Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0752b3b7
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0752b3b7
编写于
11月 14, 2016
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add layer check for recurrent_group
上级
35c175dd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
21 addition
and
2 deletion
+21
-2
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+21
-2
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0752b3b7
...
...
@@ -2754,7 +2754,12 @@ class SubsequenceInput(object):
@
wrap_name_default
(
"recurrent_group"
)
def
recurrent_group
(
step
,
input
,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
):
def
recurrent_group
(
step
,
input
,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
,
is_train
=
True
):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
...
...
@@ -2819,6 +2824,12 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
:type targetInlink: LayerOutput|SubsequenceInput
:param is_train: recurrent_group is used for training (True) or generating (False).
If is training, one of the input type must be LayerOutput; else,
none of input type should be LayerOutput.
: type is_train: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -2866,6 +2877,7 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
seq_reversed
=
reverse
,
target_inlinkname
=
targetInlinkName
)
in_args
=
[]
has_LayerOutput
=
True
for
each_input
in
input
:
assert
is_single_input
(
each_input
)
if
isinstance
(
each_input
,
LayerOutput
):
...
...
@@ -2873,6 +2885,7 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
elif
isinstance
(
each_input
,
SubsequenceInput
):
in_args
.
append
(
each_input
.
input
)
else
:
has_LayerOutput
=
False
mem_name
=
"__%s_memory__"
%
each_input
.
input
.
name
mem
=
memory
(
name
=
mem_name
,
...
...
@@ -2886,6 +2899,8 @@ def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
mix
+=
identity_projection
(
mem
)
in_args
.
append
(
mem
)
assert
(
is_train
==
has_LayerOutput
)
layer_outs
=
step
(
*
in_args
)
if
isinstance
(
layer_outs
,
LayerOutput
):
...
...
@@ -3177,7 +3192,11 @@ def beam_search(step,
return
predict
tmp
=
recurrent_group
(
step
=
__real_step__
,
input
=
real_input
,
reverse
=
False
,
name
=
name
)
step
=
__real_step__
,
input
=
real_input
,
reverse
=
False
,
name
=
name
,
is_train
=
False
)
return
tmp
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录