layers.py 260.7 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30
try:
    import cPickle as pickle
except ImportError:
31
    import six.moves.cPickle as pickle
Z
zhangjinchao01 已提交
32 33
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
X
xzl 已提交
151
    'upsample_layer',
152
    'factorization_machine',
Q
qijun 已提交
153
]
Z
zhangjinchao01 已提交
154 155 156 157 158 159 160


class LayerType(object):
    """
    Layer type enumerations.
    """

161 162 163 164 165 166 167 168
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
169
    POOLING_AVG = 'average'
X
xzl 已提交
170
    UPSAMPLE_LAYER = 'upsample'
171
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
172
    COST = 'cost'
173 174
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
175
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
176
    HSIGMOID = 'hsigmoid'
177 178 179 180 181
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
182
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
183
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
184
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
185 186 187
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
188
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
189 190 191 192
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
193
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
201
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
202 203 204
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
205
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
206
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
207
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
208
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
209 210 211 212 213 214 215 216 217 218 219

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
220
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
221
    BLOCK_EXPAND = "blockexpand"
222
    MAXOUT = "maxout"
Q
qijun 已提交
223
    SPP_LAYER = "spp"
D
dangqingqing 已提交
224
    PAD_LAYER = "pad"
W
wwhu 已提交
225
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
226
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
227 228 229

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
230 231
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
232
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
233 234 235 236 237

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
238
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
239

240 241 242
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

243 244
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
245
    HUBER_REGRESSION = 'huber_regression'
246
    HUBER_CLASSIFICATION = 'huber_classification'
247 248
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
249
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
250 251 252 253 254 255
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
256
    SWITCH_ORDER_LAYER = 'switch_order'
257
    CROP_LAYER = 'crop'
C
caoying03 已提交
258
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
259
    CLIP_LAYER = 'clip'
260
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
261

262
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
263
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
264

265
    RESIZE = 'resize'
Y
yangyaming 已提交
266
    SUB_SEQ_LAYER = 'subseq'
267

Y
yangyaming 已提交
268
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
269

270 271
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
272 273 274
    @staticmethod
    def is_layer_type(type_name):
        """
R
ranqiu 已提交
275
        Whether type_name is a layer type.
Z
zhangjinchao01 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
292
    """
L
Luo Tao 已提交
293
    PaddlePaddle supports three sequence types:
294 295 296

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
297 298
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
299

L
Luo Tao 已提交
300
    Accordingly, AggregateLevel supports two modes:
301

L
Luo Tao 已提交
302
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
303
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
304 305
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
306
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
307 308 309
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
310 311
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
312 313 314
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
337
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
338 339
    """

Q
qijun 已提交
340 341 342 343 344 345 346 347 348
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
349
                 reverse=None):
Z
zhangjinchao01 已提交
350 351
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
352
        assert size is not None
Z
zhangjinchao01 已提交
353 354
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
355
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
356
        self.layer_type = layer_type
357 358
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
359 360 361 362 363 364 365 366
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
367
        self.reverse = reverse
Z
zhangjinchao01 已提交
368

369 370 371 372 373 374 375 376
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

377 378 379 380
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

381 382 383 384 385 386 387 388
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
389 390 391

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
392
DEVICE = 'device'
Z
zhangjinchao01 已提交
393 394 395


def layer_support(*attrs):
396
    attrs_list = list(attrs)
397
    attrs_list.append(DEVICE)
Q
qijun 已提交
398

Z
zhangjinchao01 已提交
399 400 401
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
402
            for attr in attrs_list:
Z
zhangjinchao01 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
419 420 421 422 423
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

R
ranqiu 已提交
446
    2. When used as an independent object like this, you must set the size:
Z
zhangjinchao01 已提交
447 448 449 450 451 452 453

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
454
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
455
    :type input: LayerOutput
R
ranqiu 已提交
456
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
457
    :type size: int
R
ranqiu 已提交
458
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
459
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
460
    :return: FullMatrixProjection Object.
Z
zhangjinchao01 已提交
461 462
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
463 464
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
465 466 467 468
    proj.origin = input
    return proj


469 470 471 472
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
R
ranqiu 已提交
473
    multiplication, using the transpose of weight.
474 475 476 477

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

R
ranqiu 已提交
478
    :math:`w^\mathrm{T}` means the transpose of weight.
479 480 481 482 483 484 485 486 487 488 489
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
490
    :param input: The input of this layer.
491 492 493
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
R
ranqiu 已提交
494
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
495
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
496
    :return: TransposedFullMatrixProjection Object.
497 498
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
499 500
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
501 502 503 504
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

R
ranqiu 已提交
526
    2. When used as an independent object like this, you must set the size:
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
535
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
536
    :type input: LayerOutput
R
ranqiu 已提交
537
    :param size: The dimension of the output.
Z
zhangjinchao01 已提交
538
    :type size: int
R
ranqiu 已提交
539
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
540
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
541
    :return: TableProjection Object.
Z
zhangjinchao01 已提交
542 543
    :rtype: TableProjection
    """
Q
qijun 已提交
544 545
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
546 547 548 549
    proj.origin = input
    return proj


550
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
551
    """
R
ranqiu 已提交
552
    1. If offset=None, it performs IdentityProjection as follows:
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


R
ranqiu 已提交
564 565
    2. If offset!=None, It executes IdentityOffsetProjection and takes the
       elements of the input in the range [offset, offset+size) as output.
Z
zhangjinchao01 已提交
566 567 568 569 570 571 572 573 574 575 576

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

R
ranqiu 已提交
577
    Note that neither of the projections have trainable parameter.
Z
zhangjinchao01 已提交
578

R
ranqiu 已提交
579
    :param input: The input of this layer.
580
    :type input: LayerOutput
R
ranqiu 已提交
581 582 583 584
    :param offset: The offset from the start of the input. The input's
                   elements in the range [offset, offset+size) will be
                   taken as output. If this parameter is not set or set
                   to None, the output will be the same as the input.
Z
zhangjinchao01 已提交
585
    :type offset: int
R
ranqiu 已提交
586 587 588 589 590
    :param size: The dimension of this layer. It will be neglected
                 when offset is None or not set.
    :type size: int
    :return: IdentityProjection or IdentityOffsetProjection object
    :rtype: IdentityProjection | IdentityOffsetProjection
Z
zhangjinchao01 已提交
591 592 593 594 595
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
596 597
        if size is None:
            size = input.size - offset
Q
qijun 已提交
598
        proj = IdentityOffsetProjection(
599
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
600 601 602 603
        proj.origin = input
    return proj


604 605
def slice_projection(input, slices):
    """
R
ranqiu 已提交
606 607
    slice_projection slices the input value into multiple parts,
    then selects and merges some of them into a new output.
608 609

    .. math::
610
       output = [input.slices()]
611 612 613 614 615 616 617

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

R
ranqiu 已提交
618
    Note that slice_projection has no trainable parameter.
619

R
ranqiu 已提交
620
    :param input: The input of this layer.
621
    :type input: LayerOutput
R
ranqiu 已提交
622 623 624
    :param slices: A list of start and end offsets of each slice.
    :type slices: list of tuple
    :return: SliceProjection object.
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
641 642 643
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
R
ranqiu 已提交
644
    scaling_projection multiplies the input with a scalar parameter.
X
xuwei06 已提交
645 646 647 648 649 650 651 652 653 654

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
655
    :param input: The input of this layer.
X
xuwei06 已提交
656
    :type input: LayerOutput
R
ranqiu 已提交
657
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
X
xuwei06 已提交
658
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
659
    :return: ScalingProjection object.
X
xuwei06 已提交
660 661
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
662
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
663 664 665 666
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
667
@wrap_param_attr_default()
668
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
669
    """
R
ranqiu 已提交
670 671
    DotMulProjection takes a layer as input and performs
    element-wise multiplication with weight.
Z
zhangjinchao01 已提交
672 673 674 675 676 677 678 679 680 681 682 683

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
684
    :param input: The input of this layer.
685
    :type input: LayerOutput
R
ranqiu 已提交
686
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
687
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
688
    :return: DotMulProjection object.
689 690
    :rtype: DotMulProjection
    """
Q
qijun 已提交
691 692
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
693
    proj.origin = input
694
    return proj
Z
zhangjinchao01 已提交
695

696 697

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
698 699
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
700

Z
zhangjinchao01 已提交
701
    .. math::
L
Luo Tao 已提交
702
       out.row[i] += scale * (a.row[i] .* b.row[i])
703

Z
zhangjinchao01 已提交
704
    where :math:`.*` means element-wise multiplication, and
R
ranqiu 已提交
705
    scale is a config scalar, its default value is 1.
706

Z
zhangjinchao01 已提交
707
    The example usage is:
708

Z
zhangjinchao01 已提交
709
    .. code-block:: python
710

L
Luo Tao 已提交
711
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
712

R
ranqiu 已提交
713
    :param a: The first input of this layer.
714
    :type a: LayerOutput
R
ranqiu 已提交
715
    :param b: The second input of this layer.
716
    :type b: LayerOutput
R
ranqiu 已提交
717
    :param scale: A scalar to scale the product. Its default value is 1.
Z
zhangjinchao01 已提交
718
    :type scale: float
R
ranqiu 已提交
719
    :return: DotMulOperator object.
720
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
721
    """
722 723 724
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
725
    a = kwargs.get('x', a)  # For Backward capacity.
726 727 728 729 730 731
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
732
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
733
    op.origin = [a, b]
734
    return op
Z
zhangjinchao01 已提交
735

736

Z
zhangjinchao01 已提交
737
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
738 739 740
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
741 742 743 744
                       padding_attr=False):
    """
    Context Projection.

R
ranqiu 已提交
745 746 747
    It just reorganizes input sequence, combines "context_len" elements of the
    sequence to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. When context position is out of sequence
Z
zhangjinchao01 已提交
748 749 750
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

R
ranqiu 已提交
751 752
    For example, origin sequence is [A B C D E F G], context len is 3, padding_attr
    is not set, then after context projection, sequence will
Z
zhangjinchao01 已提交
753 754
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
755
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
756
    :type input: LayerOutput
R
ranqiu 已提交
757
    :param context_len: The length of the context.
Z
zhangjinchao01 已提交
758
    :type context_len: int
R
ranqiu 已提交
759
    :param context_start: The start position of the context. The default value is
Z
zhangjinchao01 已提交
760 761
                          -(context_len - 1)/2
    :type context_start: int
R
ranqiu 已提交
762 763 764 765
    :param padding_attr: Parameter attribute of the padding. If the parameter is
                         set to False, padding will be zero. In other cases, the
                         padding is trainable, and its parameter attribute is set
                         by this parameter.
R
ranqiu 已提交
766
    :type padding_attr: bool | ParameterAttribute
R
ranqiu 已提交
767
    :return: Projection object.
Z
zhangjinchao01 已提交
768 769 770 771 772 773 774 775 776 777
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
778 779 780 781 782 783
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
797
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
798
        """
R
ranqiu 已提交
799
        :param name: The name of this layer.
Z
zhangjinchao01 已提交
800
        :type name: basestring
R
ranqiu 已提交
801
        :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
802
        :type size: int
R
ranqiu 已提交
803
        :param act: Activation type.
Z
zhangjinchao01 已提交
804
        :type act: BaseActivation
R
ranqiu 已提交
805 806 807
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
808
        :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
809 810 811
        :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                           details.
        :type layer_attr: ExtraLayerAttribute | None
Z
zhangjinchao01 已提交
812
        """
Q
qijun 已提交
813 814 815 816 817 818 819
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
820 821 822 823 824
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

825
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
826 827 828 829 830 831 832 833
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
834
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
835
            self.inputs.append(other)
836 837 838 839
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
840 841 842 843 844 845 846 847
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

848
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
849 850
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
851
        assert len(self.inputs) != 0
852
        ml = MixedLayer(
Z
zhangjinchao01 已提交
853 854 855 856 857
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
858
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
859 860 861
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
862
        self.finalized = True
Z
zhangjinchao01 已提交
863 864 865 866 867 868


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
869 870 871 872 873
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
874 875
                layer_attr=None):
    """
R
ranqiu 已提交
876 877
    Mixed Layer. A mixed layer will add all inputs together, then activate the sum.
    Each input is a projection or operator.
Z
zhangjinchao01 已提交
878 879 880

    There are two styles of usages.

R
ranqiu 已提交
881
    1. When the parameter input is not set, use mixed_layer like this:
Z
zhangjinchao01 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

R
ranqiu 已提交
897
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
898
    :type name: basestring
R
ranqiu 已提交
899
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
900
    :type size: int
R
ranqiu 已提交
901
    :param input: The input of this layer. It is an optional parameter.
902
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
903
    :type act: BaseActivation
R
ranqiu 已提交
904 905 906
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
907
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
908 909
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
910
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
911
    :return: MixedLayerType object.
Z
zhangjinchao01 已提交
912 913 914 915 916 917
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
918 919 920 921 922 923
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
924
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
925 926 927 928 929 930 931 932
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
933 934
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
935 936 937 938 939 940 941
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
942
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
943

R
ranqiu 已提交
944
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
945
    :type name: basestring
R
ranqiu 已提交
946
    :param size: The dimension of this data layer.
Z
zhangjinchao01 已提交
947
    :type size: int
R
ranqiu 已提交
948
    :param height: The height of the input image data.
R
ranqiu 已提交
949
    :type height: int | None
R
ranqiu 已提交
950
    :param width: The width of the input image data.
R
ranqiu 已提交
951
    :type width: int | None
R
ranqiu 已提交
952 953 954
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
955
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
956 957
    :rtype: LayerOutput
    """
Q
qijun 已提交
958 959 960 961
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
962
        depth=depth,
L
Luo Tao 已提交
963 964
        height=height,
        width=width,
Q
qijun 已提交
965
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
966

C
chengduoZH 已提交
967 968
    if depth is None:
        depth = 1
969 970
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
971 972
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
973
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
974 975

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
976 977 978 979


@wrap_name_default("embedding")
@wrap_param_attr_default()
980
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
981 982 983 984
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

985
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
986
    :type name: basestring
R
ranqiu 已提交
987
    :param input: The input of this layer, whose type must be Index Data.
Z
zhangjinchao01 已提交
988
    :type input: LayerOutput
R
ranqiu 已提交
989
    :param size: The dimension of the embedding vector.
Z
zhangjinchao01 已提交
990 991 992
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
993 994 995
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
996
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
997
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
998 999
    :rtype: LayerOutput
    """
Q
qijun 已提交
1000 1001 1002 1003 1004 1005
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1015 1016 1017 1018 1019 1020 1021
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1022
    """
R
ranqiu 已提交
1023
    The fully connected layer.
Z
zhangjinchao01 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1034
    which is equal to:
Z
zhangjinchao01 已提交
1035 1036 1037 1038 1039 1040

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1041
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1042
    :type name: basestring
R
ranqiu 已提交
1043 1044
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1045
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
1046
    :type size: int
1047
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1048
    :type act: BaseActivation
R
ranqiu 已提交
1049
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
1050
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1051 1052 1053
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1054
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1055 1056
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1057
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1058
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1059 1060 1061 1062
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1063
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1064 1065
        param_attr = [param_attr]
    else:
1066
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1067 1068
            assert len(input) == len(param_attr)
        else:
1069
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1070
                logger.fatal(
W
wangmeng28 已提交
1071 1072 1073 1074 1075
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1076 1077
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1078
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1079 1080

    Layer(
Q
qijun 已提交
1081 1082 1083
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1084 1085 1086 1087 1088
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1089 1090 1091
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1092

1093

1094
@wrap_name_default("print")
1095
def printer_layer(input, format=None, name=None):
1096
    """
R
ranqiu 已提交
1097 1098
    Print the output value of the layers specified by the parameter input.
    This layer is useful for debugging.
1099

1100
    :param name: The name of this layer. It is optional.
1101
    :type name: basestring
R
ranqiu 已提交
1102 1103
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1104 1105
    :return: LayerOutput object.
    :rtype: LayerOutput
1106
    """
1107 1108 1109 1110 1111
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1112 1113 1114

    Layer(
        name=name,
1115
        format=format,
1116
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1117
        inputs=[l.name for l in input], )
1118
    # this layer don't return anything, can not be input of other layer.
1119

X
xuwei06 已提交
1120 1121 1122 1123 1124 1125 1126
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1127

Y
yuan 已提交
1128
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1129
def priorbox_layer(input,
G
gaoyuan 已提交
1130
                   image,
G
gaoyuan 已提交
1131 1132 1133 1134 1135
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1136 1137 1138
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1139
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1140
    :type name: basestring
R
ranqiu 已提交
1141
    :param input: The input of this layer.
Y
yuan 已提交
1142
    :type input: LayerOutput
G
gaoyuan 已提交
1143 1144
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1145 1146 1147
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
R
ranqiu 已提交
1148
    :type min_size: The minimum size of the priorbox width/height.
Y
yuan 已提交
1149
    :param min_size: list
R
ranqiu 已提交
1150
    :type max_size: The maximum size of the priorbox width/height. It could be NULL.
Y
yuan 已提交
1151
    :param max_size: list
R
ranqiu 已提交
1152 1153
    :return: LayerOutput object.
    :rtype: LayerOutput
Y
yuan 已提交
1154 1155 1156
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1157
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1158 1159 1160
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1161
        inputs=[input.name, image.name],
Y
yuan 已提交
1162 1163 1164 1165 1166 1167
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1168 1169
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1170
        parents=[input, image],
G
gaoyuan 已提交
1171 1172 1173
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1189
    :param name: The name of this layer. It is optional.
1190
    :type name: basestring
R
ranqiu 已提交
1191
    :param input_loc: The input predicted locations.
Y
yangyaming 已提交
1192
    :type input_loc: LayerOutput | List of LayerOutput
1193
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1194
    :type input_conf: LayerOutput | List of LayerOutput
1195 1196 1197 1198 1199 1200 1201 1202
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
R
ranqiu 已提交
1203 1204
    :param neg_pos_ratio: The ratio of the negative bounding box to
                          the positive bounding box.
1205
    :type neg_pos_ratio: float
R
ranqiu 已提交
1206
    :param neg_overlap: The negative bounding box overlap threshold.
1207 1208 1209
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1210 1211
    :return: LayerOutput object.
    :rtype: LayerOutput
1212 1213 1214 1215 1216 1217
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1218
    input_loc_num = len(input_loc)
1219 1220 1221 1222 1223 1224

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1225
    input_conf_num = len(input_conf)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1263 1264
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1265

1266
    :param name: The name of this layer. It is optional.
1267
    :type name: basestring
Y
yangyaming 已提交
1268 1269
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1270
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1271
    :type input_conf: LayerOutput | List of LayerOutput.
1272 1273
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
R
ranqiu 已提交
1274
    :param num_classes: The number of the classes.
1275 1276 1277
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
R
ranqiu 已提交
1278
    :param nms_top_k: The bounding boxes number kept of the NMS's output.
1279
    :type nms_top_k: int
R
ranqiu 已提交
1280
    :param keep_top_k: The bounding boxes number kept of the layer's output.
1281
    :type keep_top_k: int
R
ranqiu 已提交
1282
    :param confidence_threshold: The classification confidence threshold.
1283 1284 1285
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1286 1287
    :return: LayerOutput object.
    :rtype: LayerOutput
1288 1289 1290 1291 1292 1293
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1294
    input_loc_num = len(input_loc)
1295 1296 1297 1298 1299 1300

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1301 1302
    input_conf_num = len(input_conf)

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1331 1332 1333 1334 1335 1336
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1337
                   num_channels=None,
G
guosheng 已提交
1338 1339 1340 1341 1342
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

R
ranqiu 已提交
1343
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
R
ranqiu 已提交
1355
    :param num_channels: The number of the input channels.
G
guosheng 已提交
1356
    :type num_channels: int
R
ranqiu 已提交
1357 1358
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
1359
    """
G
guosheng 已提交
1360 1361 1362 1363
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1364 1365 1366 1367 1368 1369
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1370 1371
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1372 1373
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1374 1375


1376 1377
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1378
    """
R
ranqiu 已提交
1379 1380 1381 1382
    Normalize a layer's output. This layer is necessary for ssd. This
    layer applys normalization across the channels of each sample to
    a convolutional layer's output and scales the output by a group of
    trainable factors whose dimensions equal to the channel's number.
G
gaoyuan 已提交
1383

1384
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1385
    :type name: basestring
R
ranqiu 已提交
1386
    :param input: The input of this layer.
G
gaoyuan 已提交
1387
    :type input: LayerOutput
R
ranqiu 已提交
1388
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
G
gaoyuan 已提交
1389
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1390 1391
    :return: LayerOutput object.
    :rtype: LayerOutput
G
gaoyuan 已提交
1392
    """
1393
    assert input.num_filters is not None
G
gaoyuan 已提交
1394 1395
    Layer(
        name=name,
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1409 1410
    return LayerOutput(
        name,
1411
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1412 1413 1414 1415 1416
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1417 1418 1419 1420
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1421 1422 1423 1424
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1425
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1426
                  stride=-1,
Z
zhangjinchao01 已提交
1427 1428 1429 1430
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1431
    If stride > 0, this layer slides a window whose size is determined by stride,
R
ranqiu 已提交
1432 1433 1434
    and returns the pooling value of the sequence in the window as the output. Thus,
    a long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1435

Z
zhangjinchao01 已提交
1436 1437 1438 1439 1440 1441
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1442
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1443

L
Luo Tao 已提交
1444 1445
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1446
    :type agg_level: AggregateLevel
1447
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1448
    :type name: basestring
R
ranqiu 已提交
1449
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1450
    :type input: LayerOutput
R
ranqiu 已提交
1451
    :param pooling_type: Type of pooling. MaxPooling is the default pooling.
R
ranqiu 已提交
1452
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1453
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1454
    :type stride: int
R
ranqiu 已提交
1455 1456 1457
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1458
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1459 1460
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1461
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1462
    :return: LayerOutput object.
Y
Yu Yang 已提交
1463
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1464 1465
    """
    extra_dict = dict()
1466
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1467 1468
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1469 1470 1471 1472
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1473 1474
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1475 1476 1477
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1478 1479 1480 1481 1482 1483
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1484
        stride=stride,
Q
qijun 已提交
1485
        **extra_dict)
Z
zhangjinchao01 已提交
1486

Q
qijun 已提交
1487 1488
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1489

Q
qijun 已提交
1490

Z
zhangjinchao01 已提交
1491 1492
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1493
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1494 1495
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1496
@layer_support()
Q
qijun 已提交
1497 1498
def lstmemory(input,
              name=None,
1499
              size=None,
Q
qijun 已提交
1500 1501 1502 1503 1504 1505
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1506 1507 1508 1509 1510 1511 1512 1513
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1514
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1515

L
luotao02 已提交
1516
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1517

L
luotao02 已提交
1518
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1519

L
luotao02 已提交
1520
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1521

L
luotao02 已提交
1522
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1523 1524


C
caoying03 已提交
1525
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1526
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1527 1528 1529 1530
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1531

C
caoying03 已提交
1532
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1533 1534
    to config a simple plain lstm layer.

R
ranqiu 已提交
1535 1536 1537
    Reference:
        `Generating Sequences With Recurrent Neural Networks
        <https://arxiv.org/pdf/1308.0850.pdf>`_
Z
zhangjinchao01 已提交
1538

R
ranqiu 已提交
1539
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1540
    :type name: basestring
R
ranqiu 已提交
1541
    :param size: DEPRECATED. The dimension of the lstm cell.
1542
    :type size: int
R
ranqiu 已提交
1543
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1544
    :type input: LayerOutput
R
ranqiu 已提交
1545
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1546
    :type reverse: bool
1547
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1548
    :type act: BaseActivation
R
ranqiu 已提交
1549 1550
    :param gate_act: Activation type of this layer's gates. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
1551
    :type gate_act: BaseActivation
R
ranqiu 已提交
1552
    :param state_act: Activation type of the state. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1553
    :type state_act: BaseActivation
R
ranqiu 已提交
1554 1555 1556
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1557
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1558 1559 1560 1561
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1562
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1563
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1564 1565 1566 1567 1568 1569
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1570
    assert input.size is not None and input.size % 4 == 0
1571

1572 1573 1574 1575 1576
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1577 1578 1579
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1580

Q
qijun 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1591

Q
qijun 已提交
1592 1593 1594 1595 1596
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1597

Z
zhangjinchao01 已提交
1598 1599 1600

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1601
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1602 1603
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1604
@layer_support()
Q
qijun 已提交
1605
def grumemory(input,
1606
              size=None,
Q
qijun 已提交
1607 1608 1609 1610 1611 1612
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1634 1635
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1636 1637 1638 1639 1640

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1641 1642 1643
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1644 1645 1646 1647 1648

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1649
    NOTE: In PaddlePaddle's implementation, the multiplication operations
R
ranqiu 已提交
1650 1651
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed
    in gate_recurrent layer. Consequently, an additional mixed_layer with
C
caoying03 已提交
1652 1653
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1654

R
ranqiu 已提交
1655 1656 1657
    Reference:
        `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
        <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1658 1659 1660 1661 1662 1663 1664

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

R
ranqiu 已提交
1665 1666
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
1667
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1668
    :type input: LayerOutput.
R
ranqiu 已提交
1669
    :param size: DEPRECATED. The dimension of the gru cell.
1670
    :type size: int
R
ranqiu 已提交
1671
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1672
    :type reverse: bool
R
ranqiu 已提交
1673
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1674 1675
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
R
ranqiu 已提交
1676 1677 1678
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation. This activation affects the :math:`z_t`
                     and :math:`r_t`. It is the :math:`\\sigma` in the above formula.
Z
zhangjinchao01 已提交
1679
    :type gate_act: BaseActivation
R
ranqiu 已提交
1680 1681 1682
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1683
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1684 1685 1686 1687
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1688
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1689
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1690 1691 1692 1693
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1694 1695 1696 1697 1698 1699
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1700 1701 1702
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1703

Q
qijun 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1713

Q
qijun 已提交
1714 1715 1716 1717 1718
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1719

Z
zhangjinchao01 已提交
1720 1721 1722

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1723 1724
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1725
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1726
             stride=-1,
Z
zhangjinchao01 已提交
1727 1728 1729 1730
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

R
ranqiu 已提交
1731 1732 1733 1734
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the last value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1735

L
Luo Tao 已提交
1736 1737 1738 1739 1740 1741
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1742
    :param agg_level: Aggregated level
R
ranqiu 已提交
1743
    :type agg_level: AggregateLevel
1744
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1745
    :type name: basestring
R
ranqiu 已提交
1746
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1747
    :type input: LayerOutput
L
Luo Tao 已提交
1748
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1749 1750 1751 1752
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1753
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1754 1755
    :rtype: LayerOutput
    """
1756 1757 1758 1759 1760 1761
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1762
    if agg_level == AggregateLevel.TO_SEQUENCE:
1763 1764
        assert stride == -1

Z
zhangjinchao01 已提交
1765 1766 1767 1768 1769
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1770
        stride=stride,
Q
qijun 已提交
1771 1772 1773 1774 1775 1776
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1777 1778 1779 1780


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1781 1782
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1783
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1784
              stride=-1,
Z
zhangjinchao01 已提交
1785 1786 1787 1788
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

R
ranqiu 已提交
1789 1790 1791 1792
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the first value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1793

L
Luo Tao 已提交
1794 1795 1796 1797 1798 1799
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1800
    :param agg_level: aggregation level
R
ranqiu 已提交
1801
    :type agg_level: AggregateLevel
1802
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1803
    :type name: basestring
R
ranqiu 已提交
1804
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1805
    :type input: LayerOutput
L
Luo Tao 已提交
1806
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1807 1808 1809
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1810
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1811
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1812 1813
    :rtype: LayerOutput
    """
1814 1815 1816 1817 1818 1819 1820

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1821
    if agg_level == AggregateLevel.TO_SEQUENCE:
1822 1823
        assert stride == -1

Z
zhangjinchao01 已提交
1824 1825 1826 1827 1828
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1829
        stride=stride,
Q
qijun 已提交
1830 1831 1832 1833 1834 1835
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1836 1837 1838


class ExpandLevel(object):
1839 1840 1841 1842 1843
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1844 1845
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1846 1847
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1848 1849
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1850 1851
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1852 1853
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1854 1855
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1856

1857

Z
zhangjinchao01 已提交
1858 1859
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1860 1861
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1862 1863
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1864
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1865 1866
                 layer_attr=None):
    """
R
ranqiu 已提交
1867 1868
    A layer for expanding dense data or (sequence data where the length of each
    sequence is one) to sequence data.
Z
zhangjinchao01 已提交
1869 1870 1871 1872 1873 1874 1875

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1876
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1877

R
ranqiu 已提交
1878
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1879
    :type input: LayerOutput
R
ranqiu 已提交
1880 1881 1882
    :param expand_as: Expand the input according to this layer's sequence infomation. And
                      after the operation, the input expanded will have the same number of
                      elememts as this layer.
Z
zhangjinchao01 已提交
1883
    :type expand_as: LayerOutput
1884
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1885
    :type name: basestring
R
ranqiu 已提交
1886 1887 1888
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1889
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1890
    :param expand_level: Whether the input layer is a sequence or the element of a sequence.
Z
zhangjinchao01 已提交
1891
    :type expand_level: ExpandLevel
R
ranqiu 已提交
1892 1893
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1894
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1895
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1905 1906 1907 1908 1909 1910
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1911 1912


X
xuwei06 已提交
1913
@wrap_name_default()
X
xuwei06 已提交
1914
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1915
@layer_support()
X
xuwei06 已提交
1916 1917 1918
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1919
                 act=None,
X
xuwei06 已提交
1920 1921
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1922
    """
X
xuwei06 已提交
1923
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1924

X
xuwei06 已提交
1925
    If as_row_vector:
R
ranqiu 已提交
1926

X
xuwei06 已提交
1927
    .. math::
X
xuwei06 已提交
1928
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1929

X
xuwei06 已提交
1930
    If not as_row_vector:
R
ranqiu 已提交
1931

X
xuwei06 已提交
1932 1933 1934
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1935 1936 1937 1938 1939

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1940
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1941

R
ranqiu 已提交
1942
    :param input: The input of this layer.
X
xuwei06 已提交
1943
    :type input: LayerOutput
R
ranqiu 已提交
1944
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1945
    :type num_repeats: int
1946
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1947 1948 1949 1950 1951
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1952
    :type as_row_vector: bool
1953
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1954
    :type act: BaseActivation
R
ranqiu 已提交
1955 1956
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1957 1958 1959 1960 1961 1962 1963 1964
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1965
        active_type=act.name,
X
xuwei06 已提交
1966
        num_filters=num_repeats,
X
xuwei06 已提交
1967
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1968
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1969 1970 1971 1972 1973
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1974
        activation=act,
Q
qijun 已提交
1975 1976
        parents=[input])

X
xuwei06 已提交
1977

1978 1979 1980
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1981
@layer_support(ERROR_CLIPPING, DROPOUT)
1982 1983 1984 1985 1986 1987 1988 1989
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1990
    the dimension of each instance is M, and the input reshape_size is N, then the
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
2001
    :param input: The input of this layer.
2002
    :type input: LayerOutput
R
ranqiu 已提交
2003
    :param reshape_size: The dimension of the reshaped sequence.
2004
    :type reshape_size: int
2005
    :param name: The name of this layer. It is optional.
2006
    :type name: basestring
2007
    :param act: Activation type. IdentityActivation is the default activation.
2008
    :type act: BaseActivation
R
ranqiu 已提交
2009 2010
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2011
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
2012 2013 2014
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2015
    :type bias_attr: ParameterAttribute | None | bool | Any
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2034 2035 2036 2037
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2038
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2054 2055
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2056 2057
    :param weight: Weight layer.
    :type weight: LayerOutput
2058
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2059
    :type name: basestring
R
ranqiu 已提交
2060 2061
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2062
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2063
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2064 2065
    :rtype: LayerOutput
    """
2066
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2067
    assert len(input) == 2
2068 2069 2070 2071 2072 2073 2074
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2075 2076 2077 2078
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2079 2080 2081 2082 2083 2084
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2085 2086


L
liaogang 已提交
2087 2088 2089 2090 2091 2092 2093 2094
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2095
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2096 2097 2098 2099 2100 2101 2102

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2103
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2104

R
ranqiu 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2116
    :return: LayerOutput object.
R
ranqiu 已提交
2117
    :rtype: LayerOutput
L
liaogang 已提交
2118 2119 2120 2121
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2122
    assert input.num_filters is not None
L
liaogang 已提交
2123
    num_channels = input.num_filters
Q
qijun 已提交
2124 2125 2126 2127 2128 2129 2130
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2131
                channels=num_channels)),
Q
qijun 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2141

Z
zhangjinchao01 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2152 2153
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2154 2155 2156 2157 2158 2159 2160

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2161
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2162
    :type input: LayerOutput
R
ranqiu 已提交
2163
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2164
    :type weight: LayerOutput
2165
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2166
    :type name: basestring
R
ranqiu 已提交
2167 2168
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2169
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2170
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2171 2172
    :rtype: LayerOutput
    """
2173 2174 2175
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2176 2177 2178
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2179
        inputs=[weight.name, input.name],
Q
qijun 已提交
2180 2181 2182
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2183 2184 2185 2186 2187 2188


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2189
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2190 2191

    .. math::
2192
       y  = w x
Z
zhangjinchao01 已提交
2193

2194 2195 2196 2197 2198
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2199 2200 2201 2202 2203 2204 2205

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2206
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2207
    :type input: LayerOutput
R
ranqiu 已提交
2208
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2209
    :type weight: LayerOutput
2210
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2211
    :type name: basestring
R
ranqiu 已提交
2212 2213
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2214
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2215
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2216 2217
    :rtype: LayerOutput
    """
2218 2219 2220
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2221 2222 2223 2224
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2225 2226 2227
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2228 2229 2230 2231 2232 2233


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2234
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2247
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2248
    :type input: LayerOutput
2249
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2250
    :type name: basestring
R
ranqiu 已提交
2251 2252
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2253
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2254
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2255 2256 2257 2258 2259 2260
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2261 2262 2263
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2264 2265


2266 2267
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2268
def rotate_layer(input, height, width, name=None, layer_attr=None):
2269
    """
H
Haonan 已提交
2270 2271
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2272 2273

    .. math::
H
Haonan 已提交
2274
       y(j,i,:) = x(M-i-1,j,:)
2275

H
Haonan 已提交
2276
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2277 2278 2279 2280 2281 2282

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2283 2284
                          height=100,
                          width=100)
2285

R
ranqiu 已提交
2286
    :param input: The input of this layer.
2287
    :type input: LayerOutput
R
ranqiu 已提交
2288
    :param height: The height of the sample matrix.
2289
    :type height: int
R
ranqiu 已提交
2290 2291
    :param width: The width of the sample matrix.
    :type width: int
2292
    :param name: The name of this layer. It is optional.
2293
    :type name: basestring
R
ranqiu 已提交
2294 2295
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2296 2297 2298 2299 2300
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2301 2302 2303
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2304
        width=width,
H
Haonan 已提交
2305 2306 2307 2308 2309 2310 2311 2312
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2313 2314


Z
zhangjinchao01 已提交
2315 2316
@wrap_name_default()
@layer_support()
2317
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2318 2319 2320 2321
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2322
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2323 2324 2325 2326 2327
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2328

2329 2330
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2331

L
Luo Tao 已提交
2332 2333 2334 2335 2336 2337
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2338
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2339
    :type name: basestring
R
ranqiu 已提交
2340
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2341
    :type a: LayerOutput
R
ranqiu 已提交
2342
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2343
    :type b: LayerOutput
R
ranqiu 已提交
2344
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2345
    :type scale: float
R
ranqiu 已提交
2346
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2347
    :type size: int
R
ranqiu 已提交
2348
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2349
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2350
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2351 2352
    :rtype: LayerOutput
    """
2353
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2354 2355 2356 2357 2358 2359
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2360
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2361
    else:
2362 2363
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2364 2365 2366 2367 2368 2369
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2370
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2371
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2372

2373

C
caoying03 已提交
2374 2375 2376 2377
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2378
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2379
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2410
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2411 2412 2413
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2414
        inputs=[x.name, y.name],
C
caoying03 已提交
2415 2416 2417 2418
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2419 2420
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2421
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2422
@layer_support()
Q
qijun 已提交
2423 2424
def hsigmoid(input,
             label,
2425
             num_classes=None,
Q
qijun 已提交
2426 2427 2428 2429
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2430 2431 2432
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2433 2434 2435 2436

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2437 2438 2439 2440 2441 2442

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2443
                        label=data_layer)
Z
zhangjinchao01 已提交
2444

R
ranqiu 已提交
2445 2446
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2447
    :param label: The input label.
Z
zhangjinchao01 已提交
2448
    :type label: LayerOutput
R
ranqiu 已提交
2449 2450 2451 2452
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2453
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2454
    :type name: basestring
R
ranqiu 已提交
2455 2456 2457
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2458
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2459 2460 2461
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2462
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2463
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2464 2465 2466 2467
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2468 2469 2470 2471 2472 2473 2474 2475 2476
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2477 2478 2479
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2480 2481 2482 2483 2484
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2485 2486
    ipts_for_layer = []
    parents = []
2487
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2488
        assert isinstance(each_input, LayerOutput)
2489
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2490 2491 2492 2493
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2494
    l = Layer(
Z
zhangjinchao01 已提交
2495 2496 2497 2498 2499
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2500 2501 2502
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2503

2504

Z
zhangjinchao01 已提交
2505 2506 2507 2508 2509
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2519
                   dilation=1,
Q
qijun 已提交
2520 2521 2522 2523 2524 2525 2526
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2527
                   dilation_y=None,
2528 2529
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2530
    """
2531
    Convolution layer for image. Paddle can support both square and non-square
2532
    input currently.
Z
zhangjinchao01 已提交
2533 2534 2535 2536

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2537

2538
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2539
    and non-square input currently.
2540

X
xuwei06 已提交
2541
    The details of convolution transpose layer,
2542 2543 2544
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2545 2546
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
P
init  
peterzhang2029 已提交
2547
    num_filters.
Z
zhangjinchao01 已提交
2548

R
ranqiu 已提交
2549
    There are several groups of filters in PaddlePaddle implementation.
P
peterzhang2029 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558
    If the groups attribute is greater than 1, for example groups=2,
    the input will be splitted into 2 parts along the channel axis, and
    the filters will also be splitted into 2 parts. The first half of the filters 
    is only connected to the first half of the input channels, while the second 
    half of the filters is only connected to the second half of the input. After
    the computation of convolution for each part of input,
    the output will be obtained by concatenating the two results.

    The details of grouped convolution, please refer to:
W
weixing02 已提交
2559
    `ImageNet Classification With Deep Convolutional Neural Networks
P
peterzhang2029 已提交
2560 2561
    <http://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf>`_
    
L
Luo Tao 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2572
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2573
    :type name: basestring
R
ranqiu 已提交
2574
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2575
    :type input: LayerOutput
R
ranqiu 已提交
2576 2577 2578 2579 2580 2581
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2582
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2583 2584 2585
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
P
init  
peterzhang2029 已提交
2586 2587
    :param num_filters: The number of filters. It is as same as the output image channel.
    :type num_filters: int
2588
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2589
    :type act: BaseActivation
R
ranqiu 已提交
2590
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2591
    :type groups: int
R
ranqiu 已提交
2592 2593 2594 2595 2596
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2597
    :type stride: int | tuple | list
R
ranqiu 已提交
2598
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2599
    :type stride_y: int
R
ranqiu 已提交
2600 2601 2602 2603 2604
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2605
    :type padding: int | tuple | list
R
ranqiu 已提交
2606
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2607
    :type padding_y: int
R
ranqiu 已提交
2608 2609 2610 2611 2612
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2613
    :type dilation: int | tuple | list
R
ranqiu 已提交
2614
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2615
    :type dilation_y: int
R
ranqiu 已提交
2616 2617 2618
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2619
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2620 2621 2622
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2623
    :type num_channels: int
R
ranqiu 已提交
2624 2625
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2626
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2627
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2628
    :type shared_biases: bool
R
ranqiu 已提交
2629 2630
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2631
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2632
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2633
    :type trans: bool
R
ranqiu 已提交
2634 2635 2636 2637 2638
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2639
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2640 2641 2642 2643 2644
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2645

Z
zhangjinchao01 已提交
2646
    if filter_size_y is None:
2647 2648 2649 2650 2651 2652
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2653
    if stride_y is None:
2654 2655 2656 2657 2658 2659
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2660
    if padding_y is None:
2661 2662 2663 2664 2665 2666
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2667 2668 2669 2670 2671 2672 2673
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2674 2675
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2676
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2677 2678 2679 2680
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2681

2682
    if layer_type:
W
wanghaoshuang 已提交
2683
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2684 2685 2686
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2687
        if trans:
2688
            assert layer_type in ["exconvt", "cudnn_convt"]
2689 2690 2691 2692 2693
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2694

X
xuwei06 已提交
2695
    l = Layer(
Z
zhangjinchao01 已提交
2696
        name=name,
Q
qijun 已提交
2697 2698 2699 2700 2701
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2702
                dilation=dilation,
Q
qijun 已提交
2703 2704 2705 2706 2707
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2708
                dilation_y=dilation_y,
Q
qijun 已提交
2709 2710
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2711 2712 2713 2714
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2715
        type=lt,
Q
qijun 已提交
2716 2717 2718 2719 2720 2721 2722 2723
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2724 2725 2726 2727


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2738
                   padding_y=None,
2739
                   ceil_mode=True,
2740
                   exclude_mode=None):
Z
zhangjinchao01 已提交
2741 2742 2743
    """
    Image pooling Layer.

R
ranqiu 已提交
2744
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2745 2746 2747

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2748 2749 2750 2751
    - ceil_mode=True:

    ..  math::

C
fix doc  
chengduoZH 已提交
2752
        w & = 1 + ceil(\\frac{input\_width + 2 * padding - pool\_size}{stride})
C
chengduoZH 已提交
2753

C
fix doc  
chengduoZH 已提交
2754
        h & = 1 + ceil(\\frac{input\_height + 2 * padding\_y - pool\_size\_y}{stride\_y})
L
Luo Tao 已提交
2755 2756 2757 2758 2759

    - ceil_mode=False:

    ..  math::

C
fix doc  
chengduoZH 已提交
2760
        w & = 1 + floor(\\frac{input\_width + 2 * padding - pool\_size}{stride})
C
chengduoZH 已提交
2761

C
fix doc  
chengduoZH 已提交
2762
        h & = 1 + floor(\\frac{input\_height + 2 * padding\_y - pool\_size\_y}{stride\_y})
L
Luo Tao 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2778
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2779
    :type padding: int
R
ranqiu 已提交
2780 2781 2782 2783
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2784
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2785
    :type input: LayerOutput
R
ranqiu 已提交
2786
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2787
    :type pool_size: int
R
ranqiu 已提交
2788 2789 2790 2791 2792 2793 2794
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2795
    :type num_channels: int
R
ranqiu 已提交
2796
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2797
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2798
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2799
    :type stride: int
R
ranqiu 已提交
2800 2801 2802 2803 2804
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2805
    :type layer_attr: ExtraLayerAttribute
2806
    :param ceil_mode: Whether to use the ceil function to calculate output height and width.
R
ranqiu 已提交
2807 2808
                      True is the default. If it is set to False, the floor function will
                      be used.
2809
    :type ceil_mode: bool
2810
    :param exclude_mode: Whether to exclude the padding cells when calculating, but only 
2811 2812 2813
                         work when pool_type is AvgPooling. If None, also exclude the padding 
                         cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling 
                         as pool_type to identify the mode.
2814
    :type exclude_mode: bool
D
dangqingqing 已提交
2815 2816
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2827
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
2828
                               CudnnMaxPooling, CudnnAvgInclPadPooling], \
X
xzl 已提交
2829
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2830

2831
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2832
        if (
Y
Yu Yang 已提交
2833
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2834
        else pool_type.name
2835 2836 2837 2838
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2839
    l = Layer(
Z
zhangjinchao01 已提交
2840 2841
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2854
                    padding_y=padding_y))
Q
qijun 已提交
2855
        ],
2856
        ceil_mode=ceil_mode,
2857
        exclude_mode=exclude_mode,
Q
qijun 已提交
2858 2859 2860 2861 2862 2863 2864
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2865 2866


C
chengduoZH 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2895 2896 2897 2898 2899
        w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride}

        h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}

        d & = 1 + \\frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z}
C
chengduoZH 已提交
2900 2901 2902 2903 2904

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2905 2906 2907 2908 2909
        w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride}

        h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}

        d & = 1 + \\frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z}
C
chengduoZH 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2923
    :type padding: int | tuple | list
R
ranqiu 已提交
2924
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2925
    :type name: basestring.
R
ranqiu 已提交
2926
    :param input: The input of this layer.
C
chengduoZH 已提交
2927
    :type input: LayerOutput
R
ranqiu 已提交
2928 2929
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2930
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2931 2932 2933
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2934
    :type num_channels: int
R
ranqiu 已提交
2935
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2936
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2937 2938 2939
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2940
    :type stride: int | tuple | list
R
ranqiu 已提交
2941 2942 2943 2944 2945
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2946
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2947 2948 2949
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

X
xzl 已提交
3018

X
xzl 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
@wrap_name_default("upsample")
@layer_support()
def upsample_layer(input,
                   name=None,
                   scale=None,
                   scale_y=None,
                   upsample_size=None,
                   upsample_size_y=None,
                   pad_out_x=False,
                   pad_out_y=False,
                   layer_attr=None):
    """
    The DePooling process.
    Inputs should be a list of length 2. The first input is a layer,
    and the second input should be the MaxWithMaskPoolingLayer

    The example usage is:

    ..  code-block:: python
        pool1 = paddle.v2.layer.img_pool(input=input, pool_size=2, stride=2,
                                        pool_type=paddle.pooling.MaxWithMask())
        upsample = paddle.v2.layer.upsample(input=[layer1, pool1])

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: contains an input layer and a MaxWithMaskPoolingLayer
    :type input: list | tuple | collections.Sequence
    :param scale: outputSize =  scale * inputSize
    :type scale: int | list | tuple | .
    :param scale_y: scale_y will be equal to scale, if it's value is None, 
    :type scale: int | None. 
    :param upsample_size: specify the outputSize.
    :type upsample_size: int | list | tuple.
    :param upsample_size_y: specify the y dimension outputSize.
    :type upsample_size_y: int.
    :param pad_out_x: specify exact x dimension size. This parameter only works when scale is 2
    :type pad_out_x: bool.
    :param pad_out_y: specify exact y dimension size. This parameter only works when scale is 2
    :type pad_out_y: bool.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert (scale is not None) or (upsample_size is not None), \
            'scale or upsample_size, there must be one to be designated'

    assert len(input) == 2, 'layer input size must be 2'
X
xzl 已提交
3068

X
xzl 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
    assert input[1].layer_type == LayerType.POOL_LAYER, \
            'the second input should be the MaxPoolWithMaskLayer'

    scale_y = scale \
            if scale is not None else scale_y
    upsample_size_y = upsample_size  \
            if upsample_size is not None else upsample_size_y

    layer_type = LayerType.UPSAMPLE_LAYER

    layer = Layer(
        name=name,
        type=layer_type,
        inputs=[
            Input(
                input[0].name,
                upsample=Upsample(scale, scale_y, pad_out_x, pad_out_y,
                                  upsample_size, upsample_size_y)),
            Input(input[1].name)
        ],
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    sz = layer.config.size

    return LayerOutput(name, layer_type=layer_type, parents=input, size=sz)

C
chengduoZH 已提交
3095

Q
qijun 已提交
3096 3097
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
3098 3099 3100 3101 3102 3103
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
3104
    """
R
ranqiu 已提交
3105 3106 3107
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
3108
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
R
ranqiu 已提交
3109
        <https://arxiv.org/abs/1406.4729>`_
Q
qijun 已提交
3110

L
Luo Tao 已提交
3111 3112 3113 3114
    The example usage is:

    ..  code-block:: python

3115 3116 3117
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3118 3119
                        pool_type=MaxPooling())

3120
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3121
    :type name: basestring
R
ranqiu 已提交
3122
    :param input: The input of this layer.
Q
qijun 已提交
3123
    :type input: LayerOutput
R
ranqiu 已提交
3124 3125 3126
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3127
    :type num_channels: int
R
ranqiu 已提交
3128
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3129
    :type scale: BasePoolingType
R
ranqiu 已提交
3130
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3131
    :type pyramid_height: int
R
ranqiu 已提交
3132 3133
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3151
    l = Layer(
Q
qijun 已提交
3152 3153
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3154 3155 3156 3157 3158
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3159
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3171 3172 3173 3174
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3175
    l = Layer(
Q
qijun 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3195 3196 3197 3198


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3199 3200 3201 3202 3203 3204
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3205
                      layer_attr=None):
Z
zhangjinchao01 已提交
3206
    """
3207
    Response normalization across feature maps.
R
ranqiu 已提交
3208 3209

    Reference:
R
ranqiu 已提交
3210
        `ImageNet Classification with Deep Convolutional Neural Networks
R
ranqiu 已提交
3211
        <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_
Z
zhangjinchao01 已提交
3212

L
Luo Tao 已提交
3213 3214 3215
    The example usage is:

    ..  code-block:: python
3216

L
Luo Tao 已提交
3217 3218
        norm = img_cmrnorm_layer(input=net, size=5)

3219
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3220
    :type name: basestring
R
ranqiu 已提交
3221
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3222
    :type input: LayerOutput
3223
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3224
    :type size: int
D
dangqingqing 已提交
3225
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3226
    :type scale: float
D
dangqingqing 已提交
3227
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3228
    :type power: float
R
ranqiu 已提交
3229 3230 3231 3232 3233
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3234
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3235
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3236 3237 3238
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3239
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3240 3241 3242


@wrap_bias_attr_default()
3243 3244
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3245 3246
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3247
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3248 3249 3250
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3251
                     img3D=False,
Q
qijun 已提交
3252 3253 3254 3255
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3256
                     batch_norm_type=None,
P
peterzhang2029 已提交
3257
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3258
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3259 3260
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3261
    """
R
ranqiu 已提交
3262
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3276
    Reference:
R
ranqiu 已提交
3277
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3278
        Internal Covariate Shift
R
ranqiu 已提交
3279
        <http://arxiv.org/abs/1502.03167>`_
Z
zhangjinchao01 已提交
3280

L
Luo Tao 已提交
3281 3282 3283
    The example usage is:

    ..  code-block:: python
3284

L
Luo Tao 已提交
3285 3286
        norm = batch_norm_layer(input=net, act=ReluActivation())

3287
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3288
    :type name: basestring
R
ranqiu 已提交
3289
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3290
    :type input: LayerOutput
3291 3292 3293 3294 3295
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3296 3297
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3298
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3299 3300 3301
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3302
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3303
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3304
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3305
    :type act: BaseActivation
R
ranqiu 已提交
3306 3307 3308
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3309
    :type num_channels: int
R
ranqiu 已提交
3310 3311 3312 3313
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3314
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3315 3316
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3317
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3318 3319
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3320
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3321 3322 3323 3324 3325 3326
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3327
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3328
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3329
    :type epsilon: float.
R
ranqiu 已提交
3330 3331
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3332
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3333 3334
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3335
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3345
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3346
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3347

X
xuwei06 已提交
3348
    l = Layer(
Z
zhangjinchao01 已提交
3349
        name=name,
C
chengduoZH 已提交
3350
        img3D=img3D,
Q
qijun 已提交
3351 3352
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3353 3354 3355 3356
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3357
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3358 3359
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3360
        mean_var_names=mean_var_names,
Q
qijun 已提交
3361
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3362

Q
qijun 已提交
3363 3364 3365 3366 3367 3368 3369
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3391
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3392
    :type input: LayerOutput
3393
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3394
    :type name: basestring
R
ranqiu 已提交
3395 3396 3397
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3398
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3399 3400 3401 3402 3403 3404
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3405 3406 3407
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3408 3409


G
guosheng 已提交
3410 3411 3412 3413 3414 3415 3416
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
R
ranqiu 已提交
3417
       out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}}
G
guosheng 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3428
    :param input: The input of this layer.
G
guosheng 已提交
3429
    :type input: LayerOutput
3430
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3431
    :type name: basestring
R
ranqiu 已提交
3432 3433
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3447 3448 3449
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3450
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3451
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3470 3471 3472
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3473

C
caoying03 已提交
3474 3475 3476
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3477

3478
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3479
    :type name: basestring
R
ranqiu 已提交
3480
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3481
                 LayerOutput.
R
ranqiu 已提交
3482
    :type input: LayerOutput | list | tuple
3483
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3484
    :type act: BaseActivation
R
ranqiu 已提交
3485 3486 3487
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3488
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3489 3490
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3491
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3492
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3493 3494 3495 3496 3497 3498
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3499
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3500 3501 3502 3503 3504 3505 3506
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3507
    l = Layer(
Q
qijun 已提交
3508 3509 3510
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3511 3512
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3513
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3514

Q
qijun 已提交
3515 3516 3517 3518 3519 3520 3521
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3522 3523 3524 3525


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3526
@layer_support(DROPOUT, ERROR_CLIPPING)
3527
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3528
    """
R
ranqiu 已提交
3529 3530
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3531

3532 3533 3534 3535 3536 3537
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3538
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3539
    :type name: basestring
R
ranqiu 已提交
3540
    :param input: The input layers or projections
R
ranqiu 已提交
3541
    :type input: list | tuple | collections.Sequence
3542
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3543
    :type act: BaseActivation
R
ranqiu 已提交
3544 3545
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3546
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3547
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3548 3549 3550 3551 3552 3553 3554 3555
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3556
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3557 3558

    def __is_type__(o, tp):
3559
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3581 3582
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3583

Q
qijun 已提交
3584 3585
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3586

3587 3588
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3589

3590
    layer = Layer(
Q
qijun 已提交
3591 3592
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3593 3594
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3595
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3596
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3597

3598
    sz = layer.config.size
Z
zhangjinchao01 已提交
3599

Q
qijun 已提交
3600 3601 3602 3603 3604 3605 3606 3607
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3608 3609
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3610
@wrap_bias_attr_default(has_bias=False)
3611
@layer_support(DROPOUT, ERROR_CLIPPING)
3612 3613 3614
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3615
    Concatenate sequence a and sequence b.
3616

3617
    Inputs:
X
xuwei06 已提交
3618
      - a = [a1, a2, ..., am]
3619
      - b = [b1, b2, ..., bn]
3620

X
xuwei06 已提交
3621 3622 3623 3624
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3625 3626 3627 3628 3629 3630 3631

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3632
    :param name: The name of this layer. It is optional.
3633
    :type name: basestring
R
ranqiu 已提交
3634
    :param a: The first input sequence layer
3635
    :type a: LayerOutput
R
ranqiu 已提交
3636
    :param b: The second input sequence layer
3637
    :type b: LayerOutput
3638
    :param act: Activation type. IdentityActivation is the default activation.
3639
    :type act: BaseActivation
R
ranqiu 已提交
3640 3641
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3642
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3643 3644 3645
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3646
    :type bias_attr: ParameterAttribute | None | bool | Any
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3668
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3669 3670
def memory(name,
           size,
3671
           memory_name=None,
Q
qijun 已提交
3672 3673 3674 3675
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3676 3677
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3678
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3679

R
ranqiu 已提交
3680
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3681

R
ranqiu 已提交
3682 3683
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3684

R
ranqiu 已提交
3685 3686
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3687

R
ranqiu 已提交
3688
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3689

3690 3691 3692 3693 3694
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3695 3696
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3697 3698

    .. code-block:: python
L
Liu Yiqun 已提交
3699

3700 3701 3702 3703
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3704
    :param name: The name of the layer which this memory remembers.
3705 3706
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3707
    :type name: basestring
R
ranqiu 已提交
3708
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3709
    :type size: int
R
ranqiu 已提交
3710
    :param memory_name: The name of the memory. It is ignored when name is provided.
3711
    :type memory_name: basestring
3712
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3713
    :type is_seq: bool
R
ranqiu 已提交
3714 3715
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3716
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3717 3718 3719 3720
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3721
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3722 3723
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3724
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3725 3726
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3727
    :type boot_with_const_id: int
R
ranqiu 已提交
3728
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3739 3740
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3741

3742 3743 3744 3745 3746 3747 3748 3749
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3750 3751

    lout = LayerOutput(
3752
        name=memory_name,
Q
qijun 已提交
3753 3754 3755
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3756 3757 3758 3759
    return lout


@wrap_bias_attr_default()
3760 3761
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3762 3763 3764
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3765 3766
def lstm_step_layer(input,
                    state,
3767
                    size=None,
Q
qijun 已提交
3768 3769 3770 3771 3772 3773
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3774
    """
3775 3776
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3777 3778 3779

    ..  math::

3780
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3781

3782
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3783

3784
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3785

3786
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3787

L
luotao02 已提交
3788
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3789 3790


L
luotao02 已提交
3791
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3792
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3793
    input vectors.
Z
zhangjinchao01 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3804
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3805
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3806 3807
    :code:`get_output_layer` to extract this output.

3808
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3809
    :type name: basestring
R
ranqiu 已提交
3810 3811
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3812
    :type size: int
R
ranqiu 已提交
3813
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3814
    :type input: LayerOutput
3815
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3816
    :type state: LayerOutput
3817
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3818
    :type act: BaseActivation
3819 3820
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3821
    :type gate_act: BaseActivation
3822 3823
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3824
    :type state_act: BaseActivation
R
ranqiu 已提交
3825 3826 3827
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3828
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3829
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3830
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3831
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3832 3833
    :rtype: LayerOutput
    """
3834 3835 3836

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3837 3838 3839 3840 3841 3842 3843
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3844
        size=state.size,
Q
qijun 已提交
3845 3846
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3847

Q
qijun 已提交
3848 3849 3850 3851 3852 3853 3854
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3855 3856 3857


@wrap_bias_attr_default()
W
wangyang59 已提交
3858
@wrap_param_attr_default()
Q
qijun 已提交
3859
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3860 3861 3862
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3863 3864 3865 3866 3867 3868 3869
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3870
                   param_attr=None,
Q
qijun 已提交
3871
                   layer_attr=None):
Z
zhangjinchao01 已提交
3872 3873
    """

R
ranqiu 已提交
3874
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3875
    :type input: LayerOutput
R
ranqiu 已提交
3876 3877 3878 3879 3880 3881
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3882 3883
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3884
    :type act: BaseActivation
3885
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3886
    :type name: basestring
3887 3888
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3889
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3890 3891 3892 3893
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3894
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3895 3896 3897 3898
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3899
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3900 3901 3902 3903 3904 3905 3906 3907
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3908 3909 3910 3911
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3912
        # backward model compatibility.
3913
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3914 3915 3916 3917
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3918
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3919
    return LayerOutput(
Q
qijun 已提交
3920 3921
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3922
        parents=[input, output_mem],
Q
qijun 已提交
3923 3924
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3925 3926


Y
Yu Yang 已提交
3927 3928 3929 3930
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3931
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3943
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3944 3945
    and DROPOUT.

3946
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3947 3948 3949 3950 3951 3952
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3953
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3954
    :type name: basestring
3955 3956
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3957
    :type act: BaseActivation
3958 3959
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3960
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3961 3962 3963 3964
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3965
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3966 3967 3968 3969 3970
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3971
    :rtype: LayerOutput
Y
Yu Yang 已提交
3972 3973 3974 3975 3976 3977
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3978
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3979 3980 3981 3982
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3983

Y
Yu Yang 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
4021 4022 4023 4024
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
4025 4026 4027 4028
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
4029

4030
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4031
    :type name: basestring
R
ranqiu 已提交
4032
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
4033 4034
                   multiple outputs.
    :type input: LayerOutput
4035
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
4036
    :type arg_name: basestring
R
ranqiu 已提交
4037 4038
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4040 4041 4042 4043 4044 4045 4046
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
4047 4048 4049 4050 4051 4052 4053
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4054

Q
qijun 已提交
4055 4056 4057 4058 4059
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
4060 4061 4062 4063 4064 4065 4066


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
4067 4068 4069 4070 4071 4072 4073
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
4074
    """
4075 4076
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
4077

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
4093
    :param input: The input of this layer.
4094
    :type input: LayerOutput
4095
    :param act: Activation type. TanhActivation is the default activation.
4096
    :type act: BaseActivation
C
caoying03 已提交
4097
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
4098 4099 4100
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4101
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4102 4103
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4104
    :type param_attr: ParameterAttribute
4105
    :param name: The name of this layer. It is optional.
4106
    :type name: basestring
R
ranqiu 已提交
4107 4108
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4109
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4110
    :return: LayerOutput object.
4111
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4112
    """
Q
qijun 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4128 4129 4130 4131 4132


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4133
    and can be a sequence or non-sequence.
4134 4135
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4136
    """
4137

Z
zhangjinchao01 已提交
4138 4139 4140
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4141
        assert input.size is not None
Z
zhangjinchao01 已提交
4142
        if size is not None:
4143
            assert input.size == size
Z
zhangjinchao01 已提交
4144 4145


4146
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4147
    """
4148
    DEPRECATED.
Z
zhangjinchao01 已提交
4149 4150 4151 4152 4153 4154 4155 4156
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4157
    return input
Z
zhangjinchao01 已提交
4158 4159 4160


@wrap_name_default("recurrent_group")
4161
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4162
    """
C
caoying03 已提交
4163 4164 4165
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4166 4167
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

X
Xin Pan 已提交
4185
    - time steps: lstmemory_group, paddle/legacy/gserver/tests/sequence_layer_group.conf, \
Z
zhangjinchao01 已提交
4186
                  demo/seqToseq/seqToseq_net.py
X
Xin Pan 已提交
4187
    - sequence steps: paddle/legacy/gserver/tests/sequence_nest_layer_group.conf
Z
zhangjinchao01 已提交
4188

4189 4190
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4191

R
ranqiu 已提交
4192 4193 4194
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4195 4196 4197 4198
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4199
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4200 4201 4202 4203 4204 4205 4206
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4207
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4208

R
ranqiu 已提交
4209
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4210

R
ranqiu 已提交
4211
    :param reverse: If reverse is set to True, the recurrent unit will process the
4212
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4213
    :type reverse: bool
4214

4215 4216
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4217 4218 4219 4220 4221 4222 4223

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4224
    :type targetInlink: LayerOutput | SubsequenceInput
4225

D
dangqingqing 已提交
4226
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4227 4228 4229 4230
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4231
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4232
        input = [input]
4233
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4234 4235

    def is_in_links(x):
4236
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4237 4238 4239 4240

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4241
        name=name,
4242 4243
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4244 4245
    in_args = []
    for each_input in input:
4246
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4247
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4248
            mem = memory(
4249
                name=None,
Q
qijun 已提交
4250 4251
                size=each_input.input.size,
                boot_layer=each_input.input)
4252
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4253
            in_args.append(mem)
4254 4255
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4256

Z
zhangjinchao01 已提交
4257 4258 4259 4260 4261
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4262 4263 4264 4265 4266 4267
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4268 4269 4270

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4271
    for layer_out in layer_outs:
4272 4273
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4274 4275
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4276 4277 4278 4279 4280
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4281

Z
zhangjinchao01 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4310 4311

    def before_real_step(self):
Q
qijun 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4321 4322 4323
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4324
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4342
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4343
    :type input: LayerOutput
4344
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4345
    :type name: basestring
R
ranqiu 已提交
4346 4347
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4348
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4349
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4350 4351 4352 4353
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4364

4365

R
ranqiu 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4380
    :type input1: LayerOutput
R
ranqiu 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4417
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4418
    :type name: basestring
R
ranqiu 已提交
4419
    :param input1: The first input layer.
H
Haonan 已提交
4420
    :type input: LayerOutput
R
ranqiu 已提交
4421
    :param input2: The second input layer.
H
Haonan 已提交
4422
    :type input2: LayerOutput
R
ranqiu 已提交
4423 4424
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4425 4426 4427 4428 4429 4430 4431
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4442

Z
zhangjinchao01 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4459
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4460
    :type name: basestring
R
ranqiu 已提交
4461
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4462
    :type input: LayerOutput
R
ranqiu 已提交
4463
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4464
    :type eos_id: int
R
ranqiu 已提交
4465 4466
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4467
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4468
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4469 4470
    :rtype: LayerOutput
    """
Q
qijun 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4482 4483 4484


@wrap_name_default()
Q
qijun 已提交
4485 4486 4487 4488 4489 4490 4491
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4492
                num_results_per_sample=None):
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4504
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4505 4506 4507 4508
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4509 4510 4511 4512 4513
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4514 4515
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4516 4517
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4518 4519
                               bos_id=0,
                               eos_id=1,
4520
                               beam_size=5)
4521 4522 4523 4524 4525 4526

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4527 4528
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4529
    :type name: basestring
4530
    :param step: A callable function that defines the calculation in a time
4531
                 step, and it is applied to sequences with arbitrary length by
4532 4533 4534 4535 4536
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4537 4538
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4539
                  In beam_search, none of the input's type should be LayerOutput.
4540
    :type input: list
4541 4542 4543
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4544
                   symbol is essential, since it is used to initialize the RNN
4545 4546 4547 4548 4549 4550 4551 4552
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4553 4554
    :param max_length: Max generated sequence length.
    :type max_length: int
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4565 4566
    :return: The generated word index.
    :rtype: LayerOutput
4567 4568
    """

Z
zhangjinchao01 已提交
4569 4570 4571 4572 4573
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4574
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4575 4576 4577 4578 4579 4580
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4581 4582 4583
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4584
        if isinstance(each_input, BaseGeneratedInput):
4585 4586
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4587
            generated_input_index = i
4588

Z
zhangjinchao01 已提交
4589 4590 4591
        else:
            real_input.append(each_input)

4592
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4593 4594 4595 4596 4597 4598 4599 4600

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4601 4602 4603 4604 4605 4606
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4607 4608 4609 4610 4611 4612

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4613
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4614 4615
        return predict

4616 4617
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4618

Q
qijun 已提交
4619

4620 4621
def __cost_input__(input, label, weight=None):
    """
4622
    inputs and parents for cost layers.
4623
    """
C
caoying03 已提交
4624 4625 4626 4627 4628 4629
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4630
    if weight is not None:
4631
        assert weight.size == 1
4632 4633 4634
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4635

Z
zhangjinchao01 已提交
4636 4637

@wrap_name_default()
L
luotao1 已提交
4638
@layer_support()
4639 4640 4641 4642 4643 4644
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4645
    """
4646
    sum of square error cost:
L
Luo Tao 已提交
4647 4648 4649

    ..  math::

4650
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4651

4652
    :param name: The name of this layer. It is optional.
4653
    :type name: basestring
R
ranqiu 已提交
4654
    :param input: The first input layer.
4655
    :type input: LayerOutput
R
ranqiu 已提交
4656
    :param label: The input label.
4657
    :type label: LayerOutput
R
ranqiu 已提交
4658 4659
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4660
    :type weight: LayerOutput
R
ranqiu 已提交
4661
    :param coeff: The weight of the gradient in the back propagation.
4662
                  1.0 is the default value.
4663
    :type coeff: float
R
ranqiu 已提交
4664 4665
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4666
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4667
    :return: LayerOutput object.
4668
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4669
    """
4670 4671
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4672 4673 4674 4675
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4676
        coeff=coeff,
Q
qijun 已提交
4677
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4678
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4679 4680


4681
regression_cost = square_error_cost
L
Luo Tao 已提交
4682 4683


Z
zhangjinchao01 已提交
4684
@wrap_name_default("cost")
4685
@layer_support()
Q
qijun 已提交
4686 4687 4688 4689
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4690
                        evaluator=classification_error_evaluator,
4691 4692
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4693 4694 4695
    """
    classification cost Layer.

4696
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4697
    :type name: basestring
R
ranqiu 已提交
4698
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4699
    :type input: LayerOutput
R
ranqiu 已提交
4700
    :param label: The input label.
Z
zhangjinchao01 已提交
4701
    :type label: LayerOutput
R
ranqiu 已提交
4702 4703
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4704
    :type weight: LayerOutput
R
ranqiu 已提交
4705 4706 4707 4708
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4709
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4710
    :param coeff: The weight of the gradient in the back propagation.
4711
                  1.0 is the default value.
4712
    :type coeff: float
D
dangqingqing 已提交
4713
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4714 4715 4716 4717 4718
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4719 4720 4721

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4722 4723 4724 4725
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4726
        coeff=coeff,
Q
qijun 已提交
4727
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4738
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4739

4740
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4741 4742 4743 4744 4745
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4746
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4747

4748

Q
qijun 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4758 4759
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4760 4761 4762 4763
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4764
    supports GPU mode.
Z
zhangjinchao01 已提交
4765 4766 4767 4768 4769

    The example usage is:

    .. code-block:: python

4770 4771
       op = conv_operator(img=input1,
                          filter=input2,
4772
                          filter_size=3,
Z
zhangjinchao01 已提交
4773 4774 4775
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4776
    :param img: The input image.
4777
    :type img: LayerOutput
R
ranqiu 已提交
4778
    :param filter: The input filter.
4779
    :type filter: LayerOutput
R
ranqiu 已提交
4780
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4781
    :type filter_size: int
R
ranqiu 已提交
4782 4783 4784
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4785
    :type filter_size_y: int
R
ranqiu 已提交
4786
    :param num_filters: The number of the output channels.
4787
    :type num_filters: int
R
ranqiu 已提交
4788 4789 4790
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4791
    :type num_channels: int
R
ranqiu 已提交
4792
    :param stride: The stride on the x axis.
L
luotao02 已提交
4793
    :type stride: int
R
ranqiu 已提交
4794 4795
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4796
    :type stride_y: int
R
ranqiu 已提交
4797
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4798
    :type padding: int
R
ranqiu 已提交
4799 4800
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4811

4812 4813
    if num_channels is None:
        num_channels = img.num_filters
4814 4815

    assert isinstance(filter, LayerOutput)
4816
    assert filter.size is not None
4817

4818 4819 4820
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4832

4833
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4834 4835
    return op

Q
qijun 已提交
4836

4837
@wrap_param_attr_default()
Q
qijun 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4848 4849
                    param_attr=None,
                    trans=False):
4850
    """
R
ranqiu 已提交
4851 4852 4853
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4854 4855 4856 4857 4858

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4859
       proj = conv_projection(input=input1,
4860 4861 4862 4863
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4864
    :param input: The input of this layer.
4865
    :type input: LayerOutput
R
ranqiu 已提交
4866 4867 4868 4869 4870
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4871
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4872 4873 4874
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4875
    :type filter_size_y: int
R
ranqiu 已提交
4876
    :param num_filters: The number of filters.
4877
    :type num_filters: int
R
ranqiu 已提交
4878
    :param num_channels: The number of the input channels.
4879
    :type num_channels: int
R
ranqiu 已提交
4880 4881 4882 4883 4884 4885 4886
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4887
    :type stride_y: int
R
ranqiu 已提交
4888 4889 4890 4891 4892 4893 4894
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4895 4896 4897
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4898 4899
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4900
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4901
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4902
    :type trans: bool
R
ranqiu 已提交
4903 4904
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4933
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4934 4935 4936 4937 4938
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4939 4940 4941
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4954 4955 4956 4957

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4958

D
dangqingqing 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4969 4970
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4971

R
ranqiu 已提交
4972 4973 4974 4975
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4976

D
dangqingqing 已提交
4977
    For example,
4978

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
5000 5001

    The simply usage is:
D
dangqingqing 已提交
5002 5003 5004 5005 5006 5007 5008 5009

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
5010
    :param input: The input of this layer.
D
dangqingqing 已提交
5011
    :type input: LayerOutput
R
ranqiu 已提交
5012
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
5013
    :type pad_c: list | None
R
ranqiu 已提交
5014
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
5015
    :type pad_h: list | None
R
ranqiu 已提交
5016
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
5017
    :type pad_w: list | None
R
ranqiu 已提交
5018 5019
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
5020
    :type layer_attr: ExtraLayerAttribute
5021
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
5064
@wrap_name_default()
L
luotao1 已提交
5065 5066
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5067
    """
R
ranqiu 已提交
5068
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
5069 5070 5071 5072 5073 5074 5075 5076
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
5077
    In this formula:
5078 5079 5080 5081
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
5082 5083 5084 5085 5086

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
5087
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
5088

5089
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5090
    :type name: basestring
R
ranqiu 已提交
5091
    :param a: The first input of this layer.
5092
    :type a: LayerOutput
R
ranqiu 已提交
5093
    :param b: The second input of this layer.
5094
    :type b: LayerOutput
R
ranqiu 已提交
5095 5096
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5097
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5098
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5099 5100
    :rtype: LayerOutput
    """
5101 5102
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
5103 5104 5105
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
5106
        inputs=[a.name, b.name],
Q
qijun 已提交
5107
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5108

Q
qijun 已提交
5109 5110
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
5111 5112 5113 5114 5115


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5116
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5117
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5118 5119 5120 5121 5122 5123 5124 5125
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5126
    """
R
ranqiu 已提交
5127 5128
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5129 5130

    .. math::
5131
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5132 5133

    In this formular:
5134 5135
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5136 5137
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5138
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5139 5140 5141 5142 5143

    The simple usage is:

    .. code-block:: python

5144
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5145

5146
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5147
    :type name: basestring
R
ranqiu 已提交
5148
    :param a: The first input of this layer.
5149
    :type a: LayerOutput
R
ranqiu 已提交
5150
    :param b: The second input of this layer.
5151
    :type b: LayerOutput
R
ranqiu 已提交
5152 5153
    :param size: The dimension of this layer.
    :type size: int
5154
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5155
    :type act: BaseActivation
R
ranqiu 已提交
5156 5157
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5158
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5159 5160 5161 5162
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5163
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5164 5165
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5166
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5167
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5168 5169
    :rtype: LayerOutput
    """
5170
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5171 5172 5173 5174 5175 5176
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5177 5178 5179 5180
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5181 5182 5183 5184 5185 5186


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5187
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5188 5189
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5190
                       select=None,
Q
qijun 已提交
5191 5192
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5193 5194 5195
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5196 5197 5198
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5199 5200
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5201
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5202 5203 5204 5205 5206 5207 5208
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5209
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5210

5211
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5212
    :type name: basestring
R
ranqiu 已提交
5213 5214
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5215 5216 5217 5218
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5219
    :type select: LayerOutput
R
ranqiu 已提交
5220 5221
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5222
    :type size: int
5223
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5224
    :type act: BaseActivation
R
ranqiu 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5235
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5236 5237 5238 5239
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5240
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5241 5242
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5243
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5244
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5245 5246 5247 5248
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5249
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5250 5251
        param_attr = [param_attr]
    else:
5252
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5253 5254
            assert len(input) == len(param_attr)
        else:
5255
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5256
                logger.fatal(
W
wangmeng28 已提交
5257 5258 5259 5260 5261
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5262 5263
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5264 5265 5266 5267
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5268
    Layer(
Q
qijun 已提交
5269 5270 5271
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5272 5273 5274
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5275
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5276 5277 5278 5279
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5280 5281 5282 5283 5284 5285 5286
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5287 5288 5289


@wrap_name_default()
L
luotao1 已提交
5290 5291
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5292
    """
R
ranqiu 已提交
5293
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5294 5295 5296 5297 5298 5299 5300 5301
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5302
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5303
    :type input: LayerOutput
5304
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5305
    :type name: basestring
R
ranqiu 已提交
5306 5307 5308
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5309
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5310 5311
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5312
    l = Layer(
Z
zhangjinchao01 已提交
5313 5314 5315
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5316 5317 5318
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5319 5320 5321


@wrap_name_default()
L
luotao1 已提交
5322
@layer_support()
Q
qijun 已提交
5323 5324 5325 5326
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5327
                          layer_attr=None):
Z
zhangjinchao01 已提交
5328
    """
R
ranqiu 已提交
5329
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5340
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5341
    :type input: LayerOutput
5342
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5343
    :type name: basestring
R
ranqiu 已提交
5344 5345 5346 5347 5348 5349 5350
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5351
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5352 5353 5354 5355 5356 5357 5358 5359
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5360 5361 5362
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5363 5364 5365


@wrap_name_default()
L
luotao1 已提交
5366
@layer_support()
Q
qijun 已提交
5367
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5368
    """
5369 5370 5371 5372
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5373 5374 5375

    .. math::

5376
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5377

5378 5379 5380 5381 5382
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5383

5384
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5385 5386

    In this formular:
5387 5388 5389 5390 5391 5392
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5393 5394 5395 5396 5397

    The simple usage is:

    .. code-block:: python

5398
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5399 5400
                                       size=elem_dim)

5401 5402 5403 5404
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5405
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5406
    :type size: int
5407
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5408
    :type name: basestring
R
ranqiu 已提交
5409 5410 5411
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5412
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5413 5414
    :rtype: LayerOutput
    """
5415 5416 5417 5418
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5419
            size = vectors.size / weights.size
5420 5421
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5422 5423
    Layer(
        name=name,
5424
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5425
        size=size,
5426
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5427 5428 5429
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5430

5431

5432
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5433

5434

Z
zhangjinchao01 已提交
5435
@wrap_name_default()
L
luotao1 已提交
5436
@layer_support()
Z
zhangjinchao01 已提交
5437 5438 5439 5440 5441 5442 5443
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5444
                       num_channels=None,
L
luotao1 已提交
5445 5446
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5447 5448
    """
    Expand feature map to minibatch matrix.
5449
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5450
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5451 5452 5453 5454 5455 5456 5457

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5458
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5459
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5460
    The number of time steps is outputH * outputW and the dimension of each
5461
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5462
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5463

5464 5465 5466 5467
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5468
       block_expand = block_expand_layer(input=layer,
5469
                                         num_channels=128,
5470 5471 5472 5473 5474
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5475
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5476
    :type input: LayerOutput
R
ranqiu 已提交
5477 5478 5479 5480
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5493
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5494 5495 5496 5497
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5498
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5499 5500
    :rtype: LayerOutput
    """
5501 5502 5503
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5521 5522


5523 5524
@wrap_name_default()
@layer_support()
5525
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5526
    """
R
ranqiu 已提交
5527 5528 5529 5530
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5531

5532
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5533 5534 5535
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5536
        `Maxout Networks
R
ranqiu 已提交
5537
        <http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>`_
R
ranqiu 已提交
5538
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
R
ranqiu 已提交
5539
        <https://arxiv.org/pdf/1312.6082v4.pdf>`_
5540 5541


X
xuwei06 已提交
5542
    .. math::
C
chengduoZH 已提交
5543

C
chengduoZH 已提交
5544
       & out = \max_k (in[n, k, o_c , s])
C
chengduoZH 已提交
5545

C
chengduoZH 已提交
5546
       & out_{i * s + j} = \max_k in_{  k * o_{c} * s + i * s + j}
C
chengduoZH 已提交
5547

C
chengduoZH 已提交
5548
       & s = \\frac{input.size}{ num\_channels}
C
chengduoZH 已提交
5549

C
chengduoZH 已提交
5550
       & o_{c} = \\frac{num\_channels}{groups}
C
chengduoZH 已提交
5551

C
chengduoZH 已提交
5552
       & 0 \le i < o_{c}
C
chengduoZH 已提交
5553

C
chengduoZH 已提交
5554
       & 0 \le j < s
C
chengduoZH 已提交
5555

C
chengduoZH 已提交
5556
       & 0 \le k < groups
C
chengduoZH 已提交
5557

X
xuwei06 已提交
5558

5559 5560 5561 5562 5563 5564 5565 5566
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5567
    :param input: The input of this layer.
5568
    :type input: LayerOutput
R
ranqiu 已提交
5569 5570 5571 5572
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5573 5574
    :param groups: The group number of input layer.
    :type groups: int
5575
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5576 5577 5578
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5598 5599


Z
zhangjinchao01 已提交
5600
@wrap_name_default()
L
luotao1 已提交
5601
@layer_support()
Q
qijun 已提交
5602 5603 5604 5605 5606
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5607
              layer_attr=None):
Z
zhangjinchao01 已提交
5608 5609
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5610
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5611 5612
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5613
    Reference:
R
ranqiu 已提交
5614
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5615
        with Recurrent Neural Networks
R
ranqiu 已提交
5616
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5617 5618

    Note:
R
ranqiu 已提交
5619 5620 5621 5622 5623
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5624

C
caoying03 已提交
5625
    The example usage is:
Z
zhangjinchao01 已提交
5626 5627 5628 5629 5630 5631 5632 5633

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5634
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5635
    :type input: LayerOutput
R
ranqiu 已提交
5636
    :param label: The input label.
Z
zhangjinchao01 已提交
5637
    :type label: LayerOutput
R
ranqiu 已提交
5638
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5639
    :type size: int
5640
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5641 5642
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5643
    :type norm_by_times: bool
R
ranqiu 已提交
5644 5645 5646
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5647
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5648 5649 5650 5651
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5652 5653 5654 5655 5656
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5657
    Layer(
5658 5659 5660 5661
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5662
        inputs=[input.name, label.name],
Q
qijun 已提交
5663
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5664 5665
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5666

5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5678
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5679
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5680
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
W
weixing02 已提交
5681 5682
    Classification (CTC) loss. Besides, another `warp-ctc repository
    <https://github.com/gangliao/warp-ctc>`_ , which is forked from
L
Liu Yiqun 已提交
5683 5684 5685 5686
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5687
    Reference:
R
ranqiu 已提交
5688
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5689
        with Recurrent Neural Networks
R
ranqiu 已提交
5690
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5691 5692

    Note:
R
ranqiu 已提交
5693 5694 5695
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5696
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5697
          should be consistent with those used in your labels.
5698
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5699
          'linear' activation is expected to be used instead in the 'input' layer.
5700

C
caoying03 已提交
5701
    The example usage is:
5702 5703 5704 5705 5706 5707 5708 5709 5710

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5711
    :param input: The input of this layer.
5712
    :type input: LayerOutput
R
ranqiu 已提交
5713
    :param label: The input label.
5714
    :type label: LayerOutput
R
ranqiu 已提交
5715
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5716
    :type size: int
5717
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5718 5719
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5720
    :type blank: int
R
ranqiu 已提交
5721
    :param norm_by_times: Whether to do normalization by times. False is the default.
5722
    :type norm_by_times: bool
R
ranqiu 已提交
5723 5724 5725
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5748
@wrap_name_default()
5749
@wrap_param_attr_default()
L
luotao1 已提交
5750
@layer_support()
Q
qijun 已提交
5751 5752 5753 5754 5755 5756
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5757
              coeff=1.0,
L
luotao1 已提交
5758
              layer_attr=None):
Z
zhangjinchao01 已提交
5759 5760 5761 5762
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5763
    The example usage is:
Z
zhangjinchao01 已提交
5764 5765 5766 5767 5768 5769 5770

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5771
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5772
    :type input: LayerOutput
R
ranqiu 已提交
5773
    :param label: The input label.
5774
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5775 5776
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5777 5778
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5779
    :type weight: LayerOutput
R
ranqiu 已提交
5780 5781
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5782
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5783
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5784 5785
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5786
                  1.0 is the default value.
5787
    :type coeff: float
R
ranqiu 已提交
5788 5789 5790
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5791
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5792 5793 5794 5795 5796
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5797 5798 5799 5800 5801 5802
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5803

Q
qijun 已提交
5804
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5805 5806 5807 5808
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5809 5810 5811 5812
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5813
        coeff=coeff,
Q
qijun 已提交
5814
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5815 5816 5817
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5818 5819 5820 5821
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5822

5823

Z
zhangjinchao01 已提交
5824
@wrap_name_default()
5825
@wrap_param_attr_default()
L
luotao1 已提交
5826
@layer_support()
Q
qijun 已提交
5827 5828 5829 5830 5831
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5832
                       layer_attr=None):
Z
zhangjinchao01 已提交
5833 5834 5835
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5836 5837 5838
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5839

C
caoying03 已提交
5840
    The example usage is:
L
Luo Tao 已提交
5841 5842 5843 5844 5845 5846

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5847 5848
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5849
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5850
    :type size: int
R
ranqiu 已提交
5851 5852 5853 5854
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5855
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5856
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5857 5858 5859 5860
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5861
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5862 5863 5864 5865 5866 5867
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5868
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5869 5870 5871 5872
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5873 5874 5875 5876
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5877
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5878 5879 5880
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5881 5882 5883 5884
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5885

Q
qijun 已提交
5886

C
caoying03 已提交
5887 5888 5889 5890 5891
"""
Following are cost Layers.
"""


5892
@wrap_bias_attr_default(has_bias=True)
5893
@wrap_param_attr_default()
5894 5895
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5896 5897
def nce_layer(input,
              label,
C
caoying03 已提交
5898
              num_classes=None,
5899
              param_attr=None,
Q
qijun 已提交
5900 5901 5902 5903 5904 5905
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5906 5907
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5908 5909

    Reference:
R
ranqiu 已提交
5910
        `A fast and simple algorithm for training neural probabilistic language
R
ranqiu 已提交
5911
        models. <https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>`_
5912 5913 5914 5915 5916

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5917 5918
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5919 5920
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5921
    :param name: The name of this layer. It is optional.
5922
    :type name: basestring
R
ranqiu 已提交
5923
    :param input: The first input of this layer.
R
ranqiu 已提交
5924
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5925
    :param label: The input label.
5926
    :type label: LayerOutput
C
caoying03 已提交
5927
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5928
                   mini-batch. It is optional.
5929
    :type weight: LayerOutput
R
ranqiu 已提交
5930
    :param num_classes: The number of classes.
5931
    :type num_classes: int
5932
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5933
    :type act: BaseActivation
R
ranqiu 已提交
5934 5935
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5936
    :type param_attr: ParameterAttribute
5937 5938
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5939
    :type num_neg_samples: int
C
caoying03 已提交
5940 5941 5942
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5943
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5944 5945 5946
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5947
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5948 5949 5950 5951
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5952
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5953 5954
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5955
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5956
    :return: LayerOutput object.
5957 5958 5959 5960
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5961 5962 5963 5964 5965 5966 5967 5968
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5969
    assert isinstance(input, collections.Sequence)
5970

5971 5972
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5973 5974
    if num_classes is None:
        num_classes = label.size
5975 5976 5977
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5978
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5979

5980 5981
    ipts_for_layer = []
    parents = []
5982
    for each_input, attr in zip(input, param_attr):
5983
        assert isinstance(each_input, LayerOutput)
5984
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5995
    l = Layer(
5996 5997 5998 5999
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
6000
        active_type=SigmoidActivation().name,
6001 6002 6003
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
6004 6005
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
6006 6007 6008 6009
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
6010
        activation=SigmoidActivation())
6011 6012


Z
zhangjinchao01 已提交
6013
@wrap_name_default()
L
luotao1 已提交
6014
@layer_support()
Q
qijun 已提交
6015 6016 6017 6018 6019 6020 6021
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
6022
    """
R
ranqiu 已提交
6023 6024 6025
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
6026
        `Learning to Rank using Gradient Descent
R
ranqiu 已提交
6027
        <http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>`_
Z
zhangjinchao01 已提交
6028 6029 6030

    .. math::

L
luotao02 已提交
6031
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
6032

L
luotao02 已提交
6033
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
6034

L
luotao02 已提交
6035
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
6036 6037 6038 6039 6040 6041 6042 6043

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
6044
    The example usage is:
Z
zhangjinchao01 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
6058 6059
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
6060
    :type weight: LayerOutput
R
ranqiu 已提交
6061
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6062 6063
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6064
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6065
    :type coeff: float
R
ranqiu 已提交
6066 6067
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6068
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6069
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
6082 6083 6084 6085 6086 6087
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6088

X
xuwei06 已提交
6089
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
6090

6091

Z
zhangjinchao01 已提交
6092
@wrap_name_default()
L
luotao1 已提交
6093
@layer_support()
Q
qijun 已提交
6094 6095 6096 6097 6098 6099
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
6100 6101 6102
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
6103
    The example usage is:
Z
zhangjinchao01 已提交
6104 6105 6106 6107 6108 6109 6110 6111

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
6112 6113
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
6114
    :type input: LayerOutput
R
ranqiu 已提交
6115
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
6116 6117
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
6118
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
6119
                     minimum size of the list.
Z
zhangjinchao01 已提交
6120
    :type NDCG_num: int
R
ranqiu 已提交
6121 6122 6123 6124 6125
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6126
    :type max_sort_size: int
R
ranqiu 已提交
6127
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6128 6129 6130
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6131
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6132
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6133 6134
    :rtype: LayerOutput
    """
6135 6136 6137
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6138 6139 6140 6141 6142 6143 6144
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6145

Q
qijun 已提交
6146 6147
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6148

6149

Z
zhangjinchao01 已提交
6150
@wrap_name_default()
L
luotao1 已提交
6151
@layer_support()
6152 6153 6154 6155 6156 6157
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6158 6159 6160
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6161 6162
    The example usage is:

Z
zhangjinchao01 已提交
6163 6164
    .. code-block:: python

X
xuwei06 已提交
6165
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6166
                            label=label_layer)
Z
zhangjinchao01 已提交
6167 6168 6169 6170

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6171
    :type input: LayerOutput
R
ranqiu 已提交
6172
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6173 6174
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6175
                  1.0 is the default value.
R
ranqiu 已提交
6176
    :type coeff: float
R
ranqiu 已提交
6177 6178
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6179
    :type weight: LayerOutout
R
ranqiu 已提交
6180 6181
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6182
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6183
    :return: LayerOutput object.
R
ranqiu 已提交
6184
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6185 6186
    """

6187
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6188 6189 6190
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6191
        inputs=ipts,
Q
qijun 已提交
6192 6193
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6194
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6195

6196

Z
zhangjinchao01 已提交
6197
@wrap_name_default()
L
luotao1 已提交
6198
@layer_support()
Q
qijun 已提交
6199 6200 6201 6202
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6203 6204
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6205 6206
    """
    A loss layer for multi class entropy with selfnorm.
6207
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6208

C
caoying03 已提交
6209 6210
    The example usage is:

Z
zhangjinchao01 已提交
6211 6212
    .. code-block:: python

X
xuwei06 已提交
6213
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6214
                                          label=label_layer)
Z
zhangjinchao01 已提交
6215 6216

    :param input: The first input layer.
R
ranqiu 已提交
6217
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6218
    :param label: The input label.
R
ranqiu 已提交
6219
    :type input: LayerOutput
R
ranqiu 已提交
6220
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6221 6222
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6223
                  1.0 is the default value.
R
ranqiu 已提交
6224
    :type coeff: float
Z
zhangjinchao01 已提交
6225
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6226 6227 6228
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6229
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6230
    :return: LayerOutput object.
R
ranqiu 已提交
6231
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6232
    """
Q
qijun 已提交
6233 6234 6235 6236 6237 6238 6239
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6240

Q
qijun 已提交
6241 6242 6243 6244 6245
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6246

6247

X
xuwei06 已提交
6248 6249 6250 6251
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6252
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6253

C
caoying03 已提交
6254 6255
    The example usage is:

X
xuwei06 已提交
6256 6257
    .. code-block:: python

L
Luo Tao 已提交
6258
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6259

R
ranqiu 已提交
6260
    :param input: The input of this layer.
R
ranqiu 已提交
6261
    :type input: LayerOutput
R
ranqiu 已提交
6262
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6263 6264 6265
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6266 6267 6268 6269
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6270
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6271 6272 6273 6274 6275
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6276

Q
qijun 已提交
6277
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6278 6279


Z
zhangjinchao01 已提交
6280
@wrap_name_default()
L
luotao1 已提交
6281
@layer_support()
L
Luo Tao 已提交
6282 6283 6284 6285 6286 6287
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6288
    """
6289 6290 6291
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6292 6293
    is defined as:

R
ranqiu 已提交
6294 6295 6296 6297 6298
    .. math::

       loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta

       loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise
Z
zhangjinchao01 已提交
6299

C
caoying03 已提交
6300 6301
    The example usage is:

Z
zhangjinchao01 已提交
6302 6303
    .. code-block:: python

L
Luo Tao 已提交
6304
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6305 6306

    :param input: The first input layer.
R
ranqiu 已提交
6307
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6308
    :param label: The input label.
R
ranqiu 已提交
6309
    :type input: LayerOutput
R
ranqiu 已提交
6310
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6311
    :type name: basestring
L
Luo Tao 已提交
6312
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6313 6314
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6315
                  1.0 is the default value.
R
ranqiu 已提交
6316 6317 6318
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6319
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6320
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6321 6322
    :rtype: LayerOutput.
    """
6323
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6335
@wrap_name_default()
L
luotao1 已提交
6336
@layer_support()
6337 6338 6339 6340 6341
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6342
    """
6343 6344
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
R
ranqiu 已提交
6345
    a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber
6346 6347 6348
    loss is defined as:

    .. math:
R
ranqiu 已提交
6349 6350 6351 6352

       loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1

       loss = -4yf(x), otherwise
Z
zhangjinchao01 已提交
6353

C
caoying03 已提交
6354 6355
    The example usage is:

Z
zhangjinchao01 已提交
6356 6357
    .. code-block:: python

6358
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6359 6360

    :param input: The first input layer.
R
ranqiu 已提交
6361
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6362
    :param label: The input label.
R
ranqiu 已提交
6363
    :type input: LayerOutput
R
ranqiu 已提交
6364
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6365 6366
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6367
                  1.0 is the default value.
R
ranqiu 已提交
6368 6369 6370
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6371
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6372
    :return: LayerOutput object.
R
ranqiu 已提交
6373
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6374
    """
6375 6376 6377
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6378 6379
    Layer(
        name=name,
6380
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6381 6382 6383
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6384 6385
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6386

6387

Z
zhangjinchao01 已提交
6388
@wrap_name_default()
L
luotao1 已提交
6389
@layer_support()
Q
qijun 已提交
6390 6391 6392 6393
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6394
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6395 6396 6397
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6398 6399
    The example usage is:

Z
zhangjinchao01 已提交
6400 6401
    .. code-block:: python

X
xuwei06 已提交
6402
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6403
                                               label=label_layer)
Z
zhangjinchao01 已提交
6404 6405 6406 6407 6408

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6409
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6410 6411
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6412
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6413
    :type coeff: float
R
ranqiu 已提交
6414 6415
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6416
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6418 6419 6420
    :rtype: LayerOutput
    """

6421 6422
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6423 6424 6425 6426
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6439 6440


C
caoying03 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6463 6464
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6465
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6466
    """
C
caoying03 已提交
6467 6468 6469
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6470

C
caoying03 已提交
6471 6472 6473 6474 6475
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6476

C
caoying03 已提交
6477 6478 6479 6480 6481
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6482

C
caoying03 已提交
6483 6484 6485
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6486

C
caoying03 已提交
6487 6488 6489 6490
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6491

C
caoying03 已提交
6492 6493 6494
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6495
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6496 6497
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6498

D
dangqingqing 已提交
6499

C
caoying03 已提交
6500 6501
    The example usage is:

D
dangqingqing 已提交
6502 6503
    .. code-block:: python

C
caoying03 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6516
    :param input: Input beams for this layer.
C
caoying03 已提交
6517
    :type input: BeamInput
R
ranqiu 已提交
6518
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6545 6546 6547
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6548 6549
@wrap_name_default()
@layer_support()
6550
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6551 6552
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6553
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6554 6555 6556 6557 6558 6559 6560 6561 6562

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6563
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6564

R
ranqiu 已提交
6565
    Reference:
R
ranqiu 已提交
6566
        `Fast R-CNN
R
ranqiu 已提交
6567
        <https://arxiv.org/pdf/1504.08083v2.pdf>`_
D
dangqingqing 已提交
6568

C
caoying03 已提交
6569 6570
    The example usage is:

D
dangqingqing 已提交
6571 6572
    .. code-block:: python

6573 6574
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6575 6576 6577 6578 6579

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6580
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6581
    :type name: basestring
R
ranqiu 已提交
6582
    :param coeff: The weight of the gradient in the back propagation.
6583
                  1.0 is the default value.
6584
    :type coeff: float
R
ranqiu 已提交
6585 6586
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6599
        coeff=coeff,
D
dangqingqing 已提交
6600 6601 6602
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6603 6604 6605 6606 6607


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6608 6609 6610
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6611
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6612 6613
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6614 6615 6616 6617 6618 6619 6620 6621

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6622 6623
    The example usage is:

W
wwhu 已提交
6624 6625 6626 6627 6628 6629
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6630
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6631
    :type name: basestring
R
ranqiu 已提交
6632 6633
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6657 6658


6659 6660 6661 6662
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6663 6664 6665 6666 6667 6668
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6669
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6670
    :type name: basestring
R
ranqiu 已提交
6671
    :param input: The input of this layer.
R
ranqiu 已提交
6672 6673 6674 6675 6676
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6677 6678 6679 6680 6681 6682 6683
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6684 6685


D
dangqingqing 已提交
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6699
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6700 6701 6702 6703 6704 6705 6706
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6707
    efficient manner to improve unidirectional RNNs.
6708

R
ranqiu 已提交
6709
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6710 6711 6712 6713
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6714

D
dangqingqing 已提交
6715 6716 6717
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
R
fix doc  
ranqiu 已提交
6718
                  \quad \\text{for} \quad  (1 \leq i \leq d)
D
dangqingqing 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6730
    :param input: The input of this layer.
D
dangqingqing 已提交
6731 6732 6733 6734
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6735
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6736
    :type act: BaseActivation
R
ranqiu 已提交
6737 6738
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6739
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6740 6741
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6742
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6758 6759


6760 6761 6762 6763 6764
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6765 6766
                channel_shared=None,
                num_channels=None,
6767 6768 6769
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6770
    The Parametric Relu activation that actives outputs with a learnable weight.
6771 6772

    Reference:
R
ranqiu 已提交
6773
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
R
ranqiu 已提交
6774
        ImageNet Classification <http://arxiv.org/pdf/1502.01852v1.pdf>`_
6775 6776 6777 6778 6779

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6780 6781 6782 6783 6784 6785
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6786
    :param name: The name of this layer. It is optional.
6787
    :type name: basestring
R
ranqiu 已提交
6788
    :param input: The input of this layer.
6789
    :type input: LayerOutput
R
ranqiu 已提交
6790
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6791 6792

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6793 6794
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6795 6796

    :type partial_sum: int
6797
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6798

6799 6800
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6801

6802
    :type channel_shared: bool
6803 6804
    :param num_channels: number of input channel.
    :type num_channels: int
6805
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6806 6807 6808
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6809
    :type layer_attr: ExtraLayerAttribute | None
6810 6811 6812 6813
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6814
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6815

6816
    if not param_attr:
X
xzl 已提交
6817
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6818 6819 6820 6821
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6822 6823
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6824 6825 6826 6827
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6828 6829
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6830 6831 6832 6833
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6834 6835 6836

    l = Layer(
        name=name,
C
caoying03 已提交
6837
        type=LayerType.PRELU,
C
caoying03 已提交
6838
        inputs=Input(input.name, **param_attr.attr),
6839 6840 6841 6842 6843 6844
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6845
        num_filters=num_channels,
6846
        size=l.config.size)
6847 6848


6849
@wrap_name_default()
C
caoying03 已提交
6850
@layer_support(ERROR_CLIPPING, DROPOUT)
6851 6852 6853 6854 6855 6856 6857
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6858 6859
                     gate_bias_attr=True,
                     inproj_attr=None,
6860 6861 6862 6863 6864 6865 6866
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
fix doc  
ranqiu 已提交
6867
    product between :math:`X'` and :math:`\sigma` is finally returned.
6868 6869

    Reference:
R
ranqiu 已提交
6870
        `Language Modeling with Gated Convolutional Networks
R
ranqiu 已提交
6871
        <https://arxiv.org/abs/1612.08083>`_
6872 6873 6874 6875 6876 6877 6878 6879 6880

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6881
    :param input: The input of this layer.
6882
    :type input: LayerOutput
R
ranqiu 已提交
6883
    :param size: The dimension of this layer's output.
6884
    :type size: int
6885 6886
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6887
    :type act: BaseActivation
6888
    :param name: The name of this layer. It is optional.
6889
    :type name: basestring
R
ranqiu 已提交
6890 6891
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6892
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6893 6894 6895
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6896
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6897
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6898
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6899 6900 6901
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6902
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6903 6904 6905
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6906
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6907
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6908
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6909 6910 6911
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6912
    :type layer_attr: ExtraLayerAttribute | None
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6925
        layer_attr=inproj_attr,
6926 6927 6928 6929 6930 6931 6932 6933 6934
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6935
        param_attr=gate_param_attr,
6936 6937 6938 6939 6940
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6941 6942


6943
@layer_support()
6944
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6945 6946
def switch_order_layer(input,
                       name=None,
6947
                       reshape_axis=None,
W
wanghaoshuang 已提交
6948 6949
                       act=None,
                       layer_attr=None):
6950
    """
6951
    This layer switch dimension order of image input.
6952 6953
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6954 6955 6956 6957

    The example usage is:

    .. code-block:: python
6958 6959
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6960
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6961

R
ranqiu 已提交
6962
    :param input: The input of this layer.
6963
    :type input: LayerOutput
6964
    :param name: The name of this layer. It is optional.
6965
    :type name: basestring
R
ranqiu 已提交
6966 6967
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6968 6969 6970
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6971
    assert isinstance(input, LayerOutput)
6972 6973 6974 6975 6976
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6977 6978
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6979
        inputs=input.name,
6980 6981
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6982
        active_type=act.name,
6983 6984 6985
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6986
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6987
        activation=act,
6988 6989
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6990 6991


6992 6993
@wrap_name_default()
@layer_support()
6994
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6995
    """
R
ranqiu 已提交
6996 6997 6998
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6999

7000 7001 7002
    The example usage is:

    .. code-block:: python
W
whs 已提交
7003
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
7004

R
ranqiu 已提交
7005 7006
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
7007
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
7008 7009
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
7010
    :type offset: Sequence
R
ranqiu 已提交
7011
    :param axis: The start axis to be cropped. For image input layer:
7012 7013 7014 7015
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
7016 7017
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
7018
    :type shape: Sequence | None
7019
    :param name: The name of this layer. It is optional.
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
7041 7042


C
caoying03 已提交
7043 7044
@wrap_name_default()
@layer_support()
7045
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
7046
    """
7047
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
7048
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
7049

C
caoying03 已提交
7050 7051 7052
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
7053 7054 7055 7056

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
7057

R
ranqiu 已提交
7058
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
7059

C
caoying03 已提交
7060

R
ranqiu 已提交
7061
    :param input: The input of this layer. It is a nested sequence.
7062
    :type input: LayerOutput
R
ranqiu 已提交
7063
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
7064
    :type input: LayerOutput
7065
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
7066 7067 7068 7069
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
7070

7071 7072 7073 7074 7075 7076 7077
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
7078
    l = Layer(
7079 7080
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
7081 7082 7083 7084 7085 7086 7087
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
7088 7089


G
guosheng 已提交
7090
@wrap_name_default("clip")
7091
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
7092 7093 7094 7095 7096
    """
    A layer for clipping the input value by the threshold.

    .. math::

R
ranqiu 已提交
7097
        out[i] = \min (\max (in[i],p_{1} ),p_{2} )
G
guosheng 已提交
7098 7099 7100

    .. code-block:: python

7101
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
7102

7103
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7104
    :type name: basestring
R
ranqiu 已提交
7105
    :param input: The input of this layer.
G
guosheng 已提交
7106
    :type input: LayerOutput.
7107
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
7108
    :type min: float
7109
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
7110
    :type max: float
7111 7112
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
7113 7114 7115 7116 7117
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
7118 7119
        min=min,
        max=max)
G
guosheng 已提交
7120 7121
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
7122 7123


7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7148
    :param name: The name of this layer. It is optional.
7149
    :type name: basestring
R
ranqiu 已提交
7150
    :param input: The input of this layer, which should be a sequence.
7151
    :type input: LayerOutput
R
ranqiu 已提交
7152
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7153
    :type starts: LayerOutput | None
R
ranqiu 已提交
7154
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7155
    :type ends: LayerOutput | None
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7187 7188


7189 7190
@wrap_name_default()
@layer_support()
7191
def kmax_seq_score_layer(input, name=None, beam_size=1):
7192
    """
R
ranqiu 已提交
7193
    This layer accepts one input which is scores over a sequence or a nested
7194 7195 7196 7197
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7198
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7199 7200


7201
    :param name: The name of this layer. It is optional.
7202
    :type name: basestring
R
ranqiu 已提交
7203 7204
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7205
    :type input: LayerOutput
R
ranqiu 已提交
7206 7207
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7208 7209 7210
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7211
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7212
                                            "accepts only one input.")
7213
    assert input.size == 1, (
7214
        "input of kmax_seq_score_layer is a score "
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7225 7226


7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7253
        conv = img_conv3d_layer(input=data, filter_size=1,
7254 7255 7256 7257 7258
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7259
    :param name: The name of this layer. It is optional.
7260
    :type name: basestring
R
ranqiu 已提交
7261
    :param input: The input of this layer.
7262
    :type input: LayerOutput
R
ranqiu 已提交
7263 7264
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7265
    :type filter_size: int | tuple | list
P
init  
peterzhang2029 已提交
7266
    :param num_filters: The number of filters. It is as same as the output image channel.
R
ranqiu 已提交
7267
    :type num_filters: int
7268
    :param act: Activation type. ReluActivation is the default activation.
7269
    :type act: BaseActivation
R
ranqiu 已提交
7270
    :param groups: The number of the filter groups.
7271
    :type groups: int
R
ranqiu 已提交
7272 7273
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7274
    :type stride: int | tuple | list
R
ranqiu 已提交
7275 7276
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7277
    :type padding: int | tuple | list
R
ranqiu 已提交
7278 7279 7280
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7281
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7282
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7283 7284
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7285
    :type num_channels: int
R
ranqiu 已提交
7286 7287
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7288
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7289
    :param shared_biases: Whether biases will be shared between filters or not.
7290
    :type shared_biases: bool
R
ranqiu 已提交
7291 7292
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7293
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7294
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7295
    :type trans: bool
R
ranqiu 已提交
7296
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7297 7298 7299
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7300 7301 7302 7303 7304 7305 7306
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7307 7308 7309 7310 7311 7312
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7313

C
chengduoZH 已提交
7314 7315 7316 7317 7318 7319
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7320

C
chengduoZH 已提交
7321 7322 7323 7324 7325 7326
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7373 7374


G
guosheng 已提交
7375 7376 7377 7378 7379
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7380
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7381
    the input matrix. For each element, the layer first re-scales it and then
7382 7383
    adds a bias to it.

X
xuwei06 已提交
7384
    This layer is very like the SlopeInterceptLayer, except the scale and
7385 7386
    bias are trainable.

G
guosheng 已提交
7387 7388 7389 7390 7391 7392 7393 7394
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7395
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7396
    :type name: basestring
R
ranqiu 已提交
7397 7398
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7399 7400
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7401
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7402 7403 7404
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7405
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7416 7417 7418 7419 7420 7421 7422 7423 7424


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7425
    :param input: The input of this layer.
7426 7427 7428
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7429
    :param size: The resized output dimension of this layer.
7430 7431 7432 7433 7434 7435
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7455 7456
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7457
    :type offsets: LayerOutput
R
ranqiu 已提交
7458
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7459
    :type sizes: LayerOutput
7460
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7461
    :type act: BaseActivation.
R
ranqiu 已提交
7462 7463 7464
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7490 7491


Y
yangyaming 已提交
7492 7493
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7494
    """
Y
yangyaming 已提交
7495 7496 7497 7498 7499 7500
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7501 7502 7503

    .. code-block:: python

Y
yangyaming 已提交
7504 7505 7506
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7522 7523
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7524 7525 7526 7527 7528 7529 7530
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7531
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7532 7533 7534 7535 7536
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7537
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7538
        parents=[input, indices],
Y
yangyaming 已提交
7539
        num_filters=input.num_filters,
Y
yangyaming 已提交
7540
        size=input.size)
7541 7542


7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7557 7558 7559 7560 7561
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7562
    .. math::
R
fix doc  
ranqiu 已提交
7563
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \\rangle x_i x_j
7564

7565 7566 7567 7568
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7569 7570

    For details of Factorization Machine, please refer to the paper:
7571
    Factorization machines.
7572

7573
    .. code-block:: python
W
wangmeng28 已提交
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7585 7586
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7587
                        the latent vector size.
7588 7589 7590
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7591 7592
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)