudnn=True,
2691
                     act=None,
C
caoying03 已提交
2692
                     name=None):
Y
Yu Yang 已提交
2693
    """
2694
    **Convlution3D transpose layer**
2695

2696
    The convolution3D transpose layer calculates the output based on the input,
2697
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2698 2699 2700 2701 2702 2703
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2704 2705 2706
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2707 2708 2709 2710 2711

    For each input :math:`X`, the equation is:

    .. math::

2712
        Out = \sigma (W \\ast X + b)
2713 2714 2715

    In the above equation:

2716 2717
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2718 2719 2720 2721
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2722

2723 2724 2725 2726
    Example:

        - Input:

2727
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2728

2729
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2730 2731 2732

        - Output:

2733
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2734 2735

        Where
Y
Yu Yang 已提交
2736

2737 2738
        .. math::

2739 2740 2741
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2742 2743

    Args:
2744
        input(Variable): The input image with [N, C, D, H, W] format.
2745 2746 2747
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2748
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2749 2750
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2751
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2752 2753 2754
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2755 2756
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2757
        stride(int|tuple): The stride size. If stride is a tuple, it must
2758 2759
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2760
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2761 2762 2763
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2764 2765 2766 2767 2768
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2769 2770 2771 2772 2773 2774 2775 2776 2777
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2778 2779
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2780 2781
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2782 2783
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2784 2785

    Returns:
2786
        Variable: The tensor variable storing the convolution transpose result.
2787 2788

    Raises:
2789 2790
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2791 2792 2793 2794

    Examples:
       .. code-block:: python

2795 2796
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2797
    """
C
chengduo 已提交
2798
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2799 2800
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2801
    if not isinstance(input, Variable):
2802
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2803 2804
    input_channel = input.shape[1]

2805 2806 2807
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2808

C
chengduoZH 已提交
2809 2810 2811
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2812 2813 2814 2815 2816 2817
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2818 2819 2820
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2821

2822
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2823
                         padding[0] - 1) // dilation[0] + 1
2824
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2825
                         padding[1] - 1) // dilation[1] + 1
2826
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2827
                         padding[2] - 1) // dilation[2] + 1
2828
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2829
    else:
2830 2831
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2832

2833
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2834
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2835 2836 2837
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2838
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2839
    helper.append_op(
2840
        type=l_type,
Y
Yu Yang 已提交
2841 2842
        inputs={'Input': [input],
                'Filter': [img_filter]},
2843
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2844 2845 2846 2847
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2848
            'groups': groups,
C
chengduoZH 已提交
2849 2850
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2851

2852 2853
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2854
    return out
Y
yangyaming 已提交
2855 2856


Y
yangyaming 已提交
2857
def sequence_expand(x, y, ref_level=-1, name=None):
2858
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2859 2860 2861 2862
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2863 2864 2865 2866 2867

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2868
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2869
                x.data = [[a], [b], [c], [d]]
2870 2871 2872
                x.dims = [4, 1]

            y is a LoDTensor:
2873 2874
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2875

Y
yangyaming 已提交
2876
            ref_level: 0
2877

Y
yangyaming 已提交
2878
            then output is a 1-level LoDTensor:
2879
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2880
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2881 2882 2883 2884
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2885
                x.data = [[a], [b], [c]]
2886 2887 2888
                x.dims = [3, 1]

            y is a LoDTensor:
2889
                y.lod = [[2, 0, 3]]
2890

Y
yangyaming 已提交
2891
            ref_level: -1
2892

Y
yangyaming 已提交
2893 2894 2895
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2896 2897 2898
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2899 2900
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2901
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2902
                        will be named automatically.
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2913
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2914
    """
Y
yangyaming 已提交
2915
    helper = LayerHelper('sequence_expand', input=x, **locals())
2916
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2917
    tmp = helper.create_variable_for_type_inference(dtype)
2918
    helper.append_op(
Y
yangyaming 已提交
2919 2920 2921 2922 2923
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2924
    return tmp
2925 2926


C
chengduo 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2983
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2984 2985 2986 2987 2988 2989 2990 2991
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2992
@templatedoc()
2993
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2994 2995 2996 2997 2998
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2999 3000 3001
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3002
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3003 3004 3005 3006
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3007 3008 3009
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3010

F
fengjiayi 已提交
3011
    Returns:
M
minqiyang 已提交
3012
        Variable: The padded sequence batch and the original lengths before
3013
                  padding. All sequences has the same length.
M
minqiyang 已提交
3014

F
fengjiayi 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3028 3029
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3030 3031 3032 3033

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3034 3035 3036 3037 3038 3039
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3040 3041
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3042
        attrs={'padded_length': maxlen})
3043
    return out, length
F
fengjiayi 已提交
3044 3045


3046
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3047
    """
3048
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3049

3050 3051
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3061 3062 3063
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3064
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3065 3066 3067 3068 3069 3070

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3071
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3072 3073 3074 3075 3076 3077

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3078 3079
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3094
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3106 3107 3108 3109 3110 3111 3112 3113 3114
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3115 3116
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3117 3118 3119

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3120 3121

    This layer does the search in beams for one time step. Specifically, it
3122 3123 3124 3125 3126 3127
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3128

3129 3130 3131 3132 3133 3134 3135 3136
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3137

3138
    Args:
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3164

3165
    Returns:
3166 3167
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3168 3169 3170 3171

    Examples:
        .. code-block:: python

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3189 3190 3191 3192
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3193 3194 3195
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3196 3197 3198 3199 3200

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3201
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3219 3220 3221 3222 3223 3224 3225
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3236

3237 3238 3239 3240 3241 3242
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3243

3244 3245 3246 3247 3248 3249 3250 3251
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3252 3253
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3269 3270 3271 3272
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3273
              param_attr=None,
C
caoying03 已提交
3274 3275
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3276 3277 3278 3279
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3280
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3281

3282
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3283

3284
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3285

3286
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3287 3288 3289

            h_t & = o_t tanh(c_t)

3290 3291 3292 3293 3294 3295
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3296 3297 3298

        .. math::

3299
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3300 3301 3302 3303 3304 3305 3306 3307

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3308
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3309 3310

    Args:
Y
yangyaming 已提交
3311 3312 3313 3314 3315 3316
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3317
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3330 3331
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3332 3333

    Returns:
Y
yangyaming 已提交
3334
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3335 3336

    Raises:
3337 3338 3339 3340
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3341 3342 3343 3344 3345 3346

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3347
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3348
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3349
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3366
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3367 3368 3369 3370
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3371 3372
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3373 3374 3375
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3376
    size = cell_t_prev.shape[1]
3377
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3378 3379
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3380
                param_attr=param_attr,
3381
                bias_attr=bias_attr)
Y
yangyaming 已提交
3382
    dtype = x_t.dtype
X
Xin Pan 已提交
3383 3384
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3394
    return h, c
G
guosheng 已提交
3395 3396


C
caoying03 已提交
3397
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3398
    """
Y
yangyaming 已提交
3399
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3400 3401 3402

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3403
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3404 3405
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3406 3407
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3408
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3409
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3410
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3411 3412
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3413 3414 3415

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3416

G
guosheng 已提交
3417 3418 3419 3420 3421 3422
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3423
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3424 3425 3426 3427
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3428 3429 3430 3431

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3432
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3433 3434 3435
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3436 3437
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3438
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3439 3440
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3441 3442 3443 3444 3445
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3446
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3447 3448 3449 3450
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3451 3452


C
caoying03 已提交
3453
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3454
    """
Y
Yibing Liu 已提交
3455
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3456 3457 3458

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3459 3460 3461
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3462
            must be in the range :math:`[-rank(input), rank(input))`. If
3463
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3464
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3465 3466
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3467
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3468
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3469
                       will be named automatically.
G
guosheng 已提交
3470 3471

    Returns:
Y
Yibing Liu 已提交
3472
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3473

G
guosheng 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3484 3485
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3486 3487 3488 3489 3490 3491 3492

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3493 3494
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3495
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3496 3497
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3498 3499 3500 3501 3502
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3503
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3504 3505 3506 3507
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3508 3509


C
caoying03 已提交
3510
def reduce_max(input, dim=None, keep_dim=False, name=None):
3511
    """
Y
yangyaming 已提交
3512
    Computes the maximum of tensor elements over the given dimension.
3513 3514 3515

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3516
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3517 3518 3519
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3520
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3521 3522
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3523
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3524 3525
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3526 3527 3528

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3541 3542 3543 3544 3545 3546 3547

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3548 3549
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3550
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3551 3552
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3553 3554 3555 3556 3557
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3558
            'dim': dim if dim != None else [0],
3559 3560 3561 3562 3563 3564
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3565
def reduce_min(input, dim=None, keep_dim=False, name=None):
3566
    """
Y
yangyaming 已提交
3567
    Computes the minimum of tensor elements over the given dimension.
3568 3569 3570

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3571
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3572 3573 3574
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3575
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3576 3577
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3578
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3579 3580
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3581 3582 3583

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3584

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3596 3597 3598 3599 3600 3601 3602

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3603 3604
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3605
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3606 3607
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3608 3609 3610 3611 3612
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3613
            'dim': dim if dim != None else [0],
3614 3615 3616 3617
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3618 3619


3620 3621 3622 3623 3624 3625
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3626
        dim (list|int|None): The dimensions along which the product is performed. If
3627 3628
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3629 3630
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3631 3632 3633
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3634
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3635
            layer will be named automatically.
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3650
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3651
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3652 3653 3654 3655 3656 3657 3658

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3659 3660
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3661
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3662 3663
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3664 3665 3666 3667 3668
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3669
            'dim': dim if dim != None else [0],
3670 3671 3672 3673 3674 3675
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3676
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3677
    """
C
caoying03 已提交
3678
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3679 3680 3681

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3682 3683 3684 3685 3686
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3687
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3688
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3689
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3690 3691
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3692 3693

    Returns:
D
dzhwinter 已提交
3694
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3704 3705
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3721
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3744
    .. math::
3745 3746

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3747 3748 3749 3750 3751

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3752
        x(Variable|list): The input tensor to l2_normalize layer.
3753
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3754 3755
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3756
        epsilon(float): The epsilon value is used to avoid division by zero, \
3757
            the defalut value is 1e-10.
3758
        name(str|None): A name for this layer(optional). If set None, the layer \
3759
            will be named automatically.
C
caoying03 已提交
3760 3761

    Returns:
3762
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3763 3764

    Examples:
3765

C
caoying03 已提交
3766 3767
        .. code-block:: python

3768 3769 3770 3771
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3772 3773
    """

F
fengjiayi 已提交
3774 3775
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3776 3777
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3778 3779
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3780
    helper.append_op(
3781 3782 3783 3784
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3785
        attrs={
3786 3787
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3788 3789
        })
    return out
3790 3791


S
sneaxiy 已提交
3792
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3793
    """
Y
ying 已提交
3794 3795 3796 3797
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3798

C
chengduoZH 已提交
3799
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3800
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3801

3802 3803 3804 3805 3806
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3807
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3808

C
chengduoZH 已提交
3809
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3810
      performs in the following way.
G
guosheng 已提交
3811

3812
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3813
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3814
        last two dimensions and a batched matrix multiply supporting broadcast
3815
        applies on the two tensors.
G
guosheng 已提交
3816

Y
ying 已提交
3817 3818
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3819
    removed after matrix multiplication.
G
guosheng 已提交
3820 3821 3822

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3823 3824 3825
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3826
        alpha (float): The scale of output. Default 1.0.
3827
        name(str|None): A name for this layer(optional). If set None, the layer
3828
            will be named automatically.
G
guosheng 已提交
3829 3830

    Returns:
3831
        Variable: The product Tensor variable.
G
guosheng 已提交
3832

G
guosheng 已提交
3833 3834 3835
    Examples:
        .. code-block:: python

3836
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3837 3838
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3839

3840 3841
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3842

3843 3844
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3845

3846 3847
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3848 3849 3850 3851

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3852 3853
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3854

Y
ying 已提交
3855
            # x: [M], y: [N]
3856
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3857
    """
Y
ying 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3870
            y_shape = y_shape + [1]
Y
ying 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3887
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3888
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3889
    helper.append_op(
3890 3891 3892 3893
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3894 3895 3896
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3897
            'alpha': float(alpha),
S
sneaxiy 已提交
3898
        })
3899
    return out
3900 3901


3902
def topk(input, k, name=None):
Q
qingqing01 已提交
3903 3904 3905 3906
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3907
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3908 3909 3910 3911 3912 3913
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3935 3936 3937
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3938
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3939
                 of input.
3940
        name(str|None): A name for this layer(optional). If set None, the layer
3941
                       will be named automatically.
F
fengjiayi 已提交
3942
                       Default: None
Q
qingqing01 已提交
3943 3944

    Returns:
3945 3946 3947
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3948
        within the last dimension of input.
Q
qingqing01 已提交
3949

F
fengjiayi 已提交
3950 3951
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3952 3953 3954 3955 3956 3957 3958

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3959 3960
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3972
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3973
    """
Y
ying 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3983

Y
ying 已提交
3984
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3985

3986
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3987 3988
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3989
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3990

3991
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3992 3993
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3994

3995 3996 3997
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3998
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3999
                          the length of reference string.
4000
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4001
                                     calculating edit distance.
4002
        name (str): The name of this layer. It is optional.
4003

W
wanghaoshuang 已提交
4004
    Returns:
W
wanghaoshuang 已提交
4005
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4006 4007 4008 4009 4010

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4011
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4012
            cost = fluid.layers.edit_distance(input=x,label=y)
4013
    """
4014
    helper = LayerHelper("edit_distance", **locals())
4015

4016
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4017
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4018 4019
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4020 4021 4022 4023 4024

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4025
            attrs={"tokens": ignored_tokens})
4026 4027 4028 4029 4030
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4031
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4032
            attrs={"tokens": ignored_tokens})
4033 4034
        label = erased_label

4035
    # edit distance op
X
Xin Pan 已提交
4036 4037
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4038 4039 4040 4041
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4042 4043
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4044 4045
        attrs={"normalized": normalized})

4046
    return edit_distance_out, sequence_num
4047 4048 4049 4050 4051


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4052

Y
ying 已提交
4053 4054 4055 4056
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4074
        input.lod = [[4, 4]]
4075 4076 4077 4078 4079 4080 4081

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4082
        output.lod = [[2, 1]]
4083 4084 4085

    Args:

Y
ying 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4095
        name (str): The name of this layer. It is optional.
4096 4097

    Returns:
4098
        Variable: CTC greedy decode result. If all the sequences in result were
4099
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4100 4101 4102 4103 4104

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4105

4106
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4107
    """
4108
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4109
    _, topk_indices = topk(input, k=1)
4110 4111

    # ctc align op
X
Xin Pan 已提交
4112
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4113 4114 4115
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4116
        outputs={"Output": [ctc_out]},
4117 4118
        attrs={"merge_repeated": True,
               "blank": blank})
4119
    return ctc_out
4120 4121


F
fengjiayi 已提交
4122
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4123
    """
4124 4125
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4126
    to compute Connectionist Temporal Classification (CTC) loss.
4127 4128
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4129 4130 4131
    input tensor.

    Args:
4132
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4133 4134 4135 4136
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4137
       label (Variable): The ground truth of variable-length sequence,
4138 4139 4140
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4141 4142
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4143 4144 4145
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4146
         follewed by a mean_op.
W
wanghaoshuang 已提交
4147 4148

    Returns:
4149 4150
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4151 4152

    Examples:
4153

W
wanghaoshuang 已提交
4154
        .. code-block:: python
4155

4156 4157 4158
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4159 4160

    """
F
fengjiayi 已提交
4161
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4162 4163
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4188 4189 4190
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4191 4192 4193 4194 4195
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4196

4197
            out.lod  = [[0, 1, 3]]
4198 4199 4200 4201

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4202 4203 4204 4205 4206 4207 4208
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4209 4210 4211

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4212 4213

    Returns:
4214

4215 4216 4217 4218 4219
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4220
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4221
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4222 4223
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4224
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4225 4226 4227 4228 4229 4230
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4231 4232


4233 4234 4235 4236
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4237 4238 4239 4240 4241 4242
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4243 4244
        num_neg_samples=None,
        name=None):
4245 4246 4247 4248 4249 4250 4251
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4252 4253
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4254
            sample is 1.0.
C
chengduo 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4264
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4265 4266
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4267

4268
    Returns:
Y
Yibing Liu 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4296
    """
Y
Yang Yu 已提交
4297 4298 4299
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4300 4301

    dim = input.shape[1]
Y
Yang Yu 已提交
4302 4303 4304 4305 4306 4307
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4321 4322 4323
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4324

Y
Yang Yu 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4334 4335 4336

    helper.append_op(
        type='nce',
C
chengduo 已提交
4337
        inputs=inputs,
Y
Yang Yu 已提交
4338 4339 4340 4341 4342 4343
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4344
    return cost / (num_neg_samples + 1)
4345 4346


C
chengduo 已提交
4347 4348 4349 4350 4351 4352
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4353 4354
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4355
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4365

W
weixing02 已提交
4366
    Args:
M
minqiyang 已提交
4367
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4368 4369 4370 4371 4372
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4384 4385 4386 4387 4388 4389 4390 4391

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4392 4393 4394
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4395 4396 4397 4398
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4399 4400
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4401 4402
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4403
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4404 4405 4406 4407 4408
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4409 4410 4411 4412 4413 4414 4415 4416
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4417 4418
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4419
        inputs=inputs,
W
weixing02 已提交
4420 4421 4422 4423 4424 4425
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4426
def transpose(x, perm, name=None):
Y
ying 已提交
4427 4428 4429 4430 4431 4432 4433
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4434 4435 4436
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4437 4438 4439 4440 4441 4442 4443 4444

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4445
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4446 4447
    """

Y
fix ci.  
ying 已提交
4448
    if len(perm) != len(x.shape):
Y
ying 已提交
4449 4450 4451
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4452 4453 4454 4455 4456 4457
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4458 4459

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4460 4461
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4462
    helper.append_op(
4463
        type='transpose2',
Y
fix ci.  
ying 已提交
4464
        inputs={'X': [x]},
4465 4466
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4467 4468
        attrs={'axis': perm})
    return out
4469 4470


4471 4472 4473 4474 4475 4476 4477
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4478
    """
4479 4480 4481 4482 4483 4484 4485
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4514 4515 4516 4517 4518 4519 4520 4521 4522
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4523 4524 4525
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4526 4527 4528 4529 4530
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4558 4559 4560
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4573
            output.dims = {8, 8}
4574

4575
            output.lod = [[4, 4]]
4576

D
dzhwinter 已提交
4577
     Examples:
4578 4579 4580

        .. code-block:: python

4581 4582
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4583 4584

    """
W
wanghaoshuang 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4595 4596 4597 4598 4599 4600 4601
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4602
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4603
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4604
    helper.append_op(
4605
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4606
    return out
4607 4608


Y
yuyang18 已提交
4609
@templatedoc()
4610
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4611 4612
    """
    ${comment}
4613 4614

    Args:
Y
yuyang18 已提交
4615
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4616 4617
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4618 4619 4620 4621 4622
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4623
        ${out_comment}.
4624 4625

    Examples:
Y
yuyang18 已提交
4626 4627 4628 4629
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4630 4631 4632 4633 4634 4635
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4636
    out = helper.create_variable_for_type_inference(dtype)
4637 4638 4639 4640 4641
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4642
    return helper.append_activation(out)
4643 4644


Y
yuyang18 已提交
4645
@templatedoc()
4646 4647
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4648 4649 4650 4651 4652 4653 4654
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4655 4656

    Args:
Y
yuyang18 已提交
4657 4658
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4659 4660

    Returns:
Y
yuyang18 已提交
4661
        ${out_comment}.
4662 4663
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4664 4665 4666 4667 4668

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4669
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4670 4671 4672 4673 4674 4675
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4676 4677


4678 4679 4680 4681
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4682 4683
    """
    **Softmax With Cross Entropy Operator.**
4684

4685 4686 4687 4688
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4689

4690 4691 4692
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4693

4694 4695 4696
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4697

4698
    The equation is as follows:
4699

4700
    1) Hard label (one-hot label, so every sample has exactly one class)
4701

4702 4703 4704 4705
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4706

4707 4708 4709
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4710

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4723 4724
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4725 4726
                            if soft_label is set to False. Default: -100

4727 4728 4729 4730 4731 4732 4733 4734 4735
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4736 4737
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4738 4739
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4740 4741
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4742 4743 4744 4745 4746 4747
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4748 4749
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4750 4751 4752 4753 4754
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4755 4756
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4757
    For each instance, it computes the smooth L1 loss element by element first
4758
    and then sums all the losses. So the shape of ouput Variable is
4759
    [batch_size, 1].
4760

4761 4762
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4763
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4764
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4765
            L1 loss op with same shape as :attr:`x`.
4766
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4767 4768
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4769
            by this tensor element by element.
4770
        outside_weight (Variable|None): A tensor with rank at least 2. This
4771 4772
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4773
            element by element.
4774
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4775 4776
           scalar with default value 1.0.

4777
    Returns:
4778
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4779 4780 4781 4782 4783

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4784 4785
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4786
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4787
            out = fluid.layers.smooth_l1(x=fc, y=label)
4788
    """
4789

4790
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4791 4792
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4805 4806 4807 4808


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4809
    This layer creates the one-hot representations for input indices.
4810 4811

    Args:
Y
Yibing Liu 已提交
4812 4813
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4814 4815

    Returns:
Y
Yibing Liu 已提交
4816
        Variable: The one-hot representations of input.
4817 4818

    Examples:
C
caoying03 已提交
4819
        .. code-block:: python
4820

Y
Yibing Liu 已提交
4821 4822
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4823 4824
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4825
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4826 4827 4828 4829 4830 4831
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4832 4833


Y
Yu Yang 已提交
4834
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4835
    """
Y
yi.wu 已提交
4836 4837 4838
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4839 4840 4841 4842 4843 4844

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4845 4846
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4847 4848 4849 4850 4851 4852

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4853 4854
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4855 4856
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4857 4858 4859 4860 4861
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4862
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4863
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4864 4865
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4866 4867
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4868 4869 4870
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4871 4872


4873
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4874
    """
C
caoying03 已提交
4875 4876
    Gives a new shape to the input Tensor without changing its data.

4877 4878 4879 4880 4881
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4882

4883
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4884

4885 4886 4887 4888
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4889
    2. 0 means the actual dimension value is going to be copied from the
4890 4891 4892 4893
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4894 4895

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4896
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4897
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4898

4899
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4900 4901
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4902 4903
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4904
    dimensions.
C
caoying03 已提交
4905

4906
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4907 4908 4909 4910
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4911 4912

    Args:
4913
        x(variable): The input tensor.
C
caoying03 已提交
4914 4915
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4916 4917 4918 4919 4920
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4921 4922
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4923 4924 4925 4926 4927 4928 4929
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4930
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4931

4932
    Returns:
G
guosheng 已提交
4933 4934 4935 4936
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4937

X
Xin Pan 已提交
4938 4939 4940
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4941 4942
    Examples:
        .. code-block:: python
G
guosheng 已提交
4943

4944
            data = fluid.layers.data(
4945
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4946
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4947
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4948 4949 4950
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4951
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4952 4953 4954 4955 4956
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4957

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4973
    helper = LayerHelper("reshape2", **locals())
4974 4975
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4976
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4977
    helper.append_op(
4978
        type="reshape2",
X
Xin Pan 已提交
4979
        inputs=inputs,
D
dzhwinter 已提交
4980
        attrs={"shape": shape},
4981 4982
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4983

D
dzhwinter 已提交
4984
    return helper.append_activation(out)
4985

4986

4987
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4988
    """
M
minqiyang 已提交
4989 4990 4991
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4992
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4993

Y
Yibing Liu 已提交
4994 4995
    Examples:
    Case 1:
M
minqiyang 已提交
4996
      Given
Y
Yibing Liu 已提交
4997 4998 4999 5000 5001 5002 5003 5004
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5005
        and
Y
Yibing Liu 已提交
5006 5007 5008
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5009

Y
Yibing Liu 已提交
5010
    Args:
5011
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5012
        axes (list): List of integers, indicating the dimensions to be squeezed.
5013
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5014 5015 5016 5017 5018 5019 5020 5021

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5022
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5023 5024
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5025 5026
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5027
    helper.append_op(
5028
        type="squeeze2",
5029
        inputs={"X": input},
Y
Yibing Liu 已提交
5030
        attrs={"axes": axes},
5031 5032
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5033

5034 5035 5036
    return out


5037
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5038
    """
M
minqiyang 已提交
5039 5040 5041
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5042

M
minqiyang 已提交
5043 5044
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5045
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5046

Y
Yibing Liu 已提交
5047
    Args:
5048
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5049
        axes (list): List of integers, indicating the dimensions to be inserted.
5050
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5051 5052 5053 5054 5055 5056 5057 5058

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5059
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5060 5061
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5062 5063
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5064
    helper.append_op(
5065
        type="unsqueeze2",
5066
        inputs={"X": input},
Y
Yibing Liu 已提交
5067
        attrs={"axes": axes},
5068 5069
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5070

5071 5072
    return out

5073

Y
yangyaming 已提交
5074
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5075
    """
Y
Yibing Liu 已提交
5076
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5077 5078 5079 5080
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5081
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5082 5083 5084 5085 5086 5087

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5088
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5089 5090 5091
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5092
            target_lod: [4, 2]
Y
yangyaming 已提交
5093 5094

            then we get a 1-level LoDTensor:
5095
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5096 5097 5098 5099 5100 5101
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5102
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5103 5104 5105 5106
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5107
                y.data = [[2, 4]]
Y
yangyaming 已提交
5108 5109 5110
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5111
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5112 5113 5114 5115 5116 5117
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5118
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5119 5120 5121 5122
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5123
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5124 5125 5126 5127
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5128
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5129 5130 5131 5132 5133
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5134
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5135
                           from :attr:`y`.
Y
yangyaming 已提交
5136
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5137
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5138 5139

    Returns:
Y
Yibing Liu 已提交
5140
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5141 5142

    Raises:
Y
Yibing Liu 已提交
5143
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5153
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5179
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5208 5209
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5222 5223 5224
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5238 5239 5240 5241


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5242
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5243
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5244

G
guosheng 已提交
5245 5246 5247 5248
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5271
                         The length of :attr:paddings must be
G
guosheng 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5282

G
guosheng 已提交
5283 5284 5285 5286 5287 5288
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5289
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5290 5291 5292 5293 5294 5295 5296
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5297 5298


C
chengduo 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5369
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5379 5380 5381 5382 5383 5384 5385
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5386 5387
    called label-smoothing regularization (LSR).

5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5411
                              be :math:`(1, class\_num)`.
5412 5413
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5414
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5434
    smooth_label = helper.create_variable_for_type_inference(dtype)
5435 5436 5437 5438 5439 5440 5441
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5442 5443


Y
yi.wu 已提交
5444
@templatedoc()
5445 5446
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5447
    ${comment}
5448 5449

    Args:
Y
yi.wu 已提交
5450 5451
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5452 5453 5454
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5455 5456

    Returns:
Y
update  
yi.wu 已提交
5457
        Variable: ${out_comment}.
5458 5459

    Examples:
5460 5461
        .. code-block:: python

5462
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5463 5464 5465
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5466 5467
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5480 5481


J
jerrywgz 已提交
5482 5483 5484 5485 5486 5487
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5488 5489
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5506 5507 5508
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5509 5510 5511 5512 5513 5514
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5515
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5556 5557
        .. code-block:: python

W
whs 已提交
5558 5559 5560 5561
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5562
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5563 5564 5565 5566 5567 5568
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5569 5570


5571 5572 5573 5574 5575
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5576
    """
Q
qiaolongfei 已提交
5577
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5578

5579
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5580 5581 5582
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5583

5584
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5585

5586
    Args:
5587
        input (Variable): The input tensor of image resize layer,
5588 5589
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5590
        out_shape(list|tuple|Variable|None): Output shape of image resize
5591 5592
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5593
        scale(float|None): The multiplier for the input height or width.
5594 5595 5596
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5597 5598
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5599 5600
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5601 5602

    Returns:
Q
update  
qiaolongfei 已提交
5603 5604
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5605

5606 5607 5608
    Examples:
        .. code-block:: python

5609
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5610
    """
5611 5612 5613 5614
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5615 5616
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5617 5618
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5619 5620 5621 5622

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5623 5624 5625
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5626
    if out_shape is not None:
B
baiyf 已提交
5627 5628 5629
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5630 5631 5632 5633 5634 5635
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5636 5637 5638 5639
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5640
    out = helper.create_variable_for_type_inference(dtype)
5641
    helper.append_op(
5642
        type=resample_methods[resample],
5643
        inputs=inputs,
5644 5645 5646 5647
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5648 5649


Y
yuyang18 已提交
5650
@templatedoc(op_type="bilinear_interp")
5651 5652
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5653 5654 5655 5656 5657 5658
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5659

Y
yuyang18 已提交
5660 5661 5662 5663 5664 5665 5666 5667
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5668 5669 5670 5671 5672 5673 5674
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5675 5676 5677
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5678 5679 5680 5681 5682 5683 5684
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5685
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5686

5687
    Returns:
Q
update  
qiaolongfei 已提交
5688
        Variable: The output is a 4-D tensor of the shape
5689
        (num_batches, channls, out_h, out_w).
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5700 5701 5702
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5703 5704 5705
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5706 5707
def gather(input, index):
    """
Q
qiaolongfei 已提交
5708 5709
    **Gather Layer**

5710
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5711 5712 5713 5714
    of X indexed by `index` and concatenate them together.

    .. math::

5715
        Out = X[Index]
W
whs 已提交
5716 5717 5718 5719 5720 5721 5722


    .. code-block:: text


                Given:

5723 5724
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5735
        input (Variable): The source input with rank>=1.
W
whs 已提交
5736 5737 5738 5739 5740 5741
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5742

W
whs 已提交
5743 5744 5745 5746 5747 5748
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5749
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5750 5751 5752 5753 5754 5755 5756 5757
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5789
    out = helper.create_variable_for_type_inference(dtype)
5790 5791 5792 5793 5794 5795 5796 5797 5798
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5849
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5872

5873 5874 5875
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5876
    """
F
stash  
fengjiayi 已提交
5877
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5878
    dtype = x.dtype
X
Xin Pan 已提交
5879
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5880
    if seed is None:
5881
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5882
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5883
    if isinstance(seed, int):
F
fengjiayi 已提交
5884 5885 5886 5887 5888
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5889 5890 5891 5892
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5893
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5894 5895
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5896 5897
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5898
    return out
W
whs 已提交
5899 5900


5901
def log(x, name=None):
W
wanghaoshuang 已提交
5902 5903 5904 5905 5906
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5907
        Out = \\ln(x)
W
wanghaoshuang 已提交
5908 5909

    Args:
5910
        x (Variable): Input tensor.
5911 5912
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5913 5914 5915 5916 5917 5918 5919 5920

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5921
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5922 5923
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5924
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5925
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5926
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5927 5928 5929
    return out


5930
def relu(x, name=None):
W
wanghaoshuang 已提交
5931 5932
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5933
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5934 5935 5936 5937
    the tensor elementwise.

    .. math::

5938
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5939 5940

    Args:
5941
        x (Variable): The input tensor.
5942 5943
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5944 5945 5946 5947 5948 5949 5950 5951

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5952
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5953 5954
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5955
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5956
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5957
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5958
    return out
5959 5960


W
whs 已提交
5961 5962 5963
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5964 5965 5966 5967
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5968
    .. math::
5969 5970

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5971

5972
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5973 5974 5975 5976 5977
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5978
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5979
                           Its shape should be the same as input.
5980
        num_classes (int): The possible number of labels.
W
whs 已提交
5981 5982 5983 5984

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5985
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5986 5987 5988 5989

    Examples:

        .. code-block:: python
5990

W
whs 已提交
5991 5992 5993 5994
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5995 5996 5997
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5998 5999
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6000 6001
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6002
        outputs={
W
whs 已提交
6003 6004 6005
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6006 6007 6008
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6083
                    isinstance(shape, Variable)):
6084 6085 6086 6087 6088
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6089
    out = helper.create_variable_for_type_inference(x.dtype)
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6107 6108 6109 6110 6111 6112 6113 6114 6115 6116


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6117

6118 6119
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6120

6121 6122 6123 6124
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6125

6126 6127 6128 6129 6130
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6131 6132 6133

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6169
    out = helper.create_variable_for_type_inference("float32")
6170 6171 6172 6173 6174 6175 6176 6177

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6178 6179


M
minqiyang 已提交
6180 6181
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6182
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6183
    which compares left score and right score passed in.
M
minqiyang 已提交
6184
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6185 6186 6187 6188 6189 6190

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6191
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6192 6193
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6194
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6195 6196 6197
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6198
       Variable: The ranking loss.
M
minqiyang 已提交
6199
    Raises:
M
minqiyang 已提交
6200
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6201 6202 6203 6204 6205 6206 6207
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6208
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6209 6210 6211 6212 6213 6214
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6215 6216
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6242

W
whs 已提交
6243 6244
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6245

W
whs 已提交
6246
      Case 0:
M
minqiyang 已提交
6247

W
whs 已提交
6248 6249 6250
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6251

W
whs 已提交
6252 6253 6254
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6255

W
whs 已提交
6256
      Case 1:
M
minqiyang 已提交
6257

W
whs 已提交
6258 6259
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6260

W
whs 已提交
6261 6262 6263
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6264

W
whs 已提交
6265
      Case 2:
M
minqiyang 已提交
6266

W
whs 已提交
6267 6268
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6269

W
whs 已提交
6270 6271 6272
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6273 6274


W
whs 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6301
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6330
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6353
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6376
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6400
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6425
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6449
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6450 6451 6452 6453 6454 6455 6456 6457
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6472
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6473
                        will be named automatically.
J
jerrywgz 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6501
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6502 6503 6504 6505 6506 6507 6508 6509 6510
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6525
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6548
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6570
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6571 6572 6573 6574 6575 6576 6577 6578
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6592

6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6603 6604
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6620
        ValueError: If axis is not in range [0, rank(x)].
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6637 6638
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6639
    helper.append_op(
6640
        type='flatten2',
6641
        inputs={"X": x},
6642 6643
        outputs={'Out': out,
                 'XShape': x_shape},
6644 6645
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6646 6647


C
chenweihang 已提交
6648
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6649
    """
C
chenweihang 已提交
6650
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6651
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6652 6653
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6654

C
chenweihang 已提交
6655 6656 6657 6658
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6659
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6660 6661 6662 6663 6664 6665
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6666
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6667 6668 6669
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6670 6671 6672
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6684 6685
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6686 6687 6688 6689 6690 6691
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6692
    return out
6693

6694

S
sneaxiy 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6704

S
sneaxiy 已提交
6705
    .. math::
6706

S
sneaxiy 已提交
6707 6708 6709
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6710
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6711 6712 6713 6714
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6715 6716 6717
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6718 6719
    Returns:
        Variable: The output sequence mask.
6720

S
sneaxiy 已提交
6721 6722
    """

Q
qingqing01 已提交
6723
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6724
    if name is None:
X
Xin Pan 已提交
6725
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6726
    else:
X
Xin Pan 已提交
6727
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6728

Q
qingqing01 已提交
6729 6730 6731
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6732 6733
        outputs={'Y': out},
        attrs={
6734
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6735 6736 6737
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6738 6739


X
Xin Pan 已提交
6740
def stack(x, axis=0):
S
sneaxiy 已提交
6741 6742 6743 6744
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6745 6746 6747 6748 6749 6750 6751

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6752
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6753
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6754 6755

    Args:
6756
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6757
        axis (int|None): The axis along which all inputs are stacked.
6758

S
sneaxiy 已提交
6759 6760
    Returns:
        Variable: The stacked variable.
6761

S
sneaxiy 已提交
6762 6763
    """

X
Xin Pan 已提交
6764 6765 6766 6767 6768 6769
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6770
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6771
    helper.append_op(
S
sneaxiy 已提交
6772 6773
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6774

X
Xin Pan 已提交
6775
    return out
D
dzhwinter 已提交
6776 6777 6778 6779 6780 6781 6782


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6783

D
dzhwinter 已提交
6784 6785 6786
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6787
    raised.
D
dzhwinter 已提交
6788 6789

    Args:
M
minqiyang 已提交
6790
        x (Variable): Input variable.
D
dzhwinter 已提交
6791 6792
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6793

D
dzhwinter 已提交
6794 6795
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6796

D
dzhwinter 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6808
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6809 6810 6811 6812 6813 6814 6815 6816

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6829

W
whs 已提交
6830 6831 6832 6833
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6834

W
whs 已提交
6835
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6836

W
whs 已提交
6837
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6838

W
whs 已提交
6839 6840 6841 6842
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6843

W
whs 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6860
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6861 6862 6863 6864 6865 6866
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6867 6868


G
fix  
gongweibao 已提交
6869 6870 6871
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6872
@templatedoc()
G
fix  
gongweibao 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6882
    ${comment}
G
fix  
gongweibao 已提交
6883 6884

    Args:
G
gongweibao 已提交
6885 6886 6887
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6888
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6889 6890 6891
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6892 6893
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6894
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6895 6896 6897 6898

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6899
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6916 6917


G
gongweibao 已提交
6918
@templatedoc()
X
Xin Pan 已提交
6919
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6920
    """
G
gongweibao 已提交
6921
    ${comment}
G
fix  
gongweibao 已提交
6922 6923

    Args:
G
gongweibao 已提交
6924 6925 6926 6927
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6928 6929 6930
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6931
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6932 6933 6934 6935

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6936
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6947
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6948 6949 6950 6951 6952
        })

    return out


G
gongweibao 已提交
6953
@templatedoc()
G
fix  
gongweibao 已提交
6954
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6955
    """
G
gongweibao 已提交
6956
    ${comment}
G
fix  
gongweibao 已提交
6957 6958

    Args:
G
gongweibao 已提交
6959 6960 6961 6962
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6963
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6964 6965

    Returns:
G
gongweibao 已提交
6966
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6967 6968 6969 6970

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6971
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6983
@templatedoc()
G
fix  
gongweibao 已提交
6984 6985 6986 6987 6988 6989 6990 6991 6992
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6993
    ${comment}
G
fix  
gongweibao 已提交
6994 6995

    Args:
G
gongweibao 已提交
6996 6997
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6998
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6999 7000 7001 7002
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7003
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7004 7005

    Returns:
G
gongweibao 已提交
7006
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7007 7008 7009
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7010
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7029
@templatedoc()
X
Xin Pan 已提交
7030
def sum(x):
G
fix  
gongweibao 已提交
7031
    """
G
gongweibao 已提交
7032
    ${comment}
G
fix  
gongweibao 已提交
7033 7034

    Args:
G
gongweibao 已提交
7035
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7036 7037

    Returns:
G
gongweibao 已提交
7038
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7039 7040 7041
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7042 7043
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7044 7045 7046 7047
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7048
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7049 7050 7051 7052

    return out


G
gongweibao 已提交
7053
@templatedoc()
G
fix  
gongweibao 已提交
7054 7055
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7056
    ${comment}
G
fix  
gongweibao 已提交
7057 7058

    Args:
G
gongweibao 已提交
7059 7060 7061 7062
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7063 7064

    Returns:
G
gongweibao 已提交
7065
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7066 7067 7068 7069

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7070 7071
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7083
@templatedoc()
G
fix  
gongweibao 已提交
7084 7085
def shape(input):
    """
G
gongweibao 已提交
7086
    ${comment}
G
fix  
gongweibao 已提交
7087 7088

    Args:
G
gongweibao 已提交
7089
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7090 7091

    Returns:
G
gongweibao 已提交
7092
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7093 7094 7095 7096

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7097 7098
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7099
    helper.append_op(
G
fix  
gongweibao 已提交
7100
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7101 7102

    return out
G
merge  
gongweibao 已提交
7103 7104


S
sneaxiy 已提交
7105 7106 7107 7108 7109 7110 7111 7112
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7113 7114
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7115
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7116 7117 7118
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7119

S
sneaxiy 已提交
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7131
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7132 7133 7134 7135 7136 7137 7138 7139
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7140
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7141
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7142 7143 7144 7145 7146 7147

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7148
    if name is None:
X
Xin Pan 已提交
7149
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7150 7151 7152
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7163
    return helper.append_activation(out)
S
sneaxiy 已提交
7164 7165


X
Xin Pan 已提交
7166
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7167 7168 7169
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7170
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7171 7172 7173
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7174
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7175 7176 7177
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7178
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7179 7180 7181
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7182
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7183 7184 7185
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7186
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7187 7188 7189
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7190
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7202 7203
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7204
        ])
M
minqiyang 已提交
7205 7206


7207
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7208 7209
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7210 7211
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7212 7213 7214

    if out is None:
        if name is None:
X
Xin Pan 已提交
7215
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7231
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7250
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7269
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7288
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7323
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7355
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7385
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7415
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7416 7417 7418 7419 7420 7421 7422 7423 7424
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7425 7426
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7449
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7479
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7490 7491


S
sneaxiy 已提交
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7506
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7517 7518


7519 7520 7521 7522 7523 7524
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7525

7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7545
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7558 7559


M
minqiyang 已提交
7560 7561 7562 7563 7564 7565 7566
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7567
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7568 7569 7570 7571
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7572
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7573 7574 7575 7576
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7577 7578
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7579 7580 7581 7582 7583 7584 7585
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
D
dengkaipeng 已提交
7586 7587 7588


@templatedoc()
7589 7590
def grid_sampler(x, grid, name=None):
    """
7591 7592 7593 7594 7595 7596 7597
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
7636 7637

    Args:
7638 7639 7640
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
7641 7642

    Returns:
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
7653 7654
    """
    helper = LayerHelper("grid_sampler", **locals())
7655
    dtype = helper.input_dtype()
D
dengkaipeng 已提交
7656 7657 7658 7659 7660 7661 7662

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

7663
    out = helper.create_variable_for_type_inference(dtype)
D
dengkaipeng 已提交
7664 7665
    ipts = {'X': x, 'Grid': grid}

7666
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output', out})
7667 7668 7669
    return out


G
gmcather 已提交
7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.
D
dengkaipeng 已提交
7693

G
gmcather 已提交
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
7763
    return out