Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0af1c4a9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0af1c4a9
编写于
8月 21, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Follow comments and refine annotations on ScaleShiftLayer
上级
83abbce8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
11 addition
and
7 deletion
+11
-7
paddle/gserver/layers/ScaleShiftLayer.cpp
paddle/gserver/layers/ScaleShiftLayer.cpp
+4
-4
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+7
-3
未找到文件。
paddle/gserver/layers/ScaleShiftLayer.cpp
浏览文件 @
0af1c4a9
...
...
@@ -17,15 +17,15 @@ limitations under the License. */
namespace
paddle
{
/**
* A layer applies a
slope and an intercept to the input element-wise for
*
scaling and shifting. Noting that this layer is trainable which differs
*
from the SlopeInterceptLayer
.
* A layer applies a
linear transformation to each element in each row of
*
the input matrix. For each element, the layer first re-scale it and then
*
adds a bias to it
.
*
* \f[
* y = wx + b
* \f]
*
* Here, w is
scale and b is offset, which are scalars and trainable
.
* Here, w is
the scale and b is the bias. Both w and b are trainable scalars
.
*
*/
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0af1c4a9
...
...
@@ -6219,9 +6219,13 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1):
@
wrap_bias_attr_default
()
def
scale_shift_layer
(
input
,
name
=
None
,
param_attr
=
None
,
bias_attr
=
None
):
"""
A layer applies a slope and an intercept to the input element-wise for
scaling and shifting. Noting that this layer is trainable which differs
from the slope_intercept_layer.
A layer applies a linear transformation to each element in each row of
the input matrix. For each element, the layer first re-scale it and then
adds a bias to it.
This layer is very like the SlopeInterceptLayer, except the scale and
bias are trainable.
.. math::
y = w * x + b
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录