layers.py 257.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491 492 493 494 495 496
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
578
    :param input: The input of this layer.
579
    :type input: LayerOutput
Z
zhangjinchao01 已提交
580 581
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
582
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
583 584 585 586 587 588
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
589 590
        if size is None:
            size = input.size - offset
Q
qijun 已提交
591
        proj = IdentityOffsetProjection(
592
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
593 594 595 596
        proj.origin = input
    return proj


597 598
def slice_projection(input, slices):
    """
599 600
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
601 602

    .. math::
603
       output = [input.slices()]
604 605 606 607 608 609 610 611 612

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
613
    :param input: The input of this layer.
614 615 616 617
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
618
    :type slices: pair of int
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
651
    :param input: The input of this layer.
X
xuwei06 已提交
652 653 654 655 656 657
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
658
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
659 660 661 662
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
663
@wrap_param_attr_default()
664
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
665
    """
666
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
680
    :param input: The input of this layer.
681 682 683 684 685 686
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
687 688
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
689
    proj.origin = input
690
    return proj
Z
zhangjinchao01 已提交
691

692 693

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
694 695
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
696

Z
zhangjinchao01 已提交
697
    .. math::
L
Luo Tao 已提交
698
       out.row[i] += scale * (a.row[i] .* b.row[i])
699

Z
zhangjinchao01 已提交
700 701
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
702

Z
zhangjinchao01 已提交
703
    The example usage is:
704

Z
zhangjinchao01 已提交
705
    .. code-block:: python
706

L
Luo Tao 已提交
707
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
708

709 710 711 712
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
713 714
    :param scale: config scalar, default value is one.
    :type scale: float
715 716
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
717
    """
718 719 720
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
721
    a = kwargs.get('x', a)  # For Backward capacity.
722 723 724 725 726 727
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
728
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
729
    op.origin = [a, b]
730
    return op
Z
zhangjinchao01 已提交
731

732

Z
zhangjinchao01 已提交
733
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
734 735 736
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
751
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
761
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
773 774 775 776 777 778
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
792
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
793
        """
R
ranqiu 已提交
794
        :param name: The name of this layer.
Z
zhangjinchao01 已提交
795
        :type name: basestring
R
ranqiu 已提交
796
        :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
797
        :type size: int
R
ranqiu 已提交
798
        :param act: Activation type.
Z
zhangjinchao01 已提交
799
        :type act: BaseActivation
R
ranqiu 已提交
800 801 802
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
803
        :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
804 805 806
        :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                           details.
        :type layer_attr: ExtraLayerAttribute | None
Z
zhangjinchao01 已提交
807
        """
Q
qijun 已提交
808 809 810 811 812 813 814
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
815 816 817 818 819
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

820
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
821 822 823 824 825 826 827 828
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
829
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
830
            self.inputs.append(other)
831 832 833 834
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
835 836 837 838 839 840 841 842
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

843
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
844 845
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
846
        assert len(self.inputs) != 0
847
        ml = MixedLayer(
Z
zhangjinchao01 已提交
848 849 850 851 852
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
853
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
854 855 856
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
857
        self.finalized = True
Z
zhangjinchao01 已提交
858 859 860 861 862 863


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
864 865 866 867 868
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
869 870
                layer_attr=None):
    """
R
ranqiu 已提交
871 872
    Mixed Layer. A mixed layer will add all inputs together, then activate the sum.
    Each input is a projection or operator.
Z
zhangjinchao01 已提交
873 874 875

    There are two styles of usages.

R
ranqiu 已提交
876
    1. When the parameter input is not set, use mixed_layer like this:
Z
zhangjinchao01 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

R
ranqiu 已提交
892
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
893
    :type name: basestring
R
ranqiu 已提交
894
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
895
    :type size: int
R
ranqiu 已提交
896
    :param input: The input of this layer. It is an optional parameter.
897
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
898
    :type act: BaseActivation
R
ranqiu 已提交
899 900 901
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
902
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
903 904
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
905
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
906
    :return: MixedLayerType object.
Z
zhangjinchao01 已提交
907 908 909 910 911 912
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
913 914 915 916 917 918
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
919
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
928 929
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
937
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
938

R
ranqiu 已提交
939
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
940
    :type name: basestring
R
ranqiu 已提交
941
    :param size: The dimension of this data layer.
Z
zhangjinchao01 已提交
942
    :type size: int
R
ranqiu 已提交
943
    :param height: The height of the input image data.
R
ranqiu 已提交
944
    :type height: int | None
R
ranqiu 已提交
945
    :param width: The width of the input image data.
R
ranqiu 已提交
946
    :type width: int | None
R
ranqiu 已提交
947 948 949
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
950
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
951 952
    :rtype: LayerOutput
    """
Q
qijun 已提交
953 954 955 956
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
957
        depth=depth,
L
Luo Tao 已提交
958 959
        height=height,
        width=width,
Q
qijun 已提交
960
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
961

C
chengduoZH 已提交
962 963
    if depth is None:
        depth = 1
964 965
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
966 967
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
968
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
969 970

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
971 972 973 974


@wrap_name_default("embedding")
@wrap_param_attr_default()
975
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
976 977 978 979
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

980
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
981
    :type name: basestring
R
ranqiu 已提交
982
    :param input: The input of this layer, whose type must be Index Data.
Z
zhangjinchao01 已提交
983
    :type input: LayerOutput
R
ranqiu 已提交
984
    :param size: The dimension of the embedding vector.
Z
zhangjinchao01 已提交
985 986 987
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
988 989 990
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
991
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
992
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
993 994
    :rtype: LayerOutput
    """
Q
qijun 已提交
995 996 997 998 999 1000
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1010 1011 1012 1013 1014 1015 1016
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1017
    """
R
ranqiu 已提交
1018
    The fully connected layer.
Z
zhangjinchao01 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1029
    which is equal to:
Z
zhangjinchao01 已提交
1030 1031 1032 1033 1034 1035

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1036
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1037
    :type name: basestring
R
ranqiu 已提交
1038 1039
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1040
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
1041
    :type size: int
1042
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1043
    :type act: BaseActivation
R
ranqiu 已提交
1044
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
Z
zhangjinchao01 已提交
1045
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1046 1047 1048
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1049
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1050 1051
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1052
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1053
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1054 1055 1056 1057
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1058
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1059 1060
        param_attr = [param_attr]
    else:
1061
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1062 1063
            assert len(input) == len(param_attr)
        else:
1064
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1065
                logger.fatal(
W
wangmeng28 已提交
1066 1067 1068 1069 1070
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1071 1072
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1073
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1074 1075

    Layer(
Q
qijun 已提交
1076 1077 1078
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1079 1080 1081 1082 1083
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1084 1085 1086
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1087

1088

1089
@wrap_name_default("print")
1090
def printer_layer(input, format=None, name=None):
1091
    """
R
ranqiu 已提交
1092 1093
    Print the output value of the layers specified by the parameter input.
    This layer is useful for debugging.
1094

1095
    :param name: The name of this layer. It is optional.
1096
    :type name: basestring
R
ranqiu 已提交
1097 1098
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
1099 1100
    :return: LayerOutput object.
    :rtype: LayerOutput
1101
    """
1102 1103 1104 1105 1106
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1107 1108 1109

    Layer(
        name=name,
1110
        format=format,
1111
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1112
        inputs=[l.name for l in input], )
1113
    # this layer don't return anything, can not be input of other layer.
1114

X
xuwei06 已提交
1115 1116 1117 1118 1119 1120 1121
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1122

Y
yuan 已提交
1123
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1124
def priorbox_layer(input,
G
gaoyuan 已提交
1125
                   image,
G
gaoyuan 已提交
1126 1127 1128 1129 1130
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1131 1132 1133
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1134
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1135
    :type name: basestring
R
ranqiu 已提交
1136
    :param input: The input of this layer.
Y
yuan 已提交
1137
    :type input: LayerOutput
G
gaoyuan 已提交
1138 1139
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1140 1141 1142
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
R
ranqiu 已提交
1143
    :type min_size: The minimum size of the priorbox width/height.
Y
yuan 已提交
1144
    :param min_size: list
R
ranqiu 已提交
1145
    :type max_size: The maximum size of the priorbox width/height. It could be NULL.
Y
yuan 已提交
1146
    :param max_size: list
R
ranqiu 已提交
1147 1148
    :return: LayerOutput object.
    :rtype: LayerOutput
Y
yuan 已提交
1149 1150 1151
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1152
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1153 1154 1155
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1156
        inputs=[input.name, image.name],
Y
yuan 已提交
1157 1158 1159 1160 1161 1162
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1163 1164
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1165
        parents=[input, image],
G
gaoyuan 已提交
1166 1167 1168
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1184
    :param name: The name of this layer. It is optional.
1185
    :type name: basestring
R
ranqiu 已提交
1186
    :param input_loc: The input predicted locations.
Y
yangyaming 已提交
1187
    :type input_loc: LayerOutput | List of LayerOutput
1188
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1189
    :type input_conf: LayerOutput | List of LayerOutput
1190 1191 1192 1193 1194 1195 1196 1197
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
R
ranqiu 已提交
1198 1199
    :param neg_pos_ratio: The ratio of the negative bounding box to
                          the positive bounding box.
1200
    :type neg_pos_ratio: float
R
ranqiu 已提交
1201
    :param neg_overlap: The negative bounding box overlap threshold.
1202 1203 1204
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1205 1206
    :return: LayerOutput object.
    :rtype: LayerOutput
1207 1208 1209 1210 1211 1212
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1213
    input_loc_num = len(input_loc)
1214 1215 1216 1217 1218 1219

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1220
    input_conf_num = len(input_conf)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1258 1259
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1260

1261
    :param name: The name of this layer. It is optional.
1262
    :type name: basestring
Y
yangyaming 已提交
1263 1264
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1265
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1266
    :type input_conf: LayerOutput | List of LayerOutput.
1267 1268
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
R
ranqiu 已提交
1269
    :param num_classes: The number of the classes.
1270 1271 1272
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
R
ranqiu 已提交
1273
    :param nms_top_k: The bounding boxes number kept of the NMS's output.
1274
    :type nms_top_k: int
R
ranqiu 已提交
1275
    :param keep_top_k: The bounding boxes number kept of the layer's output.
1276
    :type keep_top_k: int
R
ranqiu 已提交
1277
    :param confidence_threshold: The classification confidence threshold.
1278 1279 1280
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
R
ranqiu 已提交
1281 1282
    :return: LayerOutput object.
    :rtype: LayerOutput
1283 1284 1285 1286 1287 1288
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1289
    input_loc_num = len(input_loc)
1290 1291 1292 1293 1294 1295

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1296 1297
    input_conf_num = len(input_conf)

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1326 1327 1328 1329 1330 1331
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1332
                   num_channels=None,
G
guosheng 已提交
1333 1334 1335 1336 1337
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

R
ranqiu 已提交
1338
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
R
ranqiu 已提交
1350
    :param num_channels: The number of the input channels.
G
guosheng 已提交
1351
    :type num_channels: int
R
ranqiu 已提交
1352 1353
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
1354
    """
G
guosheng 已提交
1355 1356 1357 1358
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1359 1360 1361 1362 1363 1364
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1365 1366
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1367 1368
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1369 1370


1371 1372
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1373
    """
R
ranqiu 已提交
1374 1375 1376 1377
    Normalize a layer's output. This layer is necessary for ssd. This
    layer applys normalization across the channels of each sample to
    a convolutional layer's output and scales the output by a group of
    trainable factors whose dimensions equal to the channel's number.
G
gaoyuan 已提交
1378

1379
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1380
    :type name: basestring
R
ranqiu 已提交
1381
    :param input: The input of this layer.
G
gaoyuan 已提交
1382
    :type input: LayerOutput
R
ranqiu 已提交
1383
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
G
gaoyuan 已提交
1384
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1385 1386
    :return: LayerOutput object.
    :rtype: LayerOutput
G
gaoyuan 已提交
1387
    """
1388
    assert input.num_filters is not None
G
gaoyuan 已提交
1389 1390
    Layer(
        name=name,
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1404 1405
    return LayerOutput(
        name,
1406
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1407 1408 1409 1410 1411
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1412 1413 1414 1415
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1416 1417 1418 1419
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1420
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1421
                  stride=-1,
Z
zhangjinchao01 已提交
1422 1423 1424 1425
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1426
    If stride > 0, this layer slides a window whose size is determined by stride,
R
ranqiu 已提交
1427 1428 1429
    and returns the pooling value of the sequence in the window as the output. Thus,
    a long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1430

Z
zhangjinchao01 已提交
1431 1432 1433 1434 1435 1436
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1437
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1438

L
Luo Tao 已提交
1439 1440
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1441
    :type agg_level: AggregateLevel
1442
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1443
    :type name: basestring
R
ranqiu 已提交
1444
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1445
    :type input: LayerOutput
R
ranqiu 已提交
1446
    :param pooling_type: Type of pooling. MaxPooling is the default pooling.
R
ranqiu 已提交
1447
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1448
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1449
    :type stride: int
R
ranqiu 已提交
1450 1451 1452
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1453
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1454 1455
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1456
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1457
    :return: LayerOutput object.
Y
Yu Yang 已提交
1458
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1459 1460
    """
    extra_dict = dict()
1461
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1462 1463
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1464 1465 1466 1467
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1468 1469
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1470 1471 1472
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1473 1474 1475 1476 1477 1478
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1479
        stride=stride,
Q
qijun 已提交
1480
        **extra_dict)
Z
zhangjinchao01 已提交
1481

Q
qijun 已提交
1482 1483
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1484

Q
qijun 已提交
1485

Z
zhangjinchao01 已提交
1486 1487
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1488
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1489 1490
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1491
@layer_support()
Q
qijun 已提交
1492 1493
def lstmemory(input,
              name=None,
1494
              size=None,
Q
qijun 已提交
1495 1496 1497 1498 1499 1500
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1501 1502 1503 1504 1505 1506 1507 1508
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1509
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1510

L
luotao02 已提交
1511
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1512

L
luotao02 已提交
1513
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1514

L
luotao02 已提交
1515
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1516

L
luotao02 已提交
1517
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1518 1519


C
caoying03 已提交
1520
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1521
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1522 1523 1524 1525
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1526

C
caoying03 已提交
1527
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1528 1529
    to config a simple plain lstm layer.

R
ranqiu 已提交
1530 1531 1532
    Reference:
        `Generating Sequences With Recurrent Neural Networks
        <https://arxiv.org/pdf/1308.0850.pdf>`_
Z
zhangjinchao01 已提交
1533

R
ranqiu 已提交
1534
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1535
    :type name: basestring
R
ranqiu 已提交
1536
    :param size: DEPRECATED. The dimension of the lstm cell.
1537
    :type size: int
R
ranqiu 已提交
1538
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1539
    :type input: LayerOutput
R
ranqiu 已提交
1540
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1541
    :type reverse: bool
1542
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1543
    :type act: BaseActivation
R
ranqiu 已提交
1544 1545
    :param gate_act: Activation type of this layer's gates. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
1546
    :type gate_act: BaseActivation
R
ranqiu 已提交
1547
    :param state_act: Activation type of the state. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1548
    :type state_act: BaseActivation
R
ranqiu 已提交
1549 1550 1551
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1552
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1553 1554 1555 1556
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1557
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1558
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1559 1560 1561 1562 1563 1564
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1565
    assert input.size is not None and input.size % 4 == 0
1566

1567 1568 1569 1570 1571
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1572 1573 1574
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1575

Q
qijun 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1586

Q
qijun 已提交
1587 1588 1589 1590 1591
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1592

Z
zhangjinchao01 已提交
1593 1594 1595

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1596
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1597 1598
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1599
@layer_support()
Q
qijun 已提交
1600
def grumemory(input,
1601
              size=None,
Q
qijun 已提交
1602 1603 1604 1605 1606 1607
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1629 1630
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1631 1632 1633 1634 1635

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1636 1637 1638
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1639 1640 1641 1642 1643

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1644
    NOTE: In PaddlePaddle's implementation, the multiplication operations
R
ranqiu 已提交
1645 1646
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed
    in gate_recurrent layer. Consequently, an additional mixed_layer with
C
caoying03 已提交
1647 1648
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1649

R
ranqiu 已提交
1650 1651 1652
    Reference:
        `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
        <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1653 1654 1655 1656 1657 1658 1659

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

R
ranqiu 已提交
1660 1661
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
1662
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1663
    :type input: LayerOutput.
R
ranqiu 已提交
1664
    :param size: DEPRECATED. The dimension of the gru cell.
1665
    :type size: int
R
ranqiu 已提交
1666
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1667
    :type reverse: bool
R
ranqiu 已提交
1668
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1669 1670
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
R
ranqiu 已提交
1671 1672 1673
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation. This activation affects the :math:`z_t`
                     and :math:`r_t`. It is the :math:`\\sigma` in the above formula.
Z
zhangjinchao01 已提交
1674
    :type gate_act: BaseActivation
R
ranqiu 已提交
1675 1676 1677
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1678
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1679 1680 1681 1682
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1683
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1684
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1685 1686 1687 1688
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1689 1690 1691 1692 1693 1694
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1695 1696 1697
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1698

Q
qijun 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1708

Q
qijun 已提交
1709 1710 1711 1712 1713
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1714

Z
zhangjinchao01 已提交
1715 1716 1717

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1718 1719
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1720
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1721
             stride=-1,
Z
zhangjinchao01 已提交
1722 1723 1724 1725
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

R
ranqiu 已提交
1726 1727 1728 1729
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the last value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1730

L
Luo Tao 已提交
1731 1732 1733 1734 1735 1736
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1737
    :param agg_level: Aggregated level
R
ranqiu 已提交
1738
    :type agg_level: AggregateLevel
1739
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1740
    :type name: basestring
R
ranqiu 已提交
1741
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1742
    :type input: LayerOutput
L
Luo Tao 已提交
1743
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1744 1745 1746 1747
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1748
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1749 1750
    :rtype: LayerOutput
    """
1751 1752 1753 1754 1755 1756
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1757
    if agg_level == AggregateLevel.TO_SEQUENCE:
1758 1759
        assert stride == -1

Z
zhangjinchao01 已提交
1760 1761 1762 1763 1764
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1765
        stride=stride,
Q
qijun 已提交
1766 1767 1768 1769 1770 1771
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1772 1773 1774 1775


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1776 1777
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1778
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1779
              stride=-1,
Z
zhangjinchao01 已提交
1780 1781 1782 1783
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

R
ranqiu 已提交
1784 1785 1786 1787
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the first value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1788

L
Luo Tao 已提交
1789 1790 1791 1792 1793 1794
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1795
    :param agg_level: aggregation level
R
ranqiu 已提交
1796
    :type agg_level: AggregateLevel
1797
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1798
    :type name: basestring
R
ranqiu 已提交
1799
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1800
    :type input: LayerOutput
L
Luo Tao 已提交
1801
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1802 1803 1804
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1805
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1806
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1807 1808
    :rtype: LayerOutput
    """
1809 1810 1811 1812 1813 1814 1815

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1816
    if agg_level == AggregateLevel.TO_SEQUENCE:
1817 1818
        assert stride == -1

Z
zhangjinchao01 已提交
1819 1820 1821 1822 1823
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1824
        stride=stride,
Q
qijun 已提交
1825 1826 1827 1828 1829 1830
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1831 1832 1833


class ExpandLevel(object):
1834 1835 1836 1837 1838
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1839 1840
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1841 1842
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1843 1844
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1845 1846
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1847 1848
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1849 1850
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1851

1852

Z
zhangjinchao01 已提交
1853 1854
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1855 1856
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1857 1858
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1859
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1860 1861
                 layer_attr=None):
    """
R
ranqiu 已提交
1862 1863
    A layer for expanding dense data or (sequence data where the length of each
    sequence is one) to sequence data.
Z
zhangjinchao01 已提交
1864 1865 1866 1867 1868 1869 1870

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1871
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1872

R
ranqiu 已提交
1873
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1874
    :type input: LayerOutput
R
ranqiu 已提交
1875 1876 1877
    :param expand_as: Expand the input according to this layer's sequence infomation. And
                      after the operation, the input expanded will have the same number of
                      elememts as this layer.
Z
zhangjinchao01 已提交
1878
    :type expand_as: LayerOutput
1879
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1880
    :type name: basestring
R
ranqiu 已提交
1881 1882 1883
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1884
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1885
    :param expand_level: Whether the input layer is a sequence or the element of a sequence.
Z
zhangjinchao01 已提交
1886
    :type expand_level: ExpandLevel
R
ranqiu 已提交
1887 1888
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1889
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1890
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1900 1901 1902 1903 1904 1905
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1906 1907


X
xuwei06 已提交
1908
@wrap_name_default()
X
xuwei06 已提交
1909
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1910
@layer_support()
X
xuwei06 已提交
1911 1912 1913
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1914
                 act=None,
X
xuwei06 已提交
1915 1916
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1917
    """
X
xuwei06 已提交
1918
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1919

X
xuwei06 已提交
1920
    If as_row_vector:
R
ranqiu 已提交
1921

X
xuwei06 已提交
1922
    .. math::
X
xuwei06 已提交
1923
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1924

X
xuwei06 已提交
1925
    If not as_row_vector:
R
ranqiu 已提交
1926

X
xuwei06 已提交
1927 1928 1929
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1930 1931 1932 1933 1934

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1935
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1936

R
ranqiu 已提交
1937
    :param input: The input of this layer.
X
xuwei06 已提交
1938
    :type input: LayerOutput
R
ranqiu 已提交
1939
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1940
    :type num_repeats: int
1941
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1942 1943 1944 1945 1946
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1947
    :type as_row_vector: bool
1948
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1949
    :type act: BaseActivation
R
ranqiu 已提交
1950 1951
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1952 1953 1954 1955 1956 1957 1958 1959
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1960
        active_type=act.name,
X
xuwei06 已提交
1961
        num_filters=num_repeats,
X
xuwei06 已提交
1962
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1963
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1964 1965 1966 1967 1968
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1969
        activation=act,
Q
qijun 已提交
1970 1971
        parents=[input])

X
xuwei06 已提交
1972

1973 1974 1975
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1976
@layer_support(ERROR_CLIPPING, DROPOUT)
1977 1978 1979 1980 1981 1982 1983 1984
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1985
    the dimension of each instance is M, and the input reshape_size is N, then the
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1996
    :param input: The input of this layer.
1997
    :type input: LayerOutput
R
ranqiu 已提交
1998
    :param reshape_size: The dimension of the reshaped sequence.
1999
    :type reshape_size: int
2000
    :param name: The name of this layer. It is optional.
2001
    :type name: basestring
2002
    :param act: Activation type. IdentityActivation is the default activation.
2003
    :type act: BaseActivation
R
ranqiu 已提交
2004 2005
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2006
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
2007 2008 2009
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2010
    :type bias_attr: ParameterAttribute | None | bool | Any
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2029 2030 2031 2032
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2033
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2049 2050
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2051 2052
    :param weight: Weight layer.
    :type weight: LayerOutput
2053
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2054
    :type name: basestring
R
ranqiu 已提交
2055 2056
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2057
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2058
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2059 2060
    :rtype: LayerOutput
    """
2061
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2062
    assert len(input) == 2
2063 2064 2065 2066 2067 2068 2069
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2070 2071 2072 2073
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2074 2075 2076 2077 2078 2079
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2080 2081


L
liaogang 已提交
2082 2083 2084 2085 2086 2087 2088 2089
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2090
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2091 2092 2093 2094 2095 2096 2097

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2098
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2099

R
ranqiu 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2111
    :return: LayerOutput object.
R
ranqiu 已提交
2112
    :rtype: LayerOutput
L
liaogang 已提交
2113 2114 2115 2116
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2117
    assert input.num_filters is not None
L
liaogang 已提交
2118
    num_channels = input.num_filters
Q
qijun 已提交
2119 2120 2121 2122 2123 2124 2125
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2126
                channels=num_channels)),
Q
qijun 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2136

Z
zhangjinchao01 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2147 2148
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2149 2150 2151 2152 2153 2154 2155

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2156
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2157
    :type input: LayerOutput
R
ranqiu 已提交
2158
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2159
    :type weight: LayerOutput
2160
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2161
    :type name: basestring
R
ranqiu 已提交
2162 2163
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2164
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2165
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2166 2167
    :rtype: LayerOutput
    """
2168 2169 2170
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2171 2172 2173
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2174
        inputs=[weight.name, input.name],
Q
qijun 已提交
2175 2176 2177
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2178 2179 2180 2181 2182 2183


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2184
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2185 2186

    .. math::
2187
       y  = w x
Z
zhangjinchao01 已提交
2188

2189 2190 2191 2192 2193
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2194 2195 2196 2197 2198 2199 2200

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2201
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2202
    :type input: LayerOutput
R
ranqiu 已提交
2203
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2204
    :type weight: LayerOutput
2205
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2206
    :type name: basestring
R
ranqiu 已提交
2207 2208
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2209
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2210
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2211 2212
    :rtype: LayerOutput
    """
2213 2214 2215
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2216 2217 2218 2219
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2220 2221 2222
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2223 2224 2225 2226 2227 2228


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2229
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2242
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2243
    :type input: LayerOutput
2244
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2245
    :type name: basestring
R
ranqiu 已提交
2246 2247
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2248
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2249
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2250 2251 2252 2253 2254 2255
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2256 2257 2258
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2259 2260


2261 2262
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2263
def rotate_layer(input, height, width, name=None, layer_attr=None):
2264
    """
H
Haonan 已提交
2265 2266
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2267 2268

    .. math::
H
Haonan 已提交
2269
       y(j,i,:) = x(M-i-1,j,:)
2270

H
Haonan 已提交
2271
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2272 2273 2274 2275 2276 2277

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2278 2279
                          height=100,
                          width=100)
2280

R
ranqiu 已提交
2281
    :param input: The input of this layer.
2282
    :type input: LayerOutput
R
ranqiu 已提交
2283
    :param height: The height of the sample matrix.
2284
    :type height: int
R
ranqiu 已提交
2285 2286
    :param width: The width of the sample matrix.
    :type width: int
2287
    :param name: The name of this layer. It is optional.
2288
    :type name: basestring
R
ranqiu 已提交
2289 2290
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2291 2292 2293 2294 2295
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2296 2297 2298
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2299
        width=width,
H
Haonan 已提交
2300 2301 2302 2303 2304 2305 2306 2307
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2308 2309


Z
zhangjinchao01 已提交
2310 2311
@wrap_name_default()
@layer_support()
2312
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2313 2314 2315 2316
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2317
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2318 2319 2320 2321 2322
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2323

2324 2325
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2326

L
Luo Tao 已提交
2327 2328 2329 2330 2331 2332
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2333
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2334
    :type name: basestring
R
ranqiu 已提交
2335
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2336
    :type a: LayerOutput
R
ranqiu 已提交
2337
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2338
    :type b: LayerOutput
R
ranqiu 已提交
2339
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2340
    :type scale: float
R
ranqiu 已提交
2341
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2342
    :type size: int
R
ranqiu 已提交
2343
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2344
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2345
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2346 2347
    :rtype: LayerOutput
    """
2348
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2349 2350 2351 2352 2353 2354
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2355
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2356
    else:
2357 2358
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2359 2360 2361 2362 2363 2364
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2365
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2366
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2367

2368

C
caoying03 已提交
2369 2370 2371 2372
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2373
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2374
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2405
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2406 2407 2408
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2409
        inputs=[x.name, y.name],
C
caoying03 已提交
2410 2411 2412 2413
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2414 2415
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2416
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2417
@layer_support()
Q
qijun 已提交
2418 2419
def hsigmoid(input,
             label,
2420
             num_classes=None,
Q
qijun 已提交
2421 2422 2423 2424
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2425 2426 2427
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2428 2429 2430 2431

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2432 2433 2434 2435 2436 2437

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2438
                        label=data_layer)
Z
zhangjinchao01 已提交
2439

R
ranqiu 已提交
2440 2441
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2442
    :param label: The input label.
Z
zhangjinchao01 已提交
2443
    :type label: LayerOutput
R
ranqiu 已提交
2444 2445 2446 2447
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2448
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2449
    :type name: basestring
R
ranqiu 已提交
2450 2451 2452
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2453
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2454 2455 2456
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2457
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2458
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2459 2460 2461 2462
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2463 2464 2465 2466 2467 2468 2469 2470 2471
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2472 2473 2474
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2475 2476 2477 2478 2479
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2480 2481
    ipts_for_layer = []
    parents = []
2482
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2483
        assert isinstance(each_input, LayerOutput)
2484
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2485 2486 2487 2488
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2489
    l = Layer(
Z
zhangjinchao01 已提交
2490 2491 2492 2493 2494
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2495 2496 2497
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2498

2499

Z
zhangjinchao01 已提交
2500 2501 2502 2503 2504
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2514
                   dilation=1,
Q
qijun 已提交
2515 2516 2517 2518 2519 2520 2521
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2522
                   dilation_y=None,
2523 2524
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2525
    """
2526
    Convolution layer for image. Paddle can support both square and non-square
2527
    input currently.
Z
zhangjinchao01 已提交
2528 2529 2530 2531

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2532

2533
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2534
    and non-square input currently.
2535

X
xuwei06 已提交
2536
    The details of convolution transpose layer,
2537 2538 2539
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2540 2541 2542 2543
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2544 2545
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2546
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2547 2548 2549
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2550

L
Luo Tao 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2561
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2562
    :type name: basestring
R
ranqiu 已提交
2563
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2564
    :type input: LayerOutput
R
ranqiu 已提交
2565 2566 2567 2568 2569 2570
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2571
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2572 2573 2574
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2575
    :param num_filters: Each filter group's number of filter
2576
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2577
    :type act: BaseActivation
R
ranqiu 已提交
2578
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2579
    :type groups: int
R
ranqiu 已提交
2580 2581 2582 2583 2584
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2585
    :type stride: int | tuple | list
R
ranqiu 已提交
2586
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2587
    :type stride_y: int
R
ranqiu 已提交
2588 2589 2590 2591 2592
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2593
    :type padding: int | tuple | list
R
ranqiu 已提交
2594
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2595
    :type padding_y: int
R
ranqiu 已提交
2596 2597 2598 2599 2600
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2601
    :type dilation: int | tuple | list
R
ranqiu 已提交
2602
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2603
    :type dilation_y: int
R
ranqiu 已提交
2604 2605 2606
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2607
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2608 2609 2610
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2611
    :type num_channels: int
R
ranqiu 已提交
2612 2613
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2614
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2615
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2616
    :type shared_biases: bool
R
ranqiu 已提交
2617 2618
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2619
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2620
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2621
    :type trans: bool
R
ranqiu 已提交
2622 2623 2624 2625 2626
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2627
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2628 2629 2630 2631 2632
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2633

Z
zhangjinchao01 已提交
2634
    if filter_size_y is None:
2635 2636 2637 2638 2639 2640
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2641
    if stride_y is None:
2642 2643 2644 2645 2646 2647
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2648
    if padding_y is None:
2649 2650 2651 2652 2653 2654
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2655 2656 2657 2658 2659 2660 2661
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2662 2663
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2664
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2665 2666 2667 2668
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2669

2670
    if layer_type:
W
wanghaoshuang 已提交
2671
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2672 2673 2674
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2675
        if trans:
2676
            assert layer_type in ["exconvt", "cudnn_convt"]
2677 2678 2679 2680 2681
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2682

X
xuwei06 已提交
2683
    l = Layer(
Z
zhangjinchao01 已提交
2684
        name=name,
Q
qijun 已提交
2685 2686 2687 2688 2689
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2690
                dilation=dilation,
Q
qijun 已提交
2691 2692 2693 2694 2695
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2696
                dilation_y=dilation_y,
Q
qijun 已提交
2697 2698
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2699 2700 2701 2702
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2703
        type=lt,
Q
qijun 已提交
2704 2705 2706 2707 2708 2709 2710 2711
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2712 2713 2714 2715


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2726
                   padding_y=None,
2727
                   ceil_mode=True,
2728
                   exclude_mode=None):
Z
zhangjinchao01 已提交
2729 2730 2731
    """
    Image pooling Layer.

R
ranqiu 已提交
2732
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2733 2734 2735

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2736 2737 2738 2739
    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2740 2741
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2742 2743 2744 2745 2746

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2747 2748
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2764
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2765
    :type padding: int
R
ranqiu 已提交
2766 2767 2768 2769
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2770
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2771
    :type input: LayerOutput
R
ranqiu 已提交
2772
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2773
    :type pool_size: int
R
ranqiu 已提交
2774 2775 2776 2777 2778 2779 2780
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2781
    :type num_channels: int
R
ranqiu 已提交
2782
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2783
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2784
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2785
    :type stride: int
R
ranqiu 已提交
2786 2787 2788 2789 2790
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2791
    :type layer_attr: ExtraLayerAttribute
2792
    :param ceil_mode: Whether to use the ceil function to calculate output height and width.
R
ranqiu 已提交
2793 2794
                      True is the default. If it is set to False, the floor function will
                      be used.
2795
    :type ceil_mode: bool
2796
    :param exclude_mode: Whether to exclude the padding cells when calculating, but only 
2797 2798 2799
                         work when pool_type is AvgPooling. If None, also exclude the padding 
                         cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling 
                         as pool_type to identify the mode.
2800
    :type exclude_mode: bool
D
dangqingqing 已提交
2801 2802
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2813
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
2814
                               CudnnMaxPooling, CudnnAvgInclPadPooling], \
X
xzl 已提交
2815
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2816

2817
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2818
        if (
Y
Yu Yang 已提交
2819
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2820
        else pool_type.name
2821 2822 2823 2824
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2825
    l = Layer(
Z
zhangjinchao01 已提交
2826 2827
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2840
                    padding_y=padding_y))
Q
qijun 已提交
2841
        ],
2842
        ceil_mode=ceil_mode,
2843
        exclude_mode=exclude_mode,
Q
qijun 已提交
2844 2845 2846 2847 2848 2849 2850
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2851 2852


C
chengduoZH 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2881 2882 2883
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z}
C
chengduoZH 已提交
2884 2885 2886 2887 2888

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2889 2890 2891
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} \\\\
C
chengduoZH 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2905
    :type padding: int | tuple | list
R
ranqiu 已提交
2906
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2907
    :type name: basestring.
R
ranqiu 已提交
2908
    :param input: The input of this layer.
C
chengduoZH 已提交
2909
    :type input: LayerOutput
R
ranqiu 已提交
2910 2911
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2912
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2913 2914 2915
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2916
    :type num_channels: int
R
ranqiu 已提交
2917
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2918
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2919 2920 2921
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2922
    :type stride: int | tuple | list
R
ranqiu 已提交
2923 2924 2925 2926 2927
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2928
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2929 2930 2931
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
3001 3002
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
3003 3004 3005 3006 3007 3008
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
3009
    """
R
ranqiu 已提交
3010 3011 3012
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
3013
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
R
ranqiu 已提交
3014
        <https://arxiv.org/abs/1406.4729>`_
Q
qijun 已提交
3015

L
Luo Tao 已提交
3016 3017 3018 3019
    The example usage is:

    ..  code-block:: python

3020 3021 3022
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3023 3024
                        pool_type=MaxPooling())

3025
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3026
    :type name: basestring
R
ranqiu 已提交
3027
    :param input: The input of this layer.
Q
qijun 已提交
3028
    :type input: LayerOutput
R
ranqiu 已提交
3029 3030 3031
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3032
    :type num_channels: int
R
ranqiu 已提交
3033
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3034
    :type scale: BasePoolingType
R
ranqiu 已提交
3035
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3036
    :type pyramid_height: int
R
ranqiu 已提交
3037 3038
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3056
    l = Layer(
Q
qijun 已提交
3057 3058
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3059 3060 3061 3062 3063
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3064
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3076 3077 3078 3079
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3080
    l = Layer(
Q
qijun 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3100 3101 3102 3103


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3104 3105 3106 3107 3108 3109
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3110
                      layer_attr=None):
Z
zhangjinchao01 已提交
3111
    """
3112
    Response normalization across feature maps.
R
ranqiu 已提交
3113 3114

    Reference:
R
ranqiu 已提交
3115
        `ImageNet Classification with Deep Convolutional Neural Networks
R
ranqiu 已提交
3116
        <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_
Z
zhangjinchao01 已提交
3117

L
Luo Tao 已提交
3118 3119 3120
    The example usage is:

    ..  code-block:: python
3121

L
Luo Tao 已提交
3122 3123
        norm = img_cmrnorm_layer(input=net, size=5)

3124
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3125
    :type name: basestring
R
ranqiu 已提交
3126
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3127
    :type input: LayerOutput
3128
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3129
    :type size: int
D
dangqingqing 已提交
3130
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3131
    :type scale: float
D
dangqingqing 已提交
3132
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3133
    :type power: float
R
ranqiu 已提交
3134 3135 3136 3137 3138
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3139
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3140
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3141 3142 3143
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3144
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3145 3146 3147


@wrap_bias_attr_default()
3148 3149
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3150 3151
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3152
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3153 3154 3155
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3156
                     img3D=False,
Q
qijun 已提交
3157 3158 3159 3160
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3161
                     batch_norm_type=None,
P
peterzhang2029 已提交
3162
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3163
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3164 3165
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3166
    """
R
ranqiu 已提交
3167
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3181
    Reference:
R
ranqiu 已提交
3182
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3183
        Internal Covariate Shift
R
ranqiu 已提交
3184
        <http://arxiv.org/abs/1502.03167>`_
Z
zhangjinchao01 已提交
3185

L
Luo Tao 已提交
3186 3187 3188
    The example usage is:

    ..  code-block:: python
3189

L
Luo Tao 已提交
3190 3191
        norm = batch_norm_layer(input=net, act=ReluActivation())

3192
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3193
    :type name: basestring
R
ranqiu 已提交
3194
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3195
    :type input: LayerOutput
3196 3197 3198 3199 3200
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3201 3202
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3203
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3204 3205 3206
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3207
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3208
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3209
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3210
    :type act: BaseActivation
R
ranqiu 已提交
3211 3212 3213
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3214
    :type num_channels: int
R
ranqiu 已提交
3215 3216 3217 3218
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3219
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3220 3221
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3222
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3223 3224
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3225
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3226 3227 3228 3229 3230 3231
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3232
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3233
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3234
    :type epsilon: float.
R
ranqiu 已提交
3235 3236
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3237
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3238 3239
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3240
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3250
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3251
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3252

X
xuwei06 已提交
3253
    l = Layer(
Z
zhangjinchao01 已提交
3254
        name=name,
C
chengduoZH 已提交
3255
        img3D=img3D,
Q
qijun 已提交
3256 3257
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3258 3259 3260 3261
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3262
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3263 3264
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3265
        mean_var_names=mean_var_names,
Q
qijun 已提交
3266
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3267

Q
qijun 已提交
3268 3269 3270 3271 3272 3273 3274
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3296
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3297
    :type input: LayerOutput
3298
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3299
    :type name: basestring
R
ranqiu 已提交
3300 3301 3302
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3303
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3304 3305 3306 3307 3308 3309
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3310 3311 3312
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3313 3314


G
guosheng 已提交
3315 3316 3317 3318 3319 3320 3321
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
R
ranqiu 已提交
3322
       out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}}
G
guosheng 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3333
    :param input: The input of this layer.
G
guosheng 已提交
3334
    :type input: LayerOutput
3335
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3336
    :type name: basestring
R
ranqiu 已提交
3337 3338
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3352 3353 3354
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3355
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3356
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3375 3376 3377
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3378

C
caoying03 已提交
3379 3380 3381
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3382

3383
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3384
    :type name: basestring
R
ranqiu 已提交
3385
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3386
                 LayerOutput.
R
ranqiu 已提交
3387
    :type input: LayerOutput | list | tuple
3388
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3389
    :type act: BaseActivation
R
ranqiu 已提交
3390 3391 3392
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3393
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3394 3395
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3396
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3397
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3404
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3405 3406 3407 3408 3409 3410 3411
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3412
    l = Layer(
Q
qijun 已提交
3413 3414 3415
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3416 3417
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3418
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3419

Q
qijun 已提交
3420 3421 3422 3423 3424 3425 3426
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3427 3428 3429 3430


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3431
@layer_support(DROPOUT, ERROR_CLIPPING)
3432
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3433
    """
R
ranqiu 已提交
3434 3435
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3436

3437 3438 3439 3440 3441 3442
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3443
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3444
    :type name: basestring
R
ranqiu 已提交
3445
    :param input: The input layers or projections
R
ranqiu 已提交
3446
    :type input: list | tuple | collections.Sequence
3447
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3448
    :type act: BaseActivation
R
ranqiu 已提交
3449 3450
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3451
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3452
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3453 3454 3455 3456 3457 3458 3459 3460
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3461
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3462 3463

    def __is_type__(o, tp):
3464
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3486 3487
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3488

Q
qijun 已提交
3489 3490
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3491

3492 3493
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3494

3495
    layer = Layer(
Q
qijun 已提交
3496 3497
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3498 3499
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3500
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3501
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3502

3503
    sz = layer.config.size
Z
zhangjinchao01 已提交
3504

Q
qijun 已提交
3505 3506 3507 3508 3509 3510 3511 3512
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3513 3514
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3515
@wrap_bias_attr_default(has_bias=False)
3516
@layer_support(DROPOUT, ERROR_CLIPPING)
3517 3518 3519
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3520
    Concatenate sequence a and sequence b.
3521

3522
    Inputs:
X
xuwei06 已提交
3523
      - a = [a1, a2, ..., am]
3524
      - b = [b1, b2, ..., bn]
3525

X
xuwei06 已提交
3526 3527 3528 3529
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3530 3531 3532 3533 3534 3535 3536

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3537
    :param name: The name of this layer. It is optional.
3538
    :type name: basestring
R
ranqiu 已提交
3539
    :param a: The first input sequence layer
3540
    :type a: LayerOutput
R
ranqiu 已提交
3541
    :param b: The second input sequence layer
3542
    :type b: LayerOutput
3543
    :param act: Activation type. IdentityActivation is the default activation.
3544
    :type act: BaseActivation
R
ranqiu 已提交
3545 3546
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3547
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3548 3549 3550
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3551
    :type bias_attr: ParameterAttribute | None | bool | Any
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3573
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3574 3575
def memory(name,
           size,
3576
           memory_name=None,
Q
qijun 已提交
3577 3578 3579 3580
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3581 3582
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3583
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3584

R
ranqiu 已提交
3585
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3586

R
ranqiu 已提交
3587 3588
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3589

R
ranqiu 已提交
3590 3591
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3592

R
ranqiu 已提交
3593
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3594

3595 3596 3597 3598 3599
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3600 3601
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3602 3603

    .. code-block:: python
L
Liu Yiqun 已提交
3604

3605 3606 3607 3608
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3609
    :param name: The name of the layer which this memory remembers.
3610 3611
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3612
    :type name: basestring
R
ranqiu 已提交
3613
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3614
    :type size: int
R
ranqiu 已提交
3615
    :param memory_name: The name of the memory. It is ignored when name is provided.
3616
    :type memory_name: basestring
3617
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3618
    :type is_seq: bool
R
ranqiu 已提交
3619 3620
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3621
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3622 3623 3624 3625
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3626
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3627 3628
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3629
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3630 3631
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3632
    :type boot_with_const_id: int
R
ranqiu 已提交
3633
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3644 3645
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3646

3647 3648 3649 3650 3651 3652 3653 3654
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3655 3656

    lout = LayerOutput(
3657
        name=memory_name,
Q
qijun 已提交
3658 3659 3660
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3661 3662 3663 3664
    return lout


@wrap_bias_attr_default()
3665 3666
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3667 3668 3669
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3670 3671
def lstm_step_layer(input,
                    state,
3672
                    size=None,
Q
qijun 已提交
3673 3674 3675 3676 3677 3678
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3679
    """
3680 3681
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3682 3683 3684

    ..  math::

3685
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3686

3687
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3688

3689
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3690

3691
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3692

L
luotao02 已提交
3693
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3694 3695


L
luotao02 已提交
3696
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3697
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3698
    input vectors.
Z
zhangjinchao01 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3709
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3710
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3711 3712
    :code:`get_output_layer` to extract this output.

3713
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3714
    :type name: basestring
R
ranqiu 已提交
3715 3716
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3717
    :type size: int
R
ranqiu 已提交
3718
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3719
    :type input: LayerOutput
3720
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3721
    :type state: LayerOutput
3722
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3723
    :type act: BaseActivation
3724 3725
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3726
    :type gate_act: BaseActivation
3727 3728
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3729
    :type state_act: BaseActivation
R
ranqiu 已提交
3730 3731 3732
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3733
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3734
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3735
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3737 3738
    :rtype: LayerOutput
    """
3739 3740 3741

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3742 3743 3744 3745 3746 3747 3748
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3749
        size=state.size,
Q
qijun 已提交
3750 3751
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3752

Q
qijun 已提交
3753 3754 3755 3756 3757 3758 3759
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3760 3761 3762


@wrap_bias_attr_default()
W
wangyang59 已提交
3763
@wrap_param_attr_default()
Q
qijun 已提交
3764
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3765 3766 3767
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3768 3769 3770 3771 3772 3773 3774
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3775
                   param_attr=None,
Q
qijun 已提交
3776
                   layer_attr=None):
Z
zhangjinchao01 已提交
3777 3778
    """

R
ranqiu 已提交
3779
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3780
    :type input: LayerOutput
R
ranqiu 已提交
3781 3782 3783 3784 3785 3786
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3787 3788
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3789
    :type act: BaseActivation
3790
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3791
    :type name: basestring
3792 3793
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3794
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3795 3796 3797 3798
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3799
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3800 3801 3802 3803
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3804
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3805 3806 3807 3808 3809 3810 3811 3812
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3813 3814 3815 3816
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3817
        # backward model compatibility.
3818
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3819 3820 3821 3822
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3823
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3824
    return LayerOutput(
Q
qijun 已提交
3825 3826
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3827
        parents=[input, output_mem],
Q
qijun 已提交
3828 3829
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3830 3831


Y
Yu Yang 已提交
3832 3833 3834 3835
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3836
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3848
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3849 3850
    and DROPOUT.

3851
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3852 3853 3854 3855 3856 3857
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3858
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3859
    :type name: basestring
3860 3861
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3862
    :type act: BaseActivation
3863 3864
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3865
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3866 3867 3868 3869
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3870
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3871 3872 3873 3874 3875
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3876
    :rtype: LayerOutput
Y
Yu Yang 已提交
3877 3878 3879 3880 3881 3882
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3883
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3884 3885 3886 3887
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3888

Y
Yu Yang 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3926 3927 3928 3929
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3930 3931 3932 3933
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3934

3935
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3936
    :type name: basestring
R
ranqiu 已提交
3937
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3938 3939
                   multiple outputs.
    :type input: LayerOutput
3940
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3941
    :type arg_name: basestring
R
ranqiu 已提交
3942 3943
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3944
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3945 3946 3947 3948 3949 3950 3951
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3952 3953 3954 3955 3956 3957 3958
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3959

Q
qijun 已提交
3960 3961 3962 3963 3964
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3965 3966 3967 3968 3969 3970 3971


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3972 3973 3974 3975 3976 3977 3978
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3979
    """
3980 3981
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3982

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3998
    :param input: The input of this layer.
3999
    :type input: LayerOutput
4000
    :param act: Activation type. TanhActivation is the default activation.
4001
    :type act: BaseActivation
C
caoying03 已提交
4002
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
4003 4004 4005
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4006
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4007 4008
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4009
    :type param_attr: ParameterAttribute
4010
    :param name: The name of this layer. It is optional.
4011
    :type name: basestring
R
ranqiu 已提交
4012 4013
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4014
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4015
    :return: LayerOutput object.
4016
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4017
    """
Q
qijun 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4033 4034 4035 4036 4037


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4038
    and can be a sequence or non-sequence.
4039 4040
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4041
    """
4042

Z
zhangjinchao01 已提交
4043 4044 4045
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4046
        assert input.size is not None
Z
zhangjinchao01 已提交
4047
        if size is not None:
4048
            assert input.size == size
Z
zhangjinchao01 已提交
4049 4050


4051
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4052
    """
4053
    DEPRECATED.
Z
zhangjinchao01 已提交
4054 4055 4056 4057 4058 4059 4060 4061
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4062
    return input
Z
zhangjinchao01 已提交
4063 4064 4065


@wrap_name_default("recurrent_group")
4066
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4067
    """
C
caoying03 已提交
4068 4069 4070
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4071 4072
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4094 4095
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4096

R
ranqiu 已提交
4097 4098 4099
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4100 4101 4102 4103
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4104
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4105 4106 4107 4108 4109 4110 4111
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4112
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4113

R
ranqiu 已提交
4114
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4115

R
ranqiu 已提交
4116
    :param reverse: If reverse is set to True, the recurrent unit will process the
4117
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4118
    :type reverse: bool
4119

4120 4121
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4122 4123 4124 4125 4126 4127 4128

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4129
    :type targetInlink: LayerOutput | SubsequenceInput
4130

D
dangqingqing 已提交
4131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4132 4133 4134 4135
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4136
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4137
        input = [input]
4138
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4139 4140

    def is_in_links(x):
4141
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4142 4143 4144 4145

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4146
        name=name,
4147 4148
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4149 4150
    in_args = []
    for each_input in input:
4151
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4152
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4153
            mem = memory(
4154
                name=None,
Q
qijun 已提交
4155 4156
                size=each_input.input.size,
                boot_layer=each_input.input)
4157
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4158
            in_args.append(mem)
4159 4160
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4161

Z
zhangjinchao01 已提交
4162 4163 4164 4165 4166
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4167 4168 4169 4170 4171 4172
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4173 4174 4175

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4176
    for layer_out in layer_outs:
4177 4178
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4179 4180
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4181 4182 4183 4184 4185
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4186

Z
zhangjinchao01 已提交
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4215 4216

    def before_real_step(self):
Q
qijun 已提交
4217 4218 4219 4220 4221 4222 4223 4224 4225
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4226 4227 4228
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4229
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4247
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4248
    :type input: LayerOutput
4249
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4250
    :type name: basestring
R
ranqiu 已提交
4251 4252
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4253
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4254
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4255 4256 4257 4258
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4269

4270

R
ranqiu 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4285
    :type input1: LayerOutput
R
ranqiu 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4322
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4323
    :type name: basestring
R
ranqiu 已提交
4324
    :param input1: The first input layer.
H
Haonan 已提交
4325
    :type input: LayerOutput
R
ranqiu 已提交
4326
    :param input2: The second input layer.
H
Haonan 已提交
4327
    :type input2: LayerOutput
R
ranqiu 已提交
4328 4329
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4330 4331 4332 4333 4334 4335 4336
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4347

Z
zhangjinchao01 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4364
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4365
    :type name: basestring
R
ranqiu 已提交
4366
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4367
    :type input: LayerOutput
R
ranqiu 已提交
4368
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4369
    :type eos_id: int
R
ranqiu 已提交
4370 4371
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4372
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4373
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4374 4375
    :rtype: LayerOutput
    """
Q
qijun 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4387 4388 4389


@wrap_name_default()
Q
qijun 已提交
4390 4391 4392 4393 4394 4395 4396
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4397
                num_results_per_sample=None):
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4409
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4410 4411 4412 4413
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4414 4415 4416 4417 4418
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4419 4420
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4421 4422
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4423 4424
                               bos_id=0,
                               eos_id=1,
4425
                               beam_size=5)
4426 4427 4428 4429 4430 4431

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4432 4433
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4434
    :type name: basestring
4435
    :param step: A callable function that defines the calculation in a time
4436
                 step, and it is applied to sequences with arbitrary length by
4437 4438 4439 4440 4441
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4442 4443
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4444
                  In beam_search, none of the input's type should be LayerOutput.
4445
    :type input: list
4446 4447 4448
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4449
                   symbol is essential, since it is used to initialize the RNN
4450 4451 4452 4453 4454 4455 4456 4457
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4458 4459
    :param max_length: Max generated sequence length.
    :type max_length: int
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4470 4471
    :return: The generated word index.
    :rtype: LayerOutput
4472 4473
    """

Z
zhangjinchao01 已提交
4474 4475 4476 4477 4478
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4479
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4480 4481 4482 4483 4484 4485
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4486 4487 4488
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4489
        if isinstance(each_input, BaseGeneratedInput):
4490 4491
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4492
            generated_input_index = i
4493

Z
zhangjinchao01 已提交
4494 4495 4496
        else:
            real_input.append(each_input)

4497
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4498 4499 4500 4501 4502 4503 4504 4505

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4506 4507 4508 4509 4510 4511
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4512 4513 4514 4515 4516 4517

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4518
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4519 4520
        return predict

4521 4522
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4523

Q
qijun 已提交
4524

4525 4526
def __cost_input__(input, label, weight=None):
    """
4527
    inputs and parents for cost layers.
4528
    """
C
caoying03 已提交
4529 4530 4531 4532 4533 4534
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4535
    if weight is not None:
4536
        assert weight.size == 1
4537 4538 4539
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4540

Z
zhangjinchao01 已提交
4541 4542

@wrap_name_default()
L
luotao1 已提交
4543
@layer_support()
4544 4545 4546 4547 4548 4549
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4550
    """
4551
    sum of square error cost:
L
Luo Tao 已提交
4552 4553 4554

    ..  math::

4555
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4556

4557
    :param name: The name of this layer. It is optional.
4558
    :type name: basestring
R
ranqiu 已提交
4559
    :param input: The first input layer.
4560
    :type input: LayerOutput
R
ranqiu 已提交
4561
    :param label: The input label.
4562
    :type label: LayerOutput
R
ranqiu 已提交
4563 4564
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4565
    :type weight: LayerOutput
R
ranqiu 已提交
4566
    :param coeff: The weight of the gradient in the back propagation.
4567
                  1.0 is the default value.
4568
    :type coeff: float
R
ranqiu 已提交
4569 4570
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4571
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4572
    :return: LayerOutput object.
4573
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4574
    """
4575 4576
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4577 4578 4579 4580
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4581
        coeff=coeff,
Q
qijun 已提交
4582
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4583
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4584 4585


4586
regression_cost = square_error_cost
L
Luo Tao 已提交
4587 4588


Z
zhangjinchao01 已提交
4589
@wrap_name_default("cost")
4590
@layer_support()
Q
qijun 已提交
4591 4592 4593 4594
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4595
                        evaluator=classification_error_evaluator,
4596 4597
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4598 4599 4600
    """
    classification cost Layer.

4601
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4602
    :type name: basestring
R
ranqiu 已提交
4603
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4604
    :type input: LayerOutput
R
ranqiu 已提交
4605
    :param label: The input label.
Z
zhangjinchao01 已提交
4606
    :type label: LayerOutput
R
ranqiu 已提交
4607 4608
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4609
    :type weight: LayerOutput
R
ranqiu 已提交
4610 4611 4612 4613
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4614
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4615
    :param coeff: The weight of the gradient in the back propagation.
4616
                  1.0 is the default value.
4617
    :type coeff: float
D
dangqingqing 已提交
4618
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4619 4620 4621 4622 4623
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4624 4625 4626

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4627 4628 4629 4630
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4631
        coeff=coeff,
Q
qijun 已提交
4632
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4643
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4644

4645
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4646 4647 4648 4649 4650
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4651
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4652

4653

Q
qijun 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4663 4664
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4665 4666 4667 4668
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4669
    supports GPU mode.
Z
zhangjinchao01 已提交
4670 4671 4672 4673 4674

    The example usage is:

    .. code-block:: python

4675 4676
       op = conv_operator(img=input1,
                          filter=input2,
4677
                          filter_size=3,
Z
zhangjinchao01 已提交
4678 4679 4680
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4681
    :param img: The input image.
4682
    :type img: LayerOutput
R
ranqiu 已提交
4683
    :param filter: The input filter.
4684
    :type filter: LayerOutput
R
ranqiu 已提交
4685
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4686
    :type filter_size: int
R
ranqiu 已提交
4687 4688 4689
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4690
    :type filter_size_y: int
R
ranqiu 已提交
4691
    :param num_filters: The number of the output channels.
4692
    :type num_filters: int
R
ranqiu 已提交
4693 4694 4695
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4696
    :type num_channels: int
R
ranqiu 已提交
4697
    :param stride: The stride on the x axis.
L
luotao02 已提交
4698
    :type stride: int
R
ranqiu 已提交
4699 4700
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4701
    :type stride_y: int
R
ranqiu 已提交
4702
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4703
    :type padding: int
R
ranqiu 已提交
4704 4705
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4716

4717 4718
    if num_channels is None:
        num_channels = img.num_filters
4719 4720

    assert isinstance(filter, LayerOutput)
4721
    assert filter.size is not None
4722

4723 4724 4725
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4737

4738
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4739 4740
    return op

Q
qijun 已提交
4741

4742
@wrap_param_attr_default()
Q
qijun 已提交
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4753 4754
                    param_attr=None,
                    trans=False):
4755
    """
R
ranqiu 已提交
4756 4757 4758
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4759 4760 4761 4762 4763

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4764
       proj = conv_projection(input=input1,
4765 4766 4767 4768
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4769
    :param input: The input of this layer.
4770
    :type input: LayerOutput
R
ranqiu 已提交
4771 4772 4773 4774 4775
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4776
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4777 4778 4779
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4780
    :type filter_size_y: int
R
ranqiu 已提交
4781
    :param num_filters: The number of filters.
4782
    :type num_filters: int
R
ranqiu 已提交
4783
    :param num_channels: The number of the input channels.
4784
    :type num_channels: int
R
ranqiu 已提交
4785 4786 4787 4788 4789 4790 4791
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4792
    :type stride_y: int
R
ranqiu 已提交
4793 4794 4795 4796 4797 4798 4799
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4800 4801 4802
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4803 4804
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4805
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4806
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4807
    :type trans: bool
R
ranqiu 已提交
4808 4809
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4838
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4839 4840 4841 4842 4843
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4844 4845 4846
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4859 4860 4861 4862

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4863

D
dangqingqing 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4874 4875
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4876

R
ranqiu 已提交
4877 4878 4879 4880
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4881

D
dangqingqing 已提交
4882
    For example,
4883

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4905 4906

    The simply usage is:
D
dangqingqing 已提交
4907 4908 4909 4910 4911 4912 4913 4914

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4915
    :param input: The input of this layer.
D
dangqingqing 已提交
4916
    :type input: LayerOutput
R
ranqiu 已提交
4917
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4918
    :type pad_c: list | None
R
ranqiu 已提交
4919
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4920
    :type pad_h: list | None
R
ranqiu 已提交
4921
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4922
    :type pad_w: list | None
R
ranqiu 已提交
4923 4924
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4925
    :type layer_attr: ExtraLayerAttribute
4926
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4969
@wrap_name_default()
L
luotao1 已提交
4970 4971
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4972
    """
R
ranqiu 已提交
4973
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4974 4975 4976 4977 4978 4979 4980 4981
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4982
    In this formula:
4983 4984 4985 4986
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4987 4988 4989 4990 4991

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4992
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4993

4994
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4995
    :type name: basestring
R
ranqiu 已提交
4996
    :param a: The first input of this layer.
4997
    :type a: LayerOutput
R
ranqiu 已提交
4998
    :param b: The second input of this layer.
4999
    :type b: LayerOutput
R
ranqiu 已提交
5000 5001
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5002
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5003
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5004 5005
    :rtype: LayerOutput
    """
5006 5007
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
5008 5009 5010
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
5011
        inputs=[a.name, b.name],
Q
qijun 已提交
5012
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5013

Q
qijun 已提交
5014 5015
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
5016 5017 5018 5019 5020


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5021
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5022
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5023 5024 5025 5026 5027 5028 5029 5030
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5031
    """
R
ranqiu 已提交
5032 5033
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5034 5035

    .. math::
5036
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5037 5038

    In this formular:
5039 5040
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5041 5042
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5043
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5044 5045 5046 5047 5048

    The simple usage is:

    .. code-block:: python

5049
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5050

5051
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5052
    :type name: basestring
R
ranqiu 已提交
5053
    :param a: The first input of this layer.
5054
    :type a: LayerOutput
R
ranqiu 已提交
5055
    :param b: The second input of this layer.
5056
    :type b: LayerOutput
R
ranqiu 已提交
5057 5058
    :param size: The dimension of this layer.
    :type size: int
5059
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5060
    :type act: BaseActivation
R
ranqiu 已提交
5061 5062
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5063
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5064 5065 5066 5067
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5068
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5069 5070
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5071
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5072
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5073 5074
    :rtype: LayerOutput
    """
5075
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5076 5077 5078 5079 5080 5081
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5082 5083 5084 5085
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5086 5087 5088 5089 5090 5091


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5092
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5093 5094
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5095
                       select=None,
Q
qijun 已提交
5096 5097
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5098 5099 5100
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5101 5102 5103
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5104 5105
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5106
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5107 5108 5109 5110 5111 5112 5113
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5114
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5115

5116
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5117
    :type name: basestring
R
ranqiu 已提交
5118 5119
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5120 5121 5122 5123
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5124
    :type select: LayerOutput
R
ranqiu 已提交
5125 5126
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5127
    :type size: int
5128
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5129
    :type act: BaseActivation
R
ranqiu 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5140
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5141 5142 5143 5144
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5145
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5146 5147
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5148
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5149
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5150 5151 5152 5153
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5154
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5155 5156
        param_attr = [param_attr]
    else:
5157
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5158 5159
            assert len(input) == len(param_attr)
        else:
5160
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5161
                logger.fatal(
W
wangmeng28 已提交
5162 5163 5164 5165 5166
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5167 5168
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5169 5170 5171 5172
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5173
    Layer(
Q
qijun 已提交
5174 5175 5176
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5177 5178 5179
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5180
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5181 5182 5183 5184
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5185 5186 5187 5188 5189 5190 5191
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5192 5193 5194


@wrap_name_default()
L
luotao1 已提交
5195 5196
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5197
    """
R
ranqiu 已提交
5198
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5199 5200 5201 5202 5203 5204 5205 5206
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5207
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5208
    :type input: LayerOutput
5209
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5210
    :type name: basestring
R
ranqiu 已提交
5211 5212 5213
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5214
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5215 5216
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5217
    l = Layer(
Z
zhangjinchao01 已提交
5218 5219 5220
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5221 5222 5223
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5224 5225 5226


@wrap_name_default()
L
luotao1 已提交
5227
@layer_support()
Q
qijun 已提交
5228 5229 5230 5231
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5232
                          layer_attr=None):
Z
zhangjinchao01 已提交
5233
    """
R
ranqiu 已提交
5234
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5245
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5246
    :type input: LayerOutput
5247
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5248
    :type name: basestring
R
ranqiu 已提交
5249 5250 5251 5252 5253 5254 5255
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5256
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5257 5258 5259 5260 5261 5262 5263 5264
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5265 5266 5267
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5268 5269 5270


@wrap_name_default()
L
luotao1 已提交
5271
@layer_support()
Q
qijun 已提交
5272
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5273
    """
5274 5275 5276 5277
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5278 5279 5280

    .. math::

5281
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5282

5283 5284 5285 5286 5287
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5288

5289
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5290 5291

    In this formular:
5292 5293 5294 5295 5296 5297
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5298 5299 5300 5301 5302

    The simple usage is:

    .. code-block:: python

5303
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5304 5305
                                       size=elem_dim)

5306 5307 5308 5309
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5310
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5311
    :type size: int
5312
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5313
    :type name: basestring
R
ranqiu 已提交
5314 5315 5316
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5317
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5318 5319
    :rtype: LayerOutput
    """
5320 5321 5322 5323
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5324
            size = vectors.size / weights.size
5325 5326
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5327 5328
    Layer(
        name=name,
5329
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5330
        size=size,
5331
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5332 5333 5334
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5335

5336

5337
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5338

5339

Z
zhangjinchao01 已提交
5340
@wrap_name_default()
L
luotao1 已提交
5341
@layer_support()
Z
zhangjinchao01 已提交
5342 5343 5344 5345 5346 5347 5348
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5349
                       num_channels=None,
L
luotao1 已提交
5350 5351
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5352 5353
    """
    Expand feature map to minibatch matrix.
5354
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5355
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5356 5357 5358 5359 5360 5361 5362

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5363
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5364
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5365
    The number of time steps is outputH * outputW and the dimension of each
5366
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5367
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5368

5369 5370 5371 5372
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5373
       block_expand = block_expand_layer(input=layer,
5374
                                         num_channels=128,
5375 5376 5377 5378 5379
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5380
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5381
    :type input: LayerOutput
R
ranqiu 已提交
5382 5383 5384 5385
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5398
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5399 5400 5401 5402
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5403
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5404 5405
    :rtype: LayerOutput
    """
5406 5407 5408
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5426 5427


5428 5429
@wrap_name_default()
@layer_support()
5430
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5431
    """
R
ranqiu 已提交
5432 5433 5434 5435
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5436

5437
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5438 5439 5440
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5441
        `Maxout Networks
R
ranqiu 已提交
5442
        <http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>`_
R
ranqiu 已提交
5443
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
R
ranqiu 已提交
5444
        <https://arxiv.org/pdf/1312.6082v4.pdf>`_
5445

C
chengduoZH 已提交
5446

X
xuwei06 已提交
5447
    .. math::
C
chengduoZH 已提交
5448 5449 5450 5451 5452 5453 5454
       out = \max_k (in[n, k, o_c , s])   \\\\
       out_{i * s + j} = \max_k in_{  k * o_{c} * s + i * s + j}  \\\\
       s = \frac{input.size}{ num\_channels}       \\\\
       o_{c} =\frac{num\_channels}{groups}         \\\\
       0 \le i < o_{c}                             \\\\
       0 \le j < s                                 \\\\
       0 \le k < groups                            \\\\
X
xuwei06 已提交
5455

5456 5457 5458 5459 5460 5461 5462 5463
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5464
    :param input: The input of this layer.
5465
    :type input: LayerOutput
R
ranqiu 已提交
5466 5467 5468 5469
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5470 5471
    :param groups: The group number of input layer.
    :type groups: int
5472
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5473 5474 5475
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5495 5496


Z
zhangjinchao01 已提交
5497
@wrap_name_default()
L
luotao1 已提交
5498
@layer_support()
Q
qijun 已提交
5499 5500 5501 5502 5503
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5504
              layer_attr=None):
Z
zhangjinchao01 已提交
5505 5506
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5507
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5508 5509
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5510
    Reference:
R
ranqiu 已提交
5511
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5512
        with Recurrent Neural Networks
R
ranqiu 已提交
5513
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5514 5515

    Note:
R
ranqiu 已提交
5516 5517 5518 5519 5520
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5521

C
caoying03 已提交
5522
    The example usage is:
Z
zhangjinchao01 已提交
5523 5524 5525 5526 5527 5528 5529 5530

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5531
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5532
    :type input: LayerOutput
R
ranqiu 已提交
5533
    :param label: The input label.
Z
zhangjinchao01 已提交
5534
    :type label: LayerOutput
R
ranqiu 已提交
5535
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5536
    :type size: int
5537
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5538 5539
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5540
    :type norm_by_times: bool
R
ranqiu 已提交
5541 5542 5543
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5544
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5545 5546 5547 5548
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5549 5550 5551 5552 5553
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5554
    Layer(
5555 5556 5557 5558
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5559
        inputs=[input.name, label.name],
Q
qijun 已提交
5560
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5561 5562
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5563

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5575
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5576
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5577 5578 5579 5580 5581 5582 5583
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5584
    Reference:
R
ranqiu 已提交
5585
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5586
        with Recurrent Neural Networks
R
ranqiu 已提交
5587
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5588 5589

    Note:
R
ranqiu 已提交
5590 5591 5592
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5593
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5594
          should be consistent with those used in your labels.
5595
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5596
          'linear' activation is expected to be used instead in the 'input' layer.
5597

C
caoying03 已提交
5598
    The example usage is:
5599 5600 5601 5602 5603 5604 5605 5606 5607

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5608
    :param input: The input of this layer.
5609
    :type input: LayerOutput
R
ranqiu 已提交
5610
    :param label: The input label.
5611
    :type label: LayerOutput
R
ranqiu 已提交
5612
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5613
    :type size: int
5614
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5615 5616
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5617
    :type blank: int
R
ranqiu 已提交
5618
    :param norm_by_times: Whether to do normalization by times. False is the default.
5619
    :type norm_by_times: bool
R
ranqiu 已提交
5620 5621 5622
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5645
@wrap_name_default()
5646
@wrap_param_attr_default()
L
luotao1 已提交
5647
@layer_support()
Q
qijun 已提交
5648 5649 5650 5651 5652 5653
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5654
              coeff=1.0,
L
luotao1 已提交
5655
              layer_attr=None):
Z
zhangjinchao01 已提交
5656 5657 5658 5659
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5660
    The example usage is:
Z
zhangjinchao01 已提交
5661 5662 5663 5664 5665 5666 5667

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5668
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5669
    :type input: LayerOutput
R
ranqiu 已提交
5670
    :param label: The input label.
5671
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5672 5673
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5674 5675
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5676
    :type weight: LayerOutput
R
ranqiu 已提交
5677 5678
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5679
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5680
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5681 5682
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5683
                  1.0 is the default value.
5684
    :type coeff: float
R
ranqiu 已提交
5685 5686 5687
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5688
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5689 5690 5691 5692 5693
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5694 5695 5696 5697 5698 5699
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5700

Q
qijun 已提交
5701
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5702 5703 5704 5705
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5706 5707 5708 5709
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5710
        coeff=coeff,
Q
qijun 已提交
5711
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5712 5713 5714
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5715 5716 5717 5718
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5719

5720

Z
zhangjinchao01 已提交
5721
@wrap_name_default()
5722
@wrap_param_attr_default()
L
luotao1 已提交
5723
@layer_support()
Q
qijun 已提交
5724 5725 5726 5727 5728
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5729
                       layer_attr=None):
Z
zhangjinchao01 已提交
5730 5731 5732
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5733 5734 5735
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5736

C
caoying03 已提交
5737
    The example usage is:
L
Luo Tao 已提交
5738 5739 5740 5741 5742 5743

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5744 5745
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5746
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5747
    :type size: int
R
ranqiu 已提交
5748 5749 5750 5751
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5752
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5753
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5754 5755 5756 5757
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5758
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5759 5760 5761 5762 5763 5764
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5765
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5766 5767 5768 5769
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5770 5771 5772 5773
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5774
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5775 5776 5777
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5778 5779 5780 5781
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5782

Q
qijun 已提交
5783

C
caoying03 已提交
5784 5785 5786 5787 5788
"""
Following are cost Layers.
"""


5789
@wrap_bias_attr_default(has_bias=True)
5790
@wrap_param_attr_default()
5791 5792
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5793 5794
def nce_layer(input,
              label,
C
caoying03 已提交
5795
              num_classes=None,
5796
              param_attr=None,
Q
qijun 已提交
5797 5798 5799 5800 5801 5802
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5803 5804
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5805 5806

    Reference:
R
ranqiu 已提交
5807
        `A fast and simple algorithm for training neural probabilistic language
R
ranqiu 已提交
5808
        models. <https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>`_
5809 5810 5811 5812 5813

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5814 5815
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5816 5817
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5818
    :param name: The name of this layer. It is optional.
5819
    :type name: basestring
R
ranqiu 已提交
5820
    :param input: The first input of this layer.
R
ranqiu 已提交
5821
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5822
    :param label: The input label.
5823
    :type label: LayerOutput
C
caoying03 已提交
5824
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5825
                   mini-batch. It is optional.
5826
    :type weight: LayerOutput
R
ranqiu 已提交
5827
    :param num_classes: The number of classes.
5828
    :type num_classes: int
5829
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5830
    :type act: BaseActivation
R
ranqiu 已提交
5831 5832
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5833
    :type param_attr: ParameterAttribute
5834 5835
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5836
    :type num_neg_samples: int
C
caoying03 已提交
5837 5838 5839
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5840
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5841 5842 5843
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5844
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5845 5846 5847 5848
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5849
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5850 5851
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5852
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5853
    :return: LayerOutput object.
5854 5855 5856 5857
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5858 5859 5860 5861 5862 5863 5864 5865
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5866
    assert isinstance(input, collections.Sequence)
5867

5868 5869
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5870 5871
    if num_classes is None:
        num_classes = label.size
5872 5873 5874
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5875
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5876

5877 5878
    ipts_for_layer = []
    parents = []
5879
    for each_input, attr in zip(input, param_attr):
5880
        assert isinstance(each_input, LayerOutput)
5881
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5892
    l = Layer(
5893 5894 5895 5896
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5897
        active_type=SigmoidActivation().name,
5898 5899 5900
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5901 5902
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5903 5904 5905 5906
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5907
        activation=SigmoidActivation())
5908 5909


Z
zhangjinchao01 已提交
5910
@wrap_name_default()
L
luotao1 已提交
5911
@layer_support()
Q
qijun 已提交
5912 5913 5914 5915 5916 5917 5918
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5919
    """
R
ranqiu 已提交
5920 5921 5922
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5923
        `Learning to Rank using Gradient Descent
R
ranqiu 已提交
5924
        <http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>`_
Z
zhangjinchao01 已提交
5925 5926 5927

    .. math::

L
luotao02 已提交
5928
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5929

L
luotao02 已提交
5930
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5931

L
luotao02 已提交
5932
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5933 5934 5935 5936 5937 5938 5939 5940

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5941
    The example usage is:
Z
zhangjinchao01 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5955 5956
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5957
    :type weight: LayerOutput
R
ranqiu 已提交
5958
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5959 5960
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5961
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5962
    :type coeff: float
R
ranqiu 已提交
5963 5964
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5965
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5966
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5979 5980 5981 5982 5983 5984
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5985

X
xuwei06 已提交
5986
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5987

5988

Z
zhangjinchao01 已提交
5989
@wrap_name_default()
L
luotao1 已提交
5990
@layer_support()
Q
qijun 已提交
5991 5992 5993 5994 5995 5996
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5997 5998 5999
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
6000
    The example usage is:
Z
zhangjinchao01 已提交
6001 6002 6003 6004 6005 6006 6007 6008

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
6009 6010
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
6011
    :type input: LayerOutput
R
ranqiu 已提交
6012
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
6013 6014
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
6015
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
6016
                     minimum size of the list.
Z
zhangjinchao01 已提交
6017
    :type NDCG_num: int
R
ranqiu 已提交
6018 6019 6020 6021 6022
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6023
    :type max_sort_size: int
R
ranqiu 已提交
6024
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6025 6026 6027
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6028
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6029
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6030 6031
    :rtype: LayerOutput
    """
6032 6033 6034
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6035 6036 6037 6038 6039 6040 6041
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6042

Q
qijun 已提交
6043 6044
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6045

6046

Z
zhangjinchao01 已提交
6047
@wrap_name_default()
L
luotao1 已提交
6048
@layer_support()
6049 6050 6051 6052 6053 6054
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6055 6056 6057
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6058 6059
    The example usage is:

Z
zhangjinchao01 已提交
6060 6061
    .. code-block:: python

X
xuwei06 已提交
6062
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6063
                            label=label_layer)
Z
zhangjinchao01 已提交
6064 6065 6066 6067

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6068
    :type input: LayerOutput
R
ranqiu 已提交
6069
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6070 6071
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6072
                  1.0 is the default value.
R
ranqiu 已提交
6073
    :type coeff: float
R
ranqiu 已提交
6074 6075
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6076
    :type weight: LayerOutout
R
ranqiu 已提交
6077 6078
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6079
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6080
    :return: LayerOutput object.
R
ranqiu 已提交
6081
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6082 6083
    """

6084
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6085 6086 6087
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6088
        inputs=ipts,
Q
qijun 已提交
6089 6090
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6091
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6092

6093

Z
zhangjinchao01 已提交
6094
@wrap_name_default()
L
luotao1 已提交
6095
@layer_support()
Q
qijun 已提交
6096 6097 6098 6099
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6100 6101
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6102 6103
    """
    A loss layer for multi class entropy with selfnorm.
6104
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6105

C
caoying03 已提交
6106 6107
    The example usage is:

Z
zhangjinchao01 已提交
6108 6109
    .. code-block:: python

X
xuwei06 已提交
6110
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6111
                                          label=label_layer)
Z
zhangjinchao01 已提交
6112 6113

    :param input: The first input layer.
R
ranqiu 已提交
6114
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6115
    :param label: The input label.
R
ranqiu 已提交
6116
    :type input: LayerOutput
R
ranqiu 已提交
6117
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6118 6119
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6120
                  1.0 is the default value.
R
ranqiu 已提交
6121
    :type coeff: float
Z
zhangjinchao01 已提交
6122
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6123 6124 6125
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6126
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6127
    :return: LayerOutput object.
R
ranqiu 已提交
6128
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6129
    """
Q
qijun 已提交
6130 6131 6132 6133 6134 6135 6136
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6137

Q
qijun 已提交
6138 6139 6140 6141 6142
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6143

6144

X
xuwei06 已提交
6145 6146 6147 6148
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6149
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6150

C
caoying03 已提交
6151 6152
    The example usage is:

X
xuwei06 已提交
6153 6154
    .. code-block:: python

L
Luo Tao 已提交
6155
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6156

R
ranqiu 已提交
6157
    :param input: The input of this layer.
R
ranqiu 已提交
6158
    :type input: LayerOutput
R
ranqiu 已提交
6159
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6160 6161 6162
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6163 6164 6165 6166
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6167
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6168 6169 6170 6171 6172
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6173

Q
qijun 已提交
6174
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6175 6176


Z
zhangjinchao01 已提交
6177
@wrap_name_default()
L
luotao1 已提交
6178
@layer_support()
L
Luo Tao 已提交
6179 6180 6181 6182 6183 6184
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6185
    """
6186 6187 6188
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6189 6190
    is defined as:

R
ranqiu 已提交
6191 6192 6193 6194 6195
    .. math::

       loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta

       loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise
Z
zhangjinchao01 已提交
6196

C
caoying03 已提交
6197 6198
    The example usage is:

Z
zhangjinchao01 已提交
6199 6200
    .. code-block:: python

L
Luo Tao 已提交
6201
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6202 6203

    :param input: The first input layer.
R
ranqiu 已提交
6204
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6205
    :param label: The input label.
R
ranqiu 已提交
6206
    :type input: LayerOutput
R
ranqiu 已提交
6207
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6208
    :type name: basestring
L
Luo Tao 已提交
6209
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6210 6211
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6212
                  1.0 is the default value.
R
ranqiu 已提交
6213 6214 6215
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6216
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6217
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6218 6219
    :rtype: LayerOutput.
    """
6220
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6232
@wrap_name_default()
L
luotao1 已提交
6233
@layer_support()
6234 6235 6236 6237 6238
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6239
    """
6240 6241
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
R
ranqiu 已提交
6242
    a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber
6243 6244 6245
    loss is defined as:

    .. math:
R
ranqiu 已提交
6246 6247 6248 6249

       loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1

       loss = -4yf(x), otherwise
Z
zhangjinchao01 已提交
6250

C
caoying03 已提交
6251 6252
    The example usage is:

Z
zhangjinchao01 已提交
6253 6254
    .. code-block:: python

6255
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6256 6257

    :param input: The first input layer.
R
ranqiu 已提交
6258
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6259
    :param label: The input label.
R
ranqiu 已提交
6260
    :type input: LayerOutput
R
ranqiu 已提交
6261
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6262 6263
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6264
                  1.0 is the default value.
R
ranqiu 已提交
6265 6266 6267
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6268
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6269
    :return: LayerOutput object.
R
ranqiu 已提交
6270
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6271
    """
6272 6273 6274
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6275 6276
    Layer(
        name=name,
6277
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6278 6279 6280
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6281 6282
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6283

6284

Z
zhangjinchao01 已提交
6285
@wrap_name_default()
L
luotao1 已提交
6286
@layer_support()
Q
qijun 已提交
6287 6288 6289 6290
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6291
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6292 6293 6294
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6295 6296
    The example usage is:

Z
zhangjinchao01 已提交
6297 6298
    .. code-block:: python

X
xuwei06 已提交
6299
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6300
                                               label=label_layer)
Z
zhangjinchao01 已提交
6301 6302 6303 6304 6305

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6306
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6307 6308
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6309
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6310
    :type coeff: float
R
ranqiu 已提交
6311 6312
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6313
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6314
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6315 6316 6317
    :rtype: LayerOutput
    """

6318 6319
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6320 6321 6322 6323
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6336 6337


C
caoying03 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6360 6361
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6362
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6363
    """
C
caoying03 已提交
6364 6365 6366
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6367

C
caoying03 已提交
6368 6369 6370 6371 6372
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6373

C
caoying03 已提交
6374 6375 6376 6377 6378
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6379

C
caoying03 已提交
6380 6381 6382
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6383

C
caoying03 已提交
6384 6385 6386 6387
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6388

C
caoying03 已提交
6389 6390 6391
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6392
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6393 6394
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6395

D
dangqingqing 已提交
6396

C
caoying03 已提交
6397 6398
    The example usage is:

D
dangqingqing 已提交
6399 6400
    .. code-block:: python

C
caoying03 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6413
    :param input: Input beams for this layer.
C
caoying03 已提交
6414
    :type input: BeamInput
R
ranqiu 已提交
6415
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6442 6443 6444
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6445 6446
@wrap_name_default()
@layer_support()
6447
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6448 6449
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6450
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6451 6452 6453 6454 6455 6456 6457 6458 6459

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6460
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6461

R
ranqiu 已提交
6462
    Reference:
R
ranqiu 已提交
6463
        `Fast R-CNN
R
ranqiu 已提交
6464
        <https://arxiv.org/pdf/1504.08083v2.pdf>`_
D
dangqingqing 已提交
6465

C
caoying03 已提交
6466 6467
    The example usage is:

D
dangqingqing 已提交
6468 6469
    .. code-block:: python

6470 6471
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6472 6473 6474 6475 6476

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6477
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6478
    :type name: basestring
R
ranqiu 已提交
6479
    :param coeff: The weight of the gradient in the back propagation.
6480
                  1.0 is the default value.
6481
    :type coeff: float
R
ranqiu 已提交
6482 6483
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6496
        coeff=coeff,
D
dangqingqing 已提交
6497 6498 6499
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6500 6501 6502 6503 6504


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6505 6506 6507
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6508
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6509 6510
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6511 6512 6513 6514 6515 6516 6517 6518

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6519 6520
    The example usage is:

W
wwhu 已提交
6521 6522 6523 6524 6525 6526
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6527
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6528
    :type name: basestring
R
ranqiu 已提交
6529 6530
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6554 6555


6556 6557 6558 6559
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6560 6561 6562 6563 6564 6565
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6566
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6567
    :type name: basestring
R
ranqiu 已提交
6568
    :param input: The input of this layer.
R
ranqiu 已提交
6569 6570 6571 6572 6573
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6574 6575 6576 6577 6578 6579 6580
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6581 6582


D
dangqingqing 已提交
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6596
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6597 6598 6599 6600 6601 6602 6603
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6604
    efficient manner to improve unidirectional RNNs.
6605

R
ranqiu 已提交
6606
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6607 6608 6609 6610
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6611

D
dangqingqing 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6627
    :param input: The input of this layer.
D
dangqingqing 已提交
6628 6629 6630 6631
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6632
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6633
    :type act: BaseActivation
R
ranqiu 已提交
6634 6635
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6636
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6637 6638
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6639
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6655 6656


6657 6658 6659 6660 6661
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6662 6663
                channel_shared=None,
                num_channels=None,
6664 6665 6666
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6667
    The Parametric Relu activation that actives outputs with a learnable weight.
6668 6669

    Reference:
R
ranqiu 已提交
6670
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
R
ranqiu 已提交
6671
        ImageNet Classification <http://arxiv.org/pdf/1502.01852v1.pdf>`_
6672 6673 6674 6675 6676

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6677 6678 6679 6680 6681 6682
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6683
    :param name: The name of this layer. It is optional.
6684
    :type name: basestring
R
ranqiu 已提交
6685
    :param input: The input of this layer.
6686
    :type input: LayerOutput
R
ranqiu 已提交
6687
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6688 6689

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6690 6691
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6692 6693

    :type partial_sum: int
6694
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6695

6696 6697
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6698

6699
    :type channel_shared: bool
6700 6701
    :param num_channels: number of input channel.
    :type num_channels: int
6702
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6703 6704 6705
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6706
    :type layer_attr: ExtraLayerAttribute | None
6707 6708 6709 6710
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6711
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6712

6713
    if not param_attr:
X
xzl 已提交
6714
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6715 6716 6717 6718
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6719 6720
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6721 6722 6723 6724
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6725 6726
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6727 6728 6729 6730
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6731 6732 6733

    l = Layer(
        name=name,
C
caoying03 已提交
6734
        type=LayerType.PRELU,
C
caoying03 已提交
6735
        inputs=Input(input.name, **param_attr.attr),
6736 6737 6738 6739 6740 6741
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6742
        num_filters=num_channels,
6743
        size=l.config.size)
6744 6745


6746
@wrap_name_default()
C
caoying03 已提交
6747
@layer_support(ERROR_CLIPPING, DROPOUT)
6748 6749 6750 6751 6752 6753 6754
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6755 6756
                     gate_bias_attr=True,
                     inproj_attr=None,
6757 6758 6759 6760 6761 6762 6763
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6764
    product between :match:`X'` and :math:`\sigma` is finally returned.
6765 6766

    Reference:
R
ranqiu 已提交
6767
        `Language Modeling with Gated Convolutional Networks
R
ranqiu 已提交
6768
        <https://arxiv.org/abs/1612.08083>`_
6769 6770 6771 6772 6773 6774 6775 6776 6777

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6778
    :param input: The input of this layer.
6779
    :type input: LayerOutput
R
ranqiu 已提交
6780
    :param size: The dimension of this layer's output.
6781
    :type size: int
6782 6783
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6784
    :type act: BaseActivation
6785
    :param name: The name of this layer. It is optional.
6786
    :type name: basestring
R
ranqiu 已提交
6787 6788
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6789
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6790 6791 6792
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6793
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6794
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6795
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6796 6797 6798
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6799
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6800 6801 6802
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6803
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6804
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6805
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6806 6807 6808
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6809
    :type layer_attr: ExtraLayerAttribute | None
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6822
        layer_attr=inproj_attr,
6823 6824 6825 6826 6827 6828 6829 6830 6831
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6832
        param_attr=gate_param_attr,
6833 6834 6835 6836 6837
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6838 6839


6840
@layer_support()
6841
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6842 6843
def switch_order_layer(input,
                       name=None,
6844
                       reshape_axis=None,
W
wanghaoshuang 已提交
6845 6846
                       act=None,
                       layer_attr=None):
6847
    """
6848
    This layer switch dimension order of image input.
6849 6850
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6851 6852 6853 6854

    The example usage is:

    .. code-block:: python
6855 6856
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6857
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6858

R
ranqiu 已提交
6859
    :param input: The input of this layer.
6860
    :type input: LayerOutput
6861
    :param name: The name of this layer. It is optional.
6862
    :type name: basestring
R
ranqiu 已提交
6863 6864
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6865 6866 6867
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6868
    assert isinstance(input, LayerOutput)
6869 6870 6871 6872 6873
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6874 6875
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6876
        inputs=input.name,
6877 6878
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6879
        active_type=act.name,
6880 6881 6882
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6883
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6884
        activation=act,
6885 6886
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6887 6888


6889 6890
@wrap_name_default()
@layer_support()
6891
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6892
    """
R
ranqiu 已提交
6893 6894 6895
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6896

6897 6898 6899
    The example usage is:

    .. code-block:: python
W
whs 已提交
6900
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6901

R
ranqiu 已提交
6902 6903
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
6904
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
6905 6906
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6907
    :type offset: Sequence
R
ranqiu 已提交
6908
    :param axis: The start axis to be cropped. For image input layer:
6909 6910 6911 6912
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6913 6914
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6915
    :type shape: Sequence | None
6916
    :param name: The name of this layer. It is optional.
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6938 6939


C
caoying03 已提交
6940 6941
@wrap_name_default()
@layer_support()
6942
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6943
    """
6944
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6945
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6946

C
caoying03 已提交
6947 6948 6949
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6950 6951 6952 6953

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6954

R
ranqiu 已提交
6955
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6956

C
caoying03 已提交
6957

R
ranqiu 已提交
6958
    :param input: The input of this layer. It is a nested sequence.
6959
    :type input: LayerOutput
R
ranqiu 已提交
6960
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6961
    :type input: LayerOutput
6962
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6963 6964 6965 6966
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6967

6968 6969 6970 6971 6972 6973 6974
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6975
    l = Layer(
6976 6977
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6978 6979 6980 6981 6982 6983 6984
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6985 6986


G
guosheng 已提交
6987
@wrap_name_default("clip")
6988
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6989 6990 6991 6992 6993
    """
    A layer for clipping the input value by the threshold.

    .. math::

R
ranqiu 已提交
6994
        out[i] = \min (\max (in[i],p_{1} ),p_{2} )
G
guosheng 已提交
6995 6996 6997

    .. code-block:: python

6998
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6999

7000
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7001
    :type name: basestring
R
ranqiu 已提交
7002
    :param input: The input of this layer.
G
guosheng 已提交
7003
    :type input: LayerOutput.
7004
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
7005
    :type min: float
7006
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
7007
    :type max: float
7008 7009
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
7010 7011 7012 7013 7014
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
7015 7016
        min=min,
        max=max)
G
guosheng 已提交
7017 7018
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
7019 7020


7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7045
    :param name: The name of this layer. It is optional.
7046
    :type name: basestring
R
ranqiu 已提交
7047
    :param input: The input of this layer, which should be a sequence.
7048
    :type input: LayerOutput
R
ranqiu 已提交
7049
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7050
    :type starts: LayerOutput | None
R
ranqiu 已提交
7051
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7052
    :type ends: LayerOutput | None
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7084 7085


7086 7087
@wrap_name_default()
@layer_support()
7088
def kmax_seq_score_layer(input, name=None, beam_size=1):
7089
    """
R
ranqiu 已提交
7090
    This layer accepts one input which is scores over a sequence or a nested
7091 7092 7093 7094
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7095
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7096 7097


7098
    :param name: The name of this layer. It is optional.
7099
    :type name: basestring
R
ranqiu 已提交
7100 7101
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7102
    :type input: LayerOutput
R
ranqiu 已提交
7103 7104
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7105 7106 7107
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7108
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7109
                                            "accepts only one input.")
7110
    assert input.size == 1, (
7111
        "input of kmax_seq_score_layer is a score "
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7122 7123


7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7150
        conv = img_conv3d_layer(input=data, filter_size=1,
7151 7152 7153 7154 7155
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7156
    :param name: The name of this layer. It is optional.
7157
    :type name: basestring
R
ranqiu 已提交
7158
    :param input: The input of this layer.
7159
    :type input: LayerOutput
R
ranqiu 已提交
7160 7161
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7162
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7163 7164
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7165
    :param act: Activation type. ReluActivation is the default activation.
7166
    :type act: BaseActivation
R
ranqiu 已提交
7167
    :param groups: The number of the filter groups.
7168
    :type groups: int
R
ranqiu 已提交
7169 7170
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7171
    :type stride: int | tuple | list
R
ranqiu 已提交
7172 7173
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7174
    :type padding: int | tuple | list
R
ranqiu 已提交
7175 7176 7177
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7178
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7179
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7180 7181
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7182
    :type num_channels: int
R
ranqiu 已提交
7183 7184
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7185
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7186
    :param shared_biases: Whether biases will be shared between filters or not.
7187
    :type shared_biases: bool
R
ranqiu 已提交
7188 7189
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7190
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7191
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7192
    :type trans: bool
R
ranqiu 已提交
7193
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7194 7195 7196
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7197 7198 7199 7200 7201 7202 7203
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7204 7205 7206 7207 7208 7209
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7210

C
chengduoZH 已提交
7211 7212 7213 7214 7215 7216
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7217

C
chengduoZH 已提交
7218 7219 7220 7221 7222 7223
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7270 7271


G
guosheng 已提交
7272 7273 7274 7275 7276
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7277
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7278
    the input matrix. For each element, the layer first re-scales it and then
7279 7280
    adds a bias to it.

X
xuwei06 已提交
7281
    This layer is very like the SlopeInterceptLayer, except the scale and
7282 7283
    bias are trainable.

G
guosheng 已提交
7284 7285 7286 7287 7288 7289 7290 7291
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7292
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7293
    :type name: basestring
R
ranqiu 已提交
7294 7295
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7296 7297
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7298
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7299 7300 7301
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7302
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7313 7314 7315 7316 7317 7318 7319 7320 7321


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7322
    :param input: The input of this layer.
7323 7324 7325
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7326
    :param size: The resized output dimension of this layer.
7327 7328 7329 7330 7331 7332
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7352 7353
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7354
    :type offsets: LayerOutput
R
ranqiu 已提交
7355
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7356
    :type sizes: LayerOutput
7357
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7358
    :type act: BaseActivation.
R
ranqiu 已提交
7359 7360 7361
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7387 7388


Y
yangyaming 已提交
7389 7390
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7391
    """
Y
yangyaming 已提交
7392 7393 7394 7395 7396 7397
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7398 7399 7400

    .. code-block:: python

Y
yangyaming 已提交
7401 7402 7403
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7419 7420
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7421 7422 7423 7424 7425 7426 7427
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7428
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7429 7430 7431 7432 7433
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7434
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7435
        parents=[input, indices],
Y
yangyaming 已提交
7436
        num_filters=input.num_filters,
Y
yangyaming 已提交
7437
        size=input.size)
7438 7439


7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7454 7455 7456 7457 7458
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7459 7460
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7461

7462 7463 7464 7465
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7466 7467

    For details of Factorization Machine, please refer to the paper:
7468
    Factorization machines.
7469

7470
    .. code-block:: python
W
wangmeng28 已提交
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7482 7483
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7484
                        the latent vector size.
7485 7486 7487
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7488 7489
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)