“7307e955ad0a678bfc465a6ce2e31dc425eefc4b”上不存在“python/git@gitcode.net:RobotFutures/Paddle.git”
layers.py 210.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18

19
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
20 21
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
22
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
23
from .evaluators import *
24 25
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
26 27
from .attrs import *
from .default_decorators import *
28

Z
zhangjinchao01 已提交
29 30 31 32 33 34
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
113
    'huber_regression_cost',
114
    'huber_classification_cost',
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
135
    'sub_nested_seq_layer',
136
    'clip_layer',
137
    'slice_projection',
138
    'seq_slice_layer',
139
    'kmax_sequence_score_layer',
C
chengduoZH 已提交
140
    'img_pool3d_layer',
G
guosheng 已提交
141
    'scale_shift_layer',
Q
qijun 已提交
142
]
Z
zhangjinchao01 已提交
143 144 145 146 147 148 149


class LayerType(object):
    """
    Layer type enumerations.
    """

150 151 152 153 154 155 156 157
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
158
    POOLING_AVG = 'average'
159
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
160
    COST = 'cost'
161 162
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
163
    HSIGMOID = 'hsigmoid'
164 165 166 167 168 169
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
170
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
171 172 173
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
174
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
175 176 177 178
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
179
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
180 181 182 183 184 185 186

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
187
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
188 189 190
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
191
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
192
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
193
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
205
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
206
    BLOCK_EXPAND = "blockexpand"
207
    MAXOUT = "maxout"
Q
qijun 已提交
208
    SPP_LAYER = "spp"
D
dangqingqing 已提交
209
    PAD_LAYER = "pad"
W
wwhu 已提交
210
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
211
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
212 213 214

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
215 216
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
217 218 219 220 221

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
222
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
223

224 225
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
226
    HUBER_REGRESSION = 'huber_regression'
227
    HUBER_CLASSIFICATION = 'huber_classification'
228 229 230 231 232 233 234 235
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
236
    CROP_LAYER = 'crop'
C
caoying03 已提交
237
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
238
    CLIP_LAYER = 'clip'
239
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
240

241
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
242
    SCALE_SHIFT_LAYER = 'scale_shift'
243

Z
zhangjinchao01 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
264
    """
L
Luo Tao 已提交
265
    PaddlePaddle supports three sequence types:
266 267 268

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
269 270
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
271

L
Luo Tao 已提交
272
    Accordingly, AggregateLevel supports two modes:
273

L
Luo Tao 已提交
274
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
275
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
276 277
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
278
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
279 280 281
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
282 283
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
284 285 286
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
309
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
310 311
    """

Q
qijun 已提交
312 313 314 315 316 317 318 319 320
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
321
                 reverse=None):
Z
zhangjinchao01 已提交
322 323
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
324
        assert size is not None
Z
zhangjinchao01 已提交
325 326
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
327
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
328
        self.layer_type = layer_type
329 330
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
331 332 333 334 335 336 337 338
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
339
        self.reverse = reverse
Z
zhangjinchao01 已提交
340

341 342 343 344 345 346 347 348
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

349 350 351 352 353 354 355 356
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
357 358 359

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
360
DEVICE = 'device'
Z
zhangjinchao01 已提交
361 362 363


def layer_support(*attrs):
364
    attrs_list = list(attrs)
365
    attrs_list.append(DEVICE)
Q
qijun 已提交
366

Z
zhangjinchao01 已提交
367 368 369
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
370
            for attr in attrs_list:
Z
zhangjinchao01 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
387 388 389 390 391
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
431 432
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
433 434 435 436
    proj.origin = input
    return proj


437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
467 468
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
469 470 471 472
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
512 513
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
514 515 516 517
    proj.origin = input
    return proj


518
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
549
    :type input: LayerOutput
Z
zhangjinchao01 已提交
550 551
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
552
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
553 554 555 556 557 558
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
559 560
        if size is None:
            size = input.size - offset
Q
qijun 已提交
561
        proj = IdentityOffsetProjection(
562
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
563 564 565 566
        proj.origin = input
    return proj


567 568
def slice_projection(input, slices):
    """
569 570
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
571 572

    .. math::
573
       output = [input.slices()]
574 575 576 577 578 579 580 581 582 583 584 585 586 587

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
588
    :type slices: pair of int
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
628
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
629 630 631 632
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
633
@wrap_param_attr_default()
634
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
635
    """
636
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

650 651 652 653 654 655 656
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
657 658
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
659
    proj.origin = input
660
    return proj
Z
zhangjinchao01 已提交
661

662 663

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
664 665
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
666

Z
zhangjinchao01 已提交
667
    .. math::
L
Luo Tao 已提交
668
       out.row[i] += scale * (a.row[i] .* b.row[i])
669

Z
zhangjinchao01 已提交
670 671
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
672

Z
zhangjinchao01 已提交
673
    The example usage is:
674

Z
zhangjinchao01 已提交
675
    .. code-block:: python
676

L
Luo Tao 已提交
677
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
678

679 680 681 682
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
683 684
    :param scale: config scalar, default value is one.
    :type scale: float
685 686
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
687
    """
688 689 690
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
691
    a = kwargs.get('x', a)  # For Backward capacity.
692 693 694 695 696 697
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
698
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
699
    op.origin = [a, b]
700
    return op
Z
zhangjinchao01 已提交
701

702

Z
zhangjinchao01 已提交
703
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
704 705 706
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
743 744 745 746 747 748
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
762
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
779 780 781 782 783 784 785
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
786 787 788 789 790
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

791
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
792 793 794 795 796 797 798 799
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
800
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
801
            self.inputs.append(other)
802 803 804 805
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
806 807 808 809 810 811 812 813
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

814
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
815 816
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
817
        assert len(self.inputs) != 0
818
        ml = MixedLayer(
Z
zhangjinchao01 已提交
819 820 821 822 823
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
824
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
825 826 827
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
828
        self.finalized = True
Z
zhangjinchao01 已提交
829 830 831 832 833 834


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
835 836 837 838 839
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
884 885 886 887 888 889
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
890
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
891 892 893 894 895 896 897 898
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
899 900
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
901 902 903 904 905 906 907
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
908
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
909 910 911 912 913

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
914
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
915
    :type height: int|None
L
Luo Tao 已提交
916
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
917
    :type width: int|None
Z
zhangjinchao01 已提交
918 919
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
920
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
921 922
    :rtype: LayerOutput
    """
Q
qijun 已提交
923 924 925 926
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
927
        depth=depth,
L
Luo Tao 已提交
928 929
        height=height,
        width=width,
Q
qijun 已提交
930
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
931

932 933 934 935 936 937 938
    num_filters = None
    if height is not None and width is not None:
        num_filters = size / (width * height)
        assert num_filters * width * height == size, \
            "size=%s width=%s height=%s" % (size, width, height)

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
939 940 941 942


@wrap_name_default("embedding")
@wrap_param_attr_default()
943
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
959
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
960 961
    :rtype: LayerOutput
    """
Q
qijun 已提交
962 963 964 965 966 967
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
968 969 970 971 972 973 974 975 976
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
977 978 979 980 981 982 983
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
984 985 986 987 988 989 990 991 992 993 994 995
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
996
    which is equal to:
Z
zhangjinchao01 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1019
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1020 1021 1022 1023
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1024
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1025 1026
        param_attr = [param_attr]
    else:
1027
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1028 1029 1030 1031
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1032
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1033 1034

    Layer(
Q
qijun 已提交
1035 1036 1037
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1038 1039 1040 1041 1042
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1043 1044 1045
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1046

1047

1048
@wrap_name_default("print")
1049
def printer_layer(input, format=None, name=None):
1050 1051
    """
    Print the output value of input layers. This layer is useful for debugging.
1052 1053 1054 1055 1056

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1057
    :return: LayerOutput
1058
    """
1059 1060 1061 1062 1063
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1064 1065 1066

    Layer(
        name=name,
1067
        format=format,
1068
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1069
        inputs=[l.name for l in input], )
1070
    # this layer don't return anything, can not be input of other layer.
1071

X
xuwei06 已提交
1072 1073 1074 1075 1076 1077 1078
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1079

Y
yuan 已提交
1080
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1081
def priorbox_layer(input,
G
gaoyuan 已提交
1082
                   image,
G
gaoyuan 已提交
1083 1084 1085 1086 1087
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1088 1089 1090 1091 1092 1093 1094
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1095 1096
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1108
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1109 1110 1111
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1112
        inputs=[input.name, image.name],
Y
yuan 已提交
1113 1114 1115 1116 1117 1118
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1119 1120
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1121
        parents=[input, image],
G
gaoyuan 已提交
1122 1123 1124
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1142 1143
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1144
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1145
    :type input_conf: LayerOutput | List of LayerOutput
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1167
    input_loc_num = len(input_loc)
1168 1169 1170 1171 1172 1173

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1174
    input_conf_num = len(input_conf)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1216 1217
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1218
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1219
    :type input_conf: LayerOutput | List of LayerOutput.
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1241
    input_loc_num = len(input_loc)
1242 1243 1244 1245 1246 1247

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1248 1249
    input_conf_num = len(input_conf)

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1278 1279
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1280 1281 1282 1283 1284
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1285

G
gaoyuan 已提交
1286 1287 1288 1289 1290 1291 1292 1293
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1294
    assert input.num_filters is not None
G
gaoyuan 已提交
1295 1296
    Layer(
        name=name,
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1310 1311
    return LayerOutput(
        name,
1312
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1313 1314 1315 1316 1317
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1318 1319 1320 1321
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1322 1323 1324 1325
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1326
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1327
                  stride=-1,
Z
zhangjinchao01 已提交
1328 1329 1330 1331
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1332 1333
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1334 1335 1336
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1337
    operation. Note that for sequence with sub-sequence, the default value
1338 1339
    of stride is -1.

Z
zhangjinchao01 已提交
1340 1341 1342 1343 1344 1345
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1346
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1347

L
Luo Tao 已提交
1348 1349
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1350 1351 1352 1353 1354 1355 1356 1357
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1358
    :param stride: The step size between successive pooling regions.
1359
    :type stride: Int
Z
zhangjinchao01 已提交
1360 1361 1362 1363
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1364
    :return: LayerOutput object.
Y
Yu Yang 已提交
1365
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1366 1367
    """
    extra_dict = dict()
1368
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1369 1370
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1371 1372 1373 1374
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1375 1376
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1377 1378 1379
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1380 1381 1382 1383 1384 1385
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1386
        stride=stride,
Q
qijun 已提交
1387
        **extra_dict)
Z
zhangjinchao01 已提交
1388

Q
qijun 已提交
1389 1390
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1391

Q
qijun 已提交
1392

Z
zhangjinchao01 已提交
1393 1394
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1395
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1396 1397
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1398
@layer_support()
Q
qijun 已提交
1399 1400
def lstmemory(input,
              name=None,
1401
              size=None,
Q
qijun 已提交
1402 1403 1404 1405 1406 1407
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1408 1409 1410 1411 1412 1413 1414 1415
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1416
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1417

L
luotao02 已提交
1418
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1419

L
luotao02 已提交
1420
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1421

L
luotao02 已提交
1422
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1423

L
luotao02 已提交
1424
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1425 1426


C
caoying03 已提交
1427
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1428
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1429 1430 1431 1432
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1433

C
caoying03 已提交
1434
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1435 1436
    to config a simple plain lstm layer.

C
caoying03 已提交
1437 1438 1439 1440
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1441 1442 1443 1444 1445

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1446 1447
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1466
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1467 1468 1469 1470 1471 1472
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1473
    assert input.size is not None and input.size % 4 == 0
1474

1475 1476 1477 1478 1479
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1480 1481 1482
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1483

Q
qijun 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1494

Q
qijun 已提交
1495 1496 1497 1498 1499
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1500

Z
zhangjinchao01 已提交
1501 1502 1503

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1504
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1505 1506
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1507
@layer_support()
Q
qijun 已提交
1508
def grumemory(input,
1509
              size=None,
Q
qijun 已提交
1510 1511 1512 1513 1514 1515
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1537 1538
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1539 1540 1541 1542 1543

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1544 1545 1546
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1547 1548 1549 1550 1551

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1552
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1553
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1554 1555 1556
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1557

C
caoying03 已提交
1558 1559 1560
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1572 1573
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1574
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1590
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1591 1592 1593 1594
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1595 1596 1597 1598 1599 1600
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1601 1602 1603
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1604

Q
qijun 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1614

Q
qijun 已提交
1615 1616 1617 1618 1619
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1620

Z
zhangjinchao01 已提交
1621 1622 1623

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1624 1625
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1626
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1627
             stride=-1,
Z
zhangjinchao01 已提交
1628 1629 1630 1631
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1632 1633 1634
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1635
    of stride is -1.
1636

L
Luo Tao 已提交
1637 1638 1639 1640 1641 1642
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1643 1644 1645 1646 1647
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1648
    :param stride: The step size between successive pooling regions.
1649
    :type stride: Int
Z
zhangjinchao01 已提交
1650 1651
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1652
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1653 1654
    :rtype: LayerOutput
    """
1655 1656 1657 1658 1659 1660
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1661
    if agg_level == AggregateLevel.TO_SEQUENCE:
1662 1663
        assert stride == -1

Z
zhangjinchao01 已提交
1664 1665 1666 1667 1668
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1669
        stride=stride,
Q
qijun 已提交
1670 1671 1672 1673 1674 1675
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1676 1677 1678 1679


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1680 1681
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1682
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1683
              stride=-1,
Z
zhangjinchao01 已提交
1684 1685 1686 1687
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1688 1689 1690
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1691
    of stride is -1.
1692

L
Luo Tao 已提交
1693 1694 1695 1696 1697 1698
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1699 1700 1701 1702 1703
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1704
    :param stride: The step size between successive pooling regions.
1705
    :type stride: Int
Z
zhangjinchao01 已提交
1706 1707
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1708
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1709 1710
    :rtype: LayerOutput
    """
1711 1712 1713 1714 1715 1716 1717

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1718
    if agg_level == AggregateLevel.TO_SEQUENCE:
1719 1720
        assert stride == -1

Z
zhangjinchao01 已提交
1721 1722 1723 1724 1725
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1726
        stride=stride,
Q
qijun 已提交
1727 1728 1729 1730 1731 1732
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1733 1734 1735


class ExpandLevel(object):
1736 1737 1738 1739 1740
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1741 1742
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1743 1744
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1745 1746
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1747 1748
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1749 1750
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1751 1752
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1753

1754

Z
zhangjinchao01 已提交
1755 1756
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1757 1758
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1759 1760
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1761
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1773
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1788
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1798 1799 1800 1801 1802 1803
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1804 1805


X
xuwei06 已提交
1806
@wrap_name_default()
X
xuwei06 已提交
1807
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1808
@layer_support()
X
xuwei06 已提交
1809 1810 1811
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1812
                 act=None,
X
xuwei06 已提交
1813 1814
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1815
    """
X
xuwei06 已提交
1816
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1817

X
xuwei06 已提交
1818
    If as_row_vector:
X
xuwei06 已提交
1819
    .. math::
X
xuwei06 已提交
1820 1821 1822 1823 1824
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1825 1826 1827 1828 1829

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1830
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1831 1832 1833 1834 1835 1836

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1837 1838 1839 1840 1841 1842
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1843 1844
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1855
        active_type=act.name,
X
xuwei06 已提交
1856
        num_filters=num_repeats,
X
xuwei06 已提交
1857
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1858
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1859 1860 1861 1862 1863
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1864
        activation=act,
Q
qijun 已提交
1865 1866
        parents=[input])

X
xuwei06 已提交
1867

1868 1869 1870
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1871
@layer_support(ERROR_CLIPPING, DROPOUT)
1872 1873 1874 1875 1876 1877 1878 1879
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1880
    the dimension of each instance is M, and the input reshape_size is N, then the
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1951
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1952 1953
    :rtype: LayerOutput
    """
1954
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1955
    assert len(input) == 2
1956 1957 1958 1959 1960 1961 1962
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1963 1964 1965 1966
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1967 1968 1969 1970 1971 1972
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1973 1974


L
liaogang 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1991
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1992

L
liaogang 已提交
1993
    :param   input:        A input layer.
L
liaogang 已提交
1994
    :type    input:        LayerOutput.
L
liaogang 已提交
1995
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1996
    :type    out_size_x:   int|None
L
liaogang 已提交
1997
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1998
    :type    out_size_y:   int|None
L
liaogang 已提交
1999
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2000
    :type    name:         None|basestring
L
liaogang 已提交
2001
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2002 2003 2004 2005 2006 2007 2008
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2009
    assert input.num_filters is not None
L
liaogang 已提交
2010
    num_channels = input.num_filters
Q
qijun 已提交
2011 2012 2013 2014 2015 2016 2017
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2018
                channels=num_channels)),
Q
qijun 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2028

Z
zhangjinchao01 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2056
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2057 2058
    :rtype: LayerOutput
    """
2059 2060 2061
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2062 2063 2064
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2065
        inputs=[weight.name, input.name],
Q
qijun 已提交
2066 2067 2068
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2069 2070 2071 2072 2073 2074


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2075
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2076 2077

    .. math::
2078
       y  = w x
Z
zhangjinchao01 已提交
2079

2080 2081 2082 2083 2084
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2100
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2101 2102
    :rtype: LayerOutput
    """
2103 2104 2105
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2106 2107 2108 2109
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2110 2111 2112
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2113 2114 2115 2116 2117 2118


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2119
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2138
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2139 2140 2141 2142 2143 2144
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2145 2146 2147
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2148 2149


2150 2151
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2152
def rotate_layer(input, height, width, name=None, layer_attr=None):
2153
    """
H
Haonan 已提交
2154 2155
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2156 2157

    .. math::
H
Haonan 已提交
2158
       y(j,i,:) = x(M-i-1,j,:)
2159

H
Haonan 已提交
2160
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2161 2162 2163 2164 2165 2166

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2167 2168
                          height=100,
                          width=100)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2182 2183 2184
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2185
        width=width,
H
Haonan 已提交
2186 2187 2188 2189 2190 2191 2192 2193
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2194 2195


Z
zhangjinchao01 已提交
2196 2197
@wrap_name_default()
@layer_support()
2198
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2199 2200 2201 2202
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2203
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2204 2205 2206 2207 2208
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2209

2210 2211
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2212

L
Luo Tao 已提交
2213 2214 2215 2216 2217 2218
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2231
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2232 2233
    :rtype: LayerOutput
    """
2234
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2235 2236 2237 2238 2239 2240
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2241
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2242
    else:
2243 2244
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2245 2246 2247 2248 2249 2250
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2251
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2252
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2253

2254

Z
zhangjinchao01 已提交
2255 2256
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2257
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2258
@layer_support()
Q
qijun 已提交
2259 2260
def hsigmoid(input,
             label,
2261
             num_classes=None,
Q
qijun 已提交
2262 2263 2264 2265
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2277
                        label=data_layer)
Z
zhangjinchao01 已提交
2278 2279 2280 2281 2282 2283 2284

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2285
    :type num_classes: int|None
L
luotao02 已提交
2286 2287
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2288 2289 2290
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2291 2292
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2293 2294
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2295
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2296 2297 2298 2299
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2300 2301 2302 2303 2304 2305 2306 2307 2308
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2309 2310 2311
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2312 2313 2314 2315 2316
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2317 2318
    ipts_for_layer = []
    parents = []
2319
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2320
        assert isinstance(each_input, LayerOutput)
2321
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2322 2323 2324 2325
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2326
    l = Layer(
Z
zhangjinchao01 已提交
2327 2328 2329 2330 2331
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2332 2333 2334
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2335

2336

Z
zhangjinchao01 已提交
2337 2338 2339 2340 2341
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2351
                   dilation=1,
Q
qijun 已提交
2352 2353 2354 2355 2356 2357 2358
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2359
                   dilation_y=None,
2360 2361
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2362
    """
2363
    Convolution layer for image. Paddle can support both square and non-square
2364
    input currently.
Z
zhangjinchao01 已提交
2365 2366 2367 2368

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2369

2370
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2371
    and non-square input currently.
2372

X
xuwei06 已提交
2373
    The details of convolution transpose layer,
2374 2375 2376
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2377 2378 2379 2380
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2381 2382 2383
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2384
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2385 2386
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2387

L
Luo Tao 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2398 2399 2400 2401
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2402 2403 2404
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2405 2406 2407
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2408
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2409 2410 2411 2412 2413
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2414 2415 2416
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2417 2418
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2419 2420 2421
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2422 2423
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2424 2425 2426
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2427 2428
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
Z
zhangjinchao01 已提交
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2441 2442
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2443
    :param layer_type: specify the layer_type, default is None. If trans=True,
2444 2445
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2446
                       "cudnn_conv"
2447
    :type layer_type: String
D
dangqingqing 已提交
2448
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2449 2450 2451 2452 2453
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2454

Z
zhangjinchao01 已提交
2455
    if filter_size_y is None:
2456 2457 2458 2459 2460 2461
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2462
    if stride_y is None:
2463 2464 2465 2466 2467 2468
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2469
    if padding_y is None:
2470 2471 2472 2473 2474 2475
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2476 2477 2478 2479 2480 2481 2482
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2483 2484
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2485
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2486 2487 2488 2489
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2490

2491
    if layer_type:
W
wanghaoshuang 已提交
2492 2493
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2494
        if trans:
2495
            assert layer_type in ["exconvt", "cudnn_convt"]
2496 2497 2498 2499 2500
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2501

X
xuwei06 已提交
2502
    l = Layer(
Z
zhangjinchao01 已提交
2503
        name=name,
Q
qijun 已提交
2504 2505 2506 2507 2508
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2509
                dilation=dilation,
Q
qijun 已提交
2510 2511 2512 2513 2514
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2515
                dilation_y=dilation_y,
Q
qijun 已提交
2516 2517
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2518 2519 2520 2521
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2522
        type=lt,
Q
qijun 已提交
2523 2524 2525 2526 2527 2528 2529 2530
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2531 2532 2533 2534


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2545 2546
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2547 2548 2549 2550 2551 2552 2553
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2582
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2583
    :type padding: int
2584 2585
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2586 2587 2588 2589
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2590
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2591
    :type pool_size: int
2592 2593
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2594 2595
    :param num_channels: number of input channel.
    :type num_channels: int
2596
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2597 2598
                      MaxPooling.
    :type pool_type: BasePoolingType
2599
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2600
    :type stride: int
2601 2602
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2603 2604
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2605 2606 2607 2608
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2609 2610
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2621 2622 2623 2624
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2625
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2626
        if (
Y
Yu Yang 已提交
2627
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2628
        else pool_type.name
2629 2630 2631 2632
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2633
    l = Layer(
Z
zhangjinchao01 已提交
2634 2635
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2648
                    padding_y=padding_y))
Q
qijun 已提交
2649
        ],
2650
        ceil_mode=ceil_mode,
Q
qijun 已提交
2651 2652 2653 2654 2655 2656 2657
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2658 2659


C
chengduoZH 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
    :type padding: int|tuple|list
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
    :param pool_size: pooling window width
    :type pool_size: int|tuple|list
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
    :type stride: int|tuple|list
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2800 2801
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2802 2803 2804 2805 2806 2807
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2808 2809 2810 2811 2812
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2813 2814 2815 2816
    The example usage is:

    ..  code-block:: python

2817 2818 2819
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2820 2821
                        pool_type=MaxPooling())

Q
qijun 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2850
    l = Layer(
Q
qijun 已提交
2851 2852
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2853 2854 2855 2856 2857
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2858
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2870 2871 2872 2873
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2874
    l = Layer(
Q
qijun 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2894 2895 2896 2897


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2898 2899 2900 2901 2902 2903
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2904
                      layer_attr=None):
Z
zhangjinchao01 已提交
2905
    """
2906
    Response normalization across feature maps.
D
dangqingqing 已提交
2907 2908
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2909

L
Luo Tao 已提交
2910 2911 2912
    The example usage is:

    ..  code-block:: python
2913

L
Luo Tao 已提交
2914 2915
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2916
    :param name: layer name.
D
dangqingqing 已提交
2917
    :type name: None|basestring
Z
zhangjinchao01 已提交
2918 2919
    :param input: layer's input.
    :type input: LayerOutput
2920
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2921
    :type size: int
D
dangqingqing 已提交
2922
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2923
    :type scale: float
D
dangqingqing 已提交
2924
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2925 2926 2927 2928 2929
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2930
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2931 2932 2933
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2934
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2935 2936 2937


@wrap_bias_attr_default()
2938 2939
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2940 2941
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2942
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2943 2944 2945 2946 2947 2948 2949
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2971 2972 2973
    The example usage is:

    ..  code-block:: python
2974

L
Luo Tao 已提交
2975 2976
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2991
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
3019
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3030
    l = Layer(
Z
zhangjinchao01 已提交
3031
        name=name,
Q
qijun 已提交
3032 3033
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3034 3035 3036 3037 3038 3039
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
3040
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3041

Q
qijun 已提交
3042 3043 3044 3045 3046 3047 3048
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3076
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3077 3078 3079 3080 3081 3082
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3083 3084 3085
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3086 3087


G
guosheng 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3124 3125 3126
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3127
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3128
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3151 3152 3153
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3154 3155

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3156 3157
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3172
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3173 3174 3175 3176 3177 3178
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3179
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3180 3181 3182 3183 3184 3185 3186
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3187
    l = Layer(
Q
qijun 已提交
3188 3189 3190
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3191 3192
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3193
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3194

Q
qijun 已提交
3195 3196 3197 3198 3199 3200 3201
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3202 3203 3204 3205


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3206
@layer_support(DROPOUT, ERROR_CLIPPING)
3207
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3208 3209 3210 3211
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3212 3213 3214 3215 3216 3217
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3218 3219 3220
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3221
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3222 3223 3224 3225
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3226
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3227 3228 3229 3230 3231 3232 3233 3234
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3235
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3236 3237

    def __is_type__(o, tp):
3238
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3260 3261
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3262

Q
qijun 已提交
3263 3264
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3265

3266 3267
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3268

3269
    layer = Layer(
Q
qijun 已提交
3270 3271
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3272 3273
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3274
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3275
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3276

3277
    sz = layer.config.size
Z
zhangjinchao01 已提交
3278

Q
qijun 已提交
3279 3280 3281 3282 3283 3284 3285 3286
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3287 3288
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3289
@wrap_bias_attr_default(has_bias=False)
3290
@layer_support(DROPOUT, ERROR_CLIPPING)
3291 3292 3293 3294
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3295

3296
    Inputs:
X
xuwei06 已提交
3297
      - a = [a1, a2, ..., am]
3298
      - b = [b1, b2, ..., bn]
3299

X
xuwei06 已提交
3300 3301 3302 3303
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3321 3322 3323 3324
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3346
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3347 3348
def memory(name,
           size,
3349
           memory_name=None,
Q
qijun 已提交
3350 3351 3352 3353
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3374 3375 3376 3377 3378 3379 3380 3381 3382
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3383

3384 3385 3386 3387 3388 3389 3390
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3391 3392 3393
    :type name: basestring
    :param size: size of memory.
    :type size: int
3394 3395 3396
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3397
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3407
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3418 3419
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3420

3421 3422 3423 3424 3425 3426 3427 3428
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3429 3430

    lout = LayerOutput(
3431
        name=memory_name,
Q
qijun 已提交
3432 3433 3434
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3435 3436 3437 3438
    return lout


@wrap_bias_attr_default()
3439 3440
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3441 3442
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3443
@layer_support()
Q
qijun 已提交
3444 3445
def lstm_step_layer(input,
                    state,
3446
                    size=None,
Q
qijun 已提交
3447 3448 3449 3450 3451 3452
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3453
    """
3454 3455
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3456 3457 3458

    ..  math::

3459
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3460

3461
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3462

3463
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3464

3465
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3466

L
luotao02 已提交
3467
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3468 3469


L
luotao02 已提交
3470
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3471
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3472
    input vectors.
Z
zhangjinchao01 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3483 3484
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3485 3486 3487 3488
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3489 3490
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3509
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3510 3511
    :rtype: LayerOutput
    """
3512 3513 3514

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3515 3516 3517 3518 3519 3520 3521
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3522
        size=state.size,
Q
qijun 已提交
3523 3524
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3525

Q
qijun 已提交
3526 3527 3528 3529 3530 3531 3532
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3533 3534 3535


@wrap_bias_attr_default()
W
wangyang59 已提交
3536
@wrap_param_attr_default()
Q
qijun 已提交
3537
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3538 3539 3540
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3541 3542 3543 3544 3545 3546 3547
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3548
                   param_attr=None,
Q
qijun 已提交
3549
                   layer_attr=None):
Z
zhangjinchao01 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3560 3561
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3562
    :param layer_attr:
D
dangqingqing 已提交
3563
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3564 3565 3566 3567 3568 3569 3570 3571
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3572 3573 3574 3575
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3576
        # backward model compatibility.
3577
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3578 3579 3580 3581
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3582
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3583
    return LayerOutput(
Q
qijun 已提交
3584 3585
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3586
        parents=[input, output_mem],
Q
qijun 已提交
3587 3588
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3589 3590


Y
Yu Yang 已提交
3591 3592 3593 3594
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3595
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3663 3664 3665 3666
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3667 3668 3669 3670
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3680
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3681 3682 3683 3684 3685 3686 3687
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3688 3689 3690 3691 3692 3693 3694
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3695

Q
qijun 已提交
3696 3697 3698 3699 3700
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3701 3702 3703 3704 3705 3706 3707


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3708 3709 3710 3711 3712 3713 3714
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3715
    """
3716 3717
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3718

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3746
    :return: LayerOutput object.
3747
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3748
    """
Q
qijun 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3764 3765 3766 3767 3768 3769


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3770 3771
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3772
    """
3773

Z
zhangjinchao01 已提交
3774 3775 3776
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3777
        assert input.size is not None
Z
zhangjinchao01 已提交
3778
        if size is not None:
3779
            assert input.size == size
Z
zhangjinchao01 已提交
3780 3781


3782
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3783
    """
3784
    DEPRECATED.
Z
zhangjinchao01 已提交
3785 3786 3787 3788 3789 3790 3791 3792
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3793
    return input
Z
zhangjinchao01 已提交
3794 3795 3796


@wrap_name_default("recurrent_group")
3797
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3798
    """
C
caoying03 已提交
3799 3800 3801 3802 3803
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3848 3849
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3850
    :type reverse: bool
3851

3852 3853
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3854 3855 3856 3857 3858 3859 3860 3861 3862

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3863
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3864 3865 3866 3867
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3868
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3869
        input = [input]
3870
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3871 3872

    def is_in_links(x):
3873
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3874 3875 3876 3877

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3878
        name=name,
3879 3880
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3881 3882
    in_args = []
    for each_input in input:
3883
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3884
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3885
            mem = memory(
3886
                name=None,
Q
qijun 已提交
3887 3888
                size=each_input.input.size,
                boot_layer=each_input.input)
3889
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3890
            in_args.append(mem)
3891 3892
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3893

Z
zhangjinchao01 已提交
3894 3895 3896 3897 3898
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3899 3900 3901 3902 3903 3904
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3905 3906 3907

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3908
    for layer_out in layer_outs:
3909 3910
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3911 3912
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3913 3914 3915 3916 3917
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3918

Z
zhangjinchao01 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3947 3948

    def before_real_step(self):
Q
qijun 已提交
3949 3950 3951 3952 3953 3954 3955 3956 3957
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3958 3959 3960
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3961
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3986 3987 3988 3989
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4000

4001

H
Haonan 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4038

Z
zhangjinchao01 已提交
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
4055 4056
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
4057 4058 4059 4060 4061 4062
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4063
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4064 4065
    :rtype: LayerOutput
    """
Q
qijun 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4077 4078 4079


@wrap_name_default()
Q
qijun 已提交
4080 4081 4082 4083 4084 4085 4086
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4087
                num_results_per_sample=None):
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4099
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4100 4101 4102 4103
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4104 4105 4106 4107 4108
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4109 4110
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4111 4112
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4113 4114
                               bos_id=0,
                               eos_id=1,
4115
                               beam_size=5)
4116 4117 4118 4119 4120 4121 4122 4123 4124

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4125
                 step, and it is applied to sequences with arbitrary length by
4126 4127 4128 4129 4130
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4131 4132
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4133
                  In beam_search, none of the input's type should be LayerOutput.
4134
    :type input: list
4135 4136 4137
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4138
                   symbol is essential, since it is used to initialize the RNN
4139 4140 4141 4142 4143 4144 4145 4146
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4147 4148
    :param max_length: Max generated sequence length.
    :type max_length: int
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4159 4160
    :return: The generated word index.
    :rtype: LayerOutput
4161 4162
    """

Z
zhangjinchao01 已提交
4163 4164 4165 4166 4167
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4168
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4169 4170 4171 4172 4173 4174
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4175 4176 4177
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4178
        if isinstance(each_input, BaseGeneratedInput):
4179 4180
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4181
            generated_input_index = i
4182

Z
zhangjinchao01 已提交
4183 4184 4185
        else:
            real_input.append(each_input)

4186
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4187 4188 4189 4190 4191 4192 4193 4194

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4195 4196 4197 4198 4199 4200
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4201 4202 4203 4204 4205 4206

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4207
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4208 4209
        return predict

4210 4211
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4212

Q
qijun 已提交
4213

4214 4215
def __cost_input__(input, label, weight=None):
    """
4216
    inputs and parents for cost layers.
4217 4218 4219 4220
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4221
        assert weight.size == 1
4222 4223 4224
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4225

Z
zhangjinchao01 已提交
4226 4227

@wrap_name_default()
L
luotao1 已提交
4228
@layer_support()
4229
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4230
    """
L
Luo Tao 已提交
4231 4232 4233 4234
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4235
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4236 4237

    :param name: layer name.
4238
    :type name: basestring
Z
zhangjinchao01 已提交
4239
    :param input: Network prediction.
4240
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4241
    :param label: Data label.
4242 4243 4244 4245
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4246 4247
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4248 4249
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4250
    :return: LayerOutput object.
4251
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4252
    """
4253 4254
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4255 4256 4257 4258
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4259
        coeff=coeff,
Q
qijun 已提交
4260
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4261
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4262 4263


L
Luo Tao 已提交
4264 4265 4266
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4267
@wrap_name_default("cost")
4268
@layer_support()
Q
qijun 已提交
4269 4270 4271 4272
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4273
                        evaluator=classification_error_evaluator,
4274 4275
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4285 4286 4287
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4288
    :param evaluator: Evaluator method.
4289 4290
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4291 4292
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4293
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4294 4295 4296 4297 4298
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4299 4300 4301

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4302 4303 4304 4305
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4306
        coeff=coeff,
Q
qijun 已提交
4307
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4318
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4319

4320
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4321 4322 4323 4324 4325
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4326
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4327

4328

Q
qijun 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4338 4339
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4350 4351
       op = conv_operator(img=input1,
                          filter=input2,
4352
                          filter_size=3,
Z
zhangjinchao01 已提交
4353 4354 4355
                          num_filters=64,
                          num_channels=64)

4356 4357 4358 4359
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4360 4361
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4362 4363 4364
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4365
    :type filter_size_y: int
4366 4367
    :param num_filters: channel of output data.
    :type num_filters: int
4368 4369
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4370
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4371
    :type stride: int
Z
zhangjinchao01 已提交
4372
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4373
    :type stride_y: int
Z
zhangjinchao01 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4387

4388 4389
    if num_channels is None:
        num_channels = img.num_filters
4390 4391

    assert isinstance(filter, LayerOutput)
4392
    assert filter.size is not None
4393

4394 4395 4396
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4408

4409
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4410 4411
    return op

Q
qijun 已提交
4412

4413
@wrap_param_attr_default()
Q
qijun 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4424 4425
                    param_attr=None,
                    trans=False):
4426 4427 4428 4429 4430 4431 4432 4433 4434
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4435
       proj = conv_projection(input=input1,
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4450 4451
    :param num_channels: channel of input data.
    :type num_channels: int
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4464 4465
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4496
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4497 4498 4499 4500 4501
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4502 4503 4504
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4517 4518 4519 4520

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4521

D
dangqingqing 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4539

D
dangqingqing 已提交
4540
    For example,
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4563 4564

    The simply usage is:
D
dangqingqing 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4626
@wrap_name_default()
L
luotao1 已提交
4627 4628
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4640 4641 4642 4643
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4644 4645 4646 4647 4648

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4649
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4650 4651 4652

    :param name: layer name
    :type name: basestring
4653 4654
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4655
    :param b: input layer b.
4656
    :type b: LayerOutput
L
luotao1 已提交
4657 4658
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4659
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4660 4661
    :rtype: LayerOutput
    """
4662 4663
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4664 4665 4666
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4667
        inputs=[a.name, b.name],
Q
qijun 已提交
4668
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4669

Q
qijun 已提交
4670 4671
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4672 4673 4674 4675 4676


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4677
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4678
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4679 4680 4681 4682 4683 4684 4685 4686
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4687 4688 4689 4690 4691
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4692
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4693 4694

    In this formular:
4695 4696
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4697 4698
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4699
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4700 4701 4702 4703 4704

    The simple usage is:

    .. code-block:: python

4705
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4706 4707 4708

    :param name: layer name
    :type name: basestring
4709 4710 4711 4712
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4713
    :param size: the layer dimension.
L
luotao02 已提交
4714
    :type size: int.
Z
zhangjinchao01 已提交
4715 4716 4717
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4718
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4719 4720 4721 4722 4723 4724
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4725
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4726 4727
    :rtype: LayerOutput
    """
4728
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4729 4730 4731 4732 4733 4734
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4735 4736 4737 4738
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4739 4740 4741 4742 4743 4744


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4745
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4746 4747
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4748
                       select=None,
Q
qijun 已提交
4749 4750
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4751 4752 4753
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4754 4755 4756
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4767
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4768 4769 4770 4771 4772

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4773 4774
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4775
                   If is None, acts exactly like fc_layer.
4776
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4789
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4790 4791 4792 4793
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4794
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4795 4796
        param_attr = [param_attr]
    else:
4797
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4798 4799 4800 4801
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4802 4803 4804 4805
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4806
    Layer(
Q
qijun 已提交
4807 4808 4809
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4810 4811 4812
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4813
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4814 4815 4816 4817
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4818 4819 4820 4821 4822 4823 4824
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4825 4826 4827


@wrap_name_default()
L
luotao1 已提交
4828 4829
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4844 4845
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4846
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4847 4848
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4849
    l = Layer(
Z
zhangjinchao01 已提交
4850 4851 4852
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4853 4854 4855
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4856 4857 4858


@wrap_name_default()
L
luotao1 已提交
4859
@layer_support()
Q
qijun 已提交
4860 4861 4862 4863
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4864
                          layer_attr=None):
Z
zhangjinchao01 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4886 4887
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4888
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4889 4890 4891 4892 4893 4894 4895 4896
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4897 4898 4899
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4900 4901 4902


@wrap_name_default()
L
luotao1 已提交
4903
@layer_support()
Q
qijun 已提交
4904
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4905
    """
4906 4907 4908 4909
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4910 4911 4912

    .. math::

4913
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4914

4915 4916 4917 4918 4919
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4920

4921
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4922 4923

    In this formular:
4924 4925 4926 4927 4928 4929
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4930 4931 4932 4933 4934

    The simple usage is:

    .. code-block:: python

4935
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4936 4937
                                       size=elem_dim)

4938 4939 4940 4941
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4942 4943 4944 4945
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4946 4947
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4948
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4949 4950
    :rtype: LayerOutput
    """
4951 4952 4953 4954
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4955
            size = vectors.size / weights.size
4956 4957
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4958 4959
    Layer(
        name=name,
4960
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4961
        size=size,
4962
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4963 4964 4965
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4966

4967

4968
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4969

4970

Z
zhangjinchao01 已提交
4971
@wrap_name_default()
L
luotao1 已提交
4972
@layer_support()
Z
zhangjinchao01 已提交
4973 4974 4975 4976 4977 4978 4979
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4980
                       num_channels=None,
L
luotao1 已提交
4981 4982
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4983 4984
    """
    Expand feature map to minibatch matrix.
4985
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4986
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4997
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4998 4999
    convolution neural network, and before recurrent neural network.

5000 5001 5002 5003
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5004
       block_expand = block_expand_layer(input=layer,
5005
                                         num_channels=128,
5006 5007 5008 5009 5010
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
5011 5012
    :param input: The input layer.
    :type input: LayerOutput
5013 5014
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
5029 5030
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5031
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5032 5033
    :rtype: LayerOutput
    """
5034 5035 5036
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5054 5055


5056 5057
@wrap_name_default()
@layer_support()
5058
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5059 5060 5061 5062 5063
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5064
    So groups should be larger than 1, and the num of channels should be able
5065 5066
    to devided by groups.

X
xuwei06 已提交
5067 5068 5069 5070 5071 5072 5073 5074
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5075
    Please refer to Paper:
5076 5077 5078 5079
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5109 5110 5111 5112 5113 5114 5115 5116 5117
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5118 5119


Z
zhangjinchao01 已提交
5120
@wrap_name_default()
L
luotao1 已提交
5121
@layer_support()
Q
qijun 已提交
5122 5123 5124 5125 5126
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5127
              layer_attr=None):
Z
zhangjinchao01 已提交
5128 5129 5130 5131 5132
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5133 5134
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5135 5136
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5137 5138 5139 5140 5141 5142 5143 5144

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5145
    The example usage is:
Z
zhangjinchao01 已提交
5146 5147 5148 5149 5150 5151 5152 5153

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5154
    :param input: The input layer.
Z
zhangjinchao01 已提交
5155 5156 5157
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5158
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5159
    :type size: int
5160 5161
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
5162 5163
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5164 5165
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5166
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5167 5168 5169 5170
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5171 5172 5173 5174 5175
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5176
    Layer(
5177 5178 5179 5180
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5181
        inputs=[input.name, label.name],
Q
qijun 已提交
5182
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5183 5184
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5185

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5197
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5198
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5216 5217 5218 5219

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5220
    icml2006_GravesFGS06.pdf>`_.
5221 5222 5223

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5224 5225 5226
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5227 5228
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5229
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5230
          'linear' activation is expected instead in the 'input' layer.
5231

C
caoying03 已提交
5232
    The example usage is:
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5278
@wrap_name_default()
5279
@wrap_param_attr_default()
L
luotao1 已提交
5280
@layer_support()
Q
qijun 已提交
5281 5282 5283 5284 5285 5286
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5287
              coeff=1.0,
L
luotao1 已提交
5288
              layer_attr=None):
Z
zhangjinchao01 已提交
5289 5290 5291 5292
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5293
    The example usage is:
Z
zhangjinchao01 已提交
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5304
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5314 5315
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5316 5317
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5318
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5319 5320 5321 5322 5323
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5324 5325 5326 5327 5328 5329
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5330

Q
qijun 已提交
5331
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5332 5333 5334 5335
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5336 5337 5338 5339
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5340
        coeff=coeff,
Q
qijun 已提交
5341
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5342 5343 5344
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5345 5346 5347 5348
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5349

5350

Z
zhangjinchao01 已提交
5351
@wrap_name_default()
5352
@wrap_param_attr_default()
L
luotao1 已提交
5353
@layer_support()
Q
qijun 已提交
5354 5355 5356 5357 5358
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5359
                       layer_attr=None):
Z
zhangjinchao01 已提交
5360 5361 5362 5363 5364 5365 5366
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5367
    The example usage is:
L
Luo Tao 已提交
5368 5369 5370 5371 5372 5373

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5384 5385
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5386
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5387 5388 5389 5390 5391 5392
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5393
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5394 5395 5396 5397
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5398 5399 5400 5401
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5402
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5403 5404 5405
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5406 5407 5408 5409
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5410

Q
qijun 已提交
5411

Y
Yu Yang 已提交
5412
@wrap_act_default(act=SigmoidActivation())
5413
@wrap_bias_attr_default(has_bias=True)
5414
@wrap_param_attr_default()
5415 5416
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5417 5418
def nce_layer(input,
              label,
C
caoying03 已提交
5419
              num_classes=None,
Y
Yu Yang 已提交
5420
              act=None,
5421
              param_attr=None,
Q
qijun 已提交
5422 5423 5424 5425 5426 5427
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5428 5429 5430 5431 5432 5433 5434 5435 5436
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5437 5438
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5450
    :type num_classes: int
Y
Yu Yang 已提交
5451 5452
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5453 5454
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5455
    :param num_neg_samples: number of negative samples. Default is 10.
5456
    :type num_neg_samples: int
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5470 5471 5472 5473 5474 5475 5476 5477
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5478
    assert isinstance(input, collections.Sequence)
5479

5480 5481
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5482 5483
    if num_classes is None:
        num_classes = label.size
5484 5485 5486
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5487
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5488 5489
    if not isinstance(act, BaseActivation):
        raise TypeError()
5490

5491 5492
    ipts_for_layer = []
    parents = []
5493
    for each_input, attr in zip(input, param_attr):
5494
        assert isinstance(each_input, LayerOutput)
5495
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5506
    l = Layer(
5507 5508 5509 5510
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5511
        active_type=act.name,
5512 5513 5514
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5515 5516
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5517 5518 5519 5520 5521
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5522

5523

Z
zhangjinchao01 已提交
5524 5525 5526
"""
following are cost Layers.
"""
5527 5528


Z
zhangjinchao01 已提交
5529
@wrap_name_default()
L
luotao1 已提交
5530
@layer_support()
Q
qijun 已提交
5531 5532 5533 5534 5535 5536 5537
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5538
    """
5539
    A cost Layer for learning to rank using gradient descent. Details can refer
5540 5541
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5542 5543 5544 5545 5546
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5547
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5548

L
luotao02 已提交
5549
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5550

L
luotao02 已提交
5551
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5552 5553 5554 5555 5556 5557 5558 5559

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5560
    The example usage is:
Z
zhangjinchao01 已提交
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5581 5582
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5583
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5596 5597 5598 5599 5600 5601
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5602

X
xuwei06 已提交
5603
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5604

5605

Z
zhangjinchao01 已提交
5606
@wrap_name_default()
L
luotao1 已提交
5607
@layer_support()
Q
qijun 已提交
5608 5609 5610 5611 5612 5613
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5614 5615 5616
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5617
    The example usage is:
Z
zhangjinchao01 已提交
5618 5619 5620 5621 5622 5623 5624 5625

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5626
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5638 5639 5640
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5641 5642 5643
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5644 5645
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5646
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5647 5648
    :rtype: LayerOutput
    """
5649 5650 5651
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5652 5653 5654 5655 5656 5657 5658
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5659

Q
qijun 已提交
5660 5661
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5662

5663

Z
zhangjinchao01 已提交
5664
@wrap_name_default()
L
luotao1 已提交
5665
@layer_support()
5666 5667 5668 5669 5670 5671
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5672 5673 5674
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5675 5676
    The example usage is:

Z
zhangjinchao01 已提交
5677 5678
    .. code-block:: python

X
xuwei06 已提交
5679
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5680
                            label=label_layer)
Z
zhangjinchao01 已提交
5681 5682 5683 5684 5685 5686 5687

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5688 5689
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5690
    :type coeff: float.
5691 5692 5693 5694
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5695 5696
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5697
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5698 5699 5700
    :rtype: LayerOutput.
    """

5701
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5702 5703 5704
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5705
        inputs=ipts,
Q
qijun 已提交
5706 5707
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5708
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5709

5710

Z
zhangjinchao01 已提交
5711
@wrap_name_default()
L
luotao1 已提交
5712
@layer_support()
Q
qijun 已提交
5713 5714 5715 5716
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5717 5718
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5719 5720
    """
    A loss layer for multi class entropy with selfnorm.
5721
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5722

C
caoying03 已提交
5723 5724
    The example usage is:

Z
zhangjinchao01 已提交
5725 5726
    .. code-block:: python

X
xuwei06 已提交
5727
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5728
                                          label=label_layer)
Z
zhangjinchao01 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5740 5741
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5742
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5743 5744
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5745 5746 5747 5748 5749 5750 5751
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5752

Q
qijun 已提交
5753 5754 5755 5756 5757
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5758

5759

X
xuwei06 已提交
5760 5761 5762 5763 5764 5765
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5766 5767
    The example usage is:

X
xuwei06 已提交
5768 5769
    .. code-block:: python

L
Luo Tao 已提交
5770
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5781
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5782 5783 5784 5785 5786
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5787

Q
qijun 已提交
5788
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5789 5790


Z
zhangjinchao01 已提交
5791
@wrap_name_default()
L
luotao1 已提交
5792
@layer_support()
L
Luo Tao 已提交
5793 5794 5795 5796 5797 5798
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5799
    """
L
Luo Tao 已提交
5800 5801 5802 5803 5804 5805 5806 5807
    In statistics, the Huber loss is a loss function used in robust regression, 
    that is less sensitive to outliers in data than the squared error loss. 
    Given a prediction f(x), a label y and :math:`\delta`, the loss function 
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5808

C
caoying03 已提交
5809 5810
    The example usage is:

Z
zhangjinchao01 已提交
5811 5812
    .. code-block:: python

L
Luo Tao 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5842
@wrap_name_default()
L
luotao1 已提交
5843
@layer_support()
5844 5845 5846 5847 5848
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5849
    """
5850 5851 5852 5853 5854 5855 5856 5857
    For classification purposes, a variant of the Huber loss called modified Huber 
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and 
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber 
    loss is defined as:

    .. math:
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5858

C
caoying03 已提交
5859 5860
    The example usage is:

Z
zhangjinchao01 已提交
5861 5862
    .. code-block:: python

5863
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5873 5874
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5876 5877
    :rtype: LayerOutput.
    """
5878 5879 5880
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5881 5882
    Layer(
        name=name,
5883
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5884 5885 5886
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5887 5888
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5889

5890

Z
zhangjinchao01 已提交
5891
@wrap_name_default()
L
luotao1 已提交
5892
@layer_support()
Q
qijun 已提交
5893 5894 5895 5896
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5897
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5898 5899 5900
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5901 5902
    The example usage is:

Z
zhangjinchao01 已提交
5903 5904
    .. code-block:: python

X
xuwei06 已提交
5905
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5906
                                               label=label_layer)
Z
zhangjinchao01 已提交
5907 5908 5909 5910 5911 5912 5913 5914 5915

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5916 5917
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5918
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5919 5920 5921
    :rtype: LayerOutput
    """

5922 5923
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5940 5941 5942 5943


@wrap_name_default()
@layer_support()
5944
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5945 5946
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5947
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5948 5949 5950 5951 5952 5953 5954 5955 5956

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5957
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5958

D
dangqingqing 已提交
5959 5960 5961
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5962 5963
    The example usage is:

D
dangqingqing 已提交
5964 5965
    .. code-block:: python

5966 5967
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5968 5969 5970 5971 5972 5973 5974

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5975 5976
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5990
        coeff=coeff,
D
dangqingqing 已提交
5991 5992 5993
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6013 6014
    The example usage is:

W
wwhu 已提交
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6047 6048


6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6065 6066


D
dangqingqing 已提交
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
6089

D
dangqingqing 已提交
6090 6091 6092 6093 6094
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6095

D
dangqingqing 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6139 6140


6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6160 6161 6162 6163 6164 6165
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6166 6167 6168 6169 6170
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6171 6172 6173 6174 6175 6176

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6177 6178 6179 6180 6181 6182 6183 6184
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6185
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6186
    assert isinstance(param_attr, ParameterAttribute)
6187 6188 6189

    l = Layer(
        name=name,
C
caoying03 已提交
6190
        type=LayerType.PRELU,
C
caoying03 已提交
6191
        inputs=Input(input.name, **param_attr.attr),
6192 6193 6194 6195 6196 6197 6198
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6199 6200


6201
@wrap_name_default()
C
caoying03 已提交
6202
@layer_support(ERROR_CLIPPING, DROPOUT)
6203 6204 6205 6206 6207 6208 6209
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6210 6211
                     gate_bias_attr=True,
                     inproj_attr=None,
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6248 6249 6250 6251 6252 6253
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6276
        layer_attr=inproj_attr,
6277 6278 6279 6280 6281 6282 6283 6284 6285
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6286
        param_attr=gate_param_attr,
6287 6288 6289 6290 6291
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6292 6293


6294 6295
@wrap_name_default()
@layer_support()
6296
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6297
    """
6298
    The crop layer crops images by offset and shape. User can set crop shape by
6299
    args 'shape' explicitly or by reference input layer.
6300

6301 6302 6303
    The example usage is:

    .. code-block:: python
W
whs 已提交
6304
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6305 6306 6307 6308

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6309 6310
    :param offset: The crop offset
    :type offset: Sequence
6311 6312 6313 6314 6315 6316 6317
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6318
    :type shape: Sequence | None
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6341 6342


C
caoying03 已提交
6343 6344
@wrap_name_default()
@layer_support()
6345
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6346
    """
6347
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6348
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6349

C
caoying03 已提交
6350 6351 6352
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6353 6354 6355 6356

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6357 6358

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6359

C
caoying03 已提交
6360

6361 6362 6363
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6364 6365 6366 6367 6368 6369
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6370

6371 6372 6373 6374 6375 6376 6377
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6378
    l = Layer(
6379 6380
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6381 6382 6383 6384 6385 6386 6387
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6388 6389


G
guosheng 已提交
6390
@wrap_name_default("clip")
6391
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6392 6393 6394 6395 6396 6397 6398 6399 6400
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6401
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6402 6403 6404 6405 6406

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6407 6408 6409 6410
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6411 6412
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6413 6414 6415 6416 6417
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6418 6419
        min=min,
        max=max)
G
guosheng 已提交
6420 6421
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6422 6423


6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

    :param name: name of this layer.
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6488 6489


6490 6491 6492
@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6493
    """
C
caoying03 已提交
6494
    This layer accepts one input which are scores over a sequence or a nested
6495 6496 6497 6498 6499 6500 6501 6502 6503
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6504
    :param input: The input layer. It stores scores over a sequence or a nested
6505 6506 6507 6508 6509 6510 6511
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6512
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6513
                                            "accepts only one input.")
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6526 6527 6528 6529 6530 6531 6532


@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6533 6534
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6535 6536
    adds a bias to it.

X
xuwei06 已提交
6537
    This layer is very like the SlopeInterceptLayer, except the scale and
6538 6539
    bias are trainable.

G
guosheng 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
    :param bias_attr: The parameter attribute of shifting.
    :type bias_attr: ParameterAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)