layers.py 226.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
Q
qijun 已提交
145
]
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152


class LayerType(object):
    """
    Layer type enumerations.
    """

153 154 155 156 157 158 159 160
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
161
    POOLING_AVG = 'average'
162
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
163
    COST = 'cost'
164 165
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
166
    HSIGMOID = 'hsigmoid'
167 168 169 170 171
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
172
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
173
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
174
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
175 176 177
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
178
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
179 180 181 182
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
183
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
184 185 186 187 188 189 190

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
191
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
192 193 194
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
195
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
196
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
197
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
198 199 200 201 202 203 204 205 206 207 208

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
209
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
210
    BLOCK_EXPAND = "blockexpand"
211
    MAXOUT = "maxout"
Q
qijun 已提交
212
    SPP_LAYER = "spp"
D
dangqingqing 已提交
213
    PAD_LAYER = "pad"
W
wwhu 已提交
214
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
215
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
216 217 218

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
219 220
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
221 222 223 224 225

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
226
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
227

228 229 230
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

231 232
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
233
    HUBER_REGRESSION = 'huber_regression'
234
    HUBER_CLASSIFICATION = 'huber_classification'
235 236
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
237
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
238 239 240 241 242 243
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
244
    SWITCH_ORDER_LAYER = 'switch_order'
245
    CROP_LAYER = 'crop'
C
caoying03 已提交
246
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
247
    CLIP_LAYER = 'clip'
248
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
249

250
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
251
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
273
    """
L
Luo Tao 已提交
274
    PaddlePaddle supports three sequence types:
275 276 277

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
278 279
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
280

L
Luo Tao 已提交
281
    Accordingly, AggregateLevel supports two modes:
282

L
Luo Tao 已提交
283
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
284
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
285 286
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
287
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
288 289 290
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
291 292
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
293 294 295
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
318
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
319 320
    """

Q
qijun 已提交
321 322 323 324 325 326 327 328 329
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
330
                 reverse=None):
Z
zhangjinchao01 已提交
331 332
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
333
        assert size is not None
Z
zhangjinchao01 已提交
334 335
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
336
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
337
        self.layer_type = layer_type
338 339
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
340 341 342 343 344 345 346 347
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
348
        self.reverse = reverse
Z
zhangjinchao01 已提交
349

350 351 352 353 354 355 356 357
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

358 359 360 361
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

362 363 364 365 366 367 368 369
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
370 371 372

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
373
DEVICE = 'device'
Z
zhangjinchao01 已提交
374 375 376


def layer_support(*attrs):
377
    attrs_list = list(attrs)
378
    attrs_list.append(DEVICE)
Q
qijun 已提交
379

Z
zhangjinchao01 已提交
380 381 382
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
383
            for attr in attrs_list:
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
400 401 402 403 404
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
444 445
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
446 447 448 449
    proj.origin = input
    return proj


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
480 481
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
482 483 484 485
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
525 526
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
527 528 529 530
    proj.origin = input
    return proj


531
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
562
    :type input: LayerOutput
Z
zhangjinchao01 已提交
563 564
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
565
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
566 567 568 569 570 571
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
572 573
        if size is None:
            size = input.size - offset
Q
qijun 已提交
574
        proj = IdentityOffsetProjection(
575
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
576 577 578 579
        proj.origin = input
    return proj


580 581
def slice_projection(input, slices):
    """
582 583
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
584 585

    .. math::
586
       output = [input.slices()]
587 588 589 590 591 592 593 594 595 596 597 598 599 600

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
601
    :type slices: pair of int
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
641
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
642 643 644 645
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
646
@wrap_param_attr_default()
647
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
648
    """
649
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

663 664 665 666 667 668 669
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
670 671
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
672
    proj.origin = input
673
    return proj
Z
zhangjinchao01 已提交
674

675 676

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
677 678
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
679

Z
zhangjinchao01 已提交
680
    .. math::
L
Luo Tao 已提交
681
       out.row[i] += scale * (a.row[i] .* b.row[i])
682

Z
zhangjinchao01 已提交
683 684
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
685

Z
zhangjinchao01 已提交
686
    The example usage is:
687

Z
zhangjinchao01 已提交
688
    .. code-block:: python
689

L
Luo Tao 已提交
690
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
691

692 693 694 695
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
696 697
    :param scale: config scalar, default value is one.
    :type scale: float
698 699
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
700
    """
701 702 703
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
704
    a = kwargs.get('x', a)  # For Backward capacity.
705 706 707 708 709 710
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
711
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
712
    op.origin = [a, b]
713
    return op
Z
zhangjinchao01 已提交
714

715

Z
zhangjinchao01 已提交
716
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
717 718 719
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
756 757 758 759 760 761
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
775
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
784 785 786 787 788
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
        :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
789 790 791
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
792 793 794 795 796 797 798
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
799 800 801 802 803
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

804
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
805 806 807 808 809 810 811 812
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
813
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
814
            self.inputs.append(other)
815 816 817 818
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
819 820 821 822 823 824 825 826
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

827
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
828 829
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
830
        assert len(self.inputs) != 0
831
        ml = MixedLayer(
Z
zhangjinchao01 已提交
832 833 834 835 836
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
837
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
838 839 840
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
841
        self.finalized = True
Z
zhangjinchao01 已提交
842 843 844 845 846 847


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
848 849 850 851 852
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
884 885 886 887 888
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
889 890 891 892 893 894 895 896 897
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
898 899 900 901 902 903
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
904
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
905 906 907 908 909 910 911 912
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
913 914
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
915 916 917 918 919 920 921
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
922
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
923

R
ranqiu 已提交
924
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
925 926 927
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
928
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
929
    :type height: int|None
L
Luo Tao 已提交
930
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
931
    :type width: int|None
Z
zhangjinchao01 已提交
932 933
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
934
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
935 936
    :rtype: LayerOutput
    """
Q
qijun 已提交
937 938 939 940
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
941
        depth=depth,
L
Luo Tao 已提交
942 943
        height=height,
        width=width,
Q
qijun 已提交
944
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
945

C
chengduoZH 已提交
946 947
    if depth is None:
        depth = 1
948 949
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
950 951
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
952
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
953 954

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
955 956 957 958


@wrap_name_default("embedding")
@wrap_param_attr_default()
959
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
960 961 962 963
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

964
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
965 966 967 968 969 970 971 972 973 974
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
975
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
976 977
    :rtype: LayerOutput
    """
Q
qijun 已提交
978 979 980 981 982 983
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
984 985 986 987 988 989 990 991 992
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
993 994 995 996 997 998 999
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1012
    which is equal to:
Z
zhangjinchao01 已提交
1013 1014 1015 1016 1017 1018

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1019
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1029 1030 1031 1032 1033
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1034 1035
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1036
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1037 1038 1039 1040
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1041
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1042 1043
        param_attr = [param_attr]
    else:
1044
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1045 1046
            assert len(input) == len(param_attr)
        else:
1047 1048
            if "parameter_name" in param_attr.attr and len(input) > 1:
                logger.fatal("You should set the parameter name for each of the input item.")
Z
zhangjinchao01 已提交
1049 1050
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1051
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1052 1053

    Layer(
Q
qijun 已提交
1054 1055 1056
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1057 1058 1059 1060 1061
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1062 1063 1064
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1065

1066

1067
@wrap_name_default("print")
1068
def printer_layer(input, format=None, name=None):
1069 1070
    """
    Print the output value of input layers. This layer is useful for debugging.
1071

1072
    :param name: The name of this layer. It is optional.
1073 1074 1075
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1076
    :return: LayerOutput
1077
    """
1078 1079 1080 1081 1082
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1083 1084 1085

    Layer(
        name=name,
1086
        format=format,
1087
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1088
        inputs=[l.name for l in input], )
1089
    # this layer don't return anything, can not be input of other layer.
1090

X
xuwei06 已提交
1091 1092 1093 1094 1095 1096 1097
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1098

Y
yuan 已提交
1099
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1100
def priorbox_layer(input,
G
gaoyuan 已提交
1101
                   image,
G
gaoyuan 已提交
1102 1103 1104 1105 1106
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1107 1108 1109
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1110
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1111 1112 1113
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1114 1115
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1127
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1128 1129 1130
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1131
        inputs=[input.name, image.name],
Y
yuan 已提交
1132 1133 1134 1135 1136 1137
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1138 1139
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1140
        parents=[input, image],
G
gaoyuan 已提交
1141 1142 1143
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1159
    :param name: The name of this layer. It is optional.
1160
    :type name: basestring
Y
yangyaming 已提交
1161 1162
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1163
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1164
    :type input_conf: LayerOutput | List of LayerOutput
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1186
    input_loc_num = len(input_loc)
1187 1188 1189 1190 1191 1192

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1193
    input_conf_num = len(input_conf)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1231 1232
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1233

1234
    :param name: The name of this layer. It is optional.
1235
    :type name: basestring
Y
yangyaming 已提交
1236 1237
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1238
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1239
    :type input_conf: LayerOutput | List of LayerOutput.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1261
    input_loc_num = len(input_loc)
1262 1263 1264 1265 1266 1267

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1268 1269
    input_conf_num = len(input_conf)

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1298 1299
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1300 1301 1302 1303 1304
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1305

1306
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1307 1308 1309 1310 1311 1312 1313
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1314
    assert input.num_filters is not None
G
gaoyuan 已提交
1315 1316
    Layer(
        name=name,
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1330 1331
    return LayerOutput(
        name,
1332
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1333 1334 1335 1336 1337
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1338 1339 1340 1341
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1342 1343 1344 1345
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1346
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1347
                  stride=-1,
Z
zhangjinchao01 已提交
1348 1349 1350 1351
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1352 1353
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1354 1355 1356
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1357
    operation. Note that for sequence with sub-sequence, the default value
1358 1359
    of stride is -1.

Z
zhangjinchao01 已提交
1360 1361 1362 1363 1364 1365
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1366
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1367

L
Luo Tao 已提交
1368 1369
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1370
    :type agg_level: AggregateLevel
1371
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1372 1373 1374 1375 1376 1377
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1378
    :param stride: The step size between successive pooling regions.
1379
    :type stride: Int
1380 1381 1382 1383 1384
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1385 1386
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1387
    :return: LayerOutput object.
Y
Yu Yang 已提交
1388
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1389 1390
    """
    extra_dict = dict()
1391
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1392 1393
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1394 1395 1396 1397
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1398 1399
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1400 1401 1402
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1403 1404 1405 1406 1407 1408
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1409
        stride=stride,
Q
qijun 已提交
1410
        **extra_dict)
Z
zhangjinchao01 已提交
1411

Q
qijun 已提交
1412 1413
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1414

Q
qijun 已提交
1415

Z
zhangjinchao01 已提交
1416 1417
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1418
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1419 1420
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1421
@layer_support()
Q
qijun 已提交
1422 1423
def lstmemory(input,
              name=None,
1424
              size=None,
Q
qijun 已提交
1425 1426 1427 1428 1429 1430
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1431 1432 1433 1434 1435 1436 1437 1438
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1439
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1440

L
luotao02 已提交
1441
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1442

L
luotao02 已提交
1443
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1444

L
luotao02 已提交
1445
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1446

L
luotao02 已提交
1447
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1448 1449


C
caoying03 已提交
1450
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1451
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1452 1453 1454 1455
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1456

C
caoying03 已提交
1457
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1458 1459
    to config a simple plain lstm layer.

C
caoying03 已提交
1460 1461 1462 1463
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1464 1465 1466 1467 1468

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1469 1470
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1481 1482 1483 1484 1485
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1486 1487 1488 1489
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1490
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1491 1492 1493 1494 1495 1496
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1497
    assert input.size is not None and input.size % 4 == 0
1498

1499 1500 1501 1502 1503
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1504 1505 1506
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1507

Q
qijun 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1518

Q
qijun 已提交
1519 1520 1521 1522 1523
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1524

Z
zhangjinchao01 已提交
1525 1526 1527

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1528
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1529 1530
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1531
@layer_support()
Q
qijun 已提交
1532
def grumemory(input,
1533
              size=None,
Q
qijun 已提交
1534 1535 1536 1537 1538 1539
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1561 1562
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1563 1564 1565 1566 1567

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1568 1569 1570
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1571 1572 1573 1574 1575

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1576
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1577
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1578 1579 1580
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1581

C
caoying03 已提交
1582 1583 1584
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1596 1597
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1598
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1599 1600 1601 1602 1603 1604 1605 1606
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1607 1608 1609 1610 1611
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1612 1613 1614 1615
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1616
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1617 1618 1619 1620
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1621 1622 1623 1624 1625 1626
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1627 1628 1629
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1630

Q
qijun 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1640

Q
qijun 已提交
1641 1642 1643 1644 1645
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1646

Z
zhangjinchao01 已提交
1647 1648 1649

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1650 1651
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1652
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1653
             stride=-1,
Z
zhangjinchao01 已提交
1654 1655 1656 1657
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1658 1659 1660
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1661
    of stride is -1.
1662

L
Luo Tao 已提交
1663 1664 1665 1666 1667 1668
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1669
    :param agg_level: Aggregated level
1670
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1671 1672 1673
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1674
    :param stride: The step size between successive pooling regions.
1675
    :type stride: Int
Z
zhangjinchao01 已提交
1676 1677
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1678
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1679 1680
    :rtype: LayerOutput
    """
1681 1682 1683 1684 1685 1686
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1687
    if agg_level == AggregateLevel.TO_SEQUENCE:
1688 1689
        assert stride == -1

Z
zhangjinchao01 已提交
1690 1691 1692 1693 1694
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1695
        stride=stride,
Q
qijun 已提交
1696 1697 1698 1699 1700 1701
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1702 1703 1704 1705


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1706 1707
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1708
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1709
              stride=-1,
Z
zhangjinchao01 已提交
1710 1711 1712 1713
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1714 1715 1716
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1717
    of stride is -1.
1718

L
Luo Tao 已提交
1719 1720 1721 1722 1723 1724
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1725
    :param agg_level: aggregation level
1726
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1727 1728 1729
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1730
    :param stride: The step size between successive pooling regions.
1731
    :type stride: Int
Z
zhangjinchao01 已提交
1732 1733
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1734
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1735 1736
    :rtype: LayerOutput
    """
1737 1738 1739 1740 1741 1742 1743

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1744
    if agg_level == AggregateLevel.TO_SEQUENCE:
1745 1746
        assert stride == -1

Z
zhangjinchao01 已提交
1747 1748 1749 1750 1751
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1752
        stride=stride,
Q
qijun 已提交
1753 1754 1755 1756 1757 1758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1759 1760 1761


class ExpandLevel(object):
1762 1763 1764 1765 1766
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1767 1768
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1769 1770
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1771 1772
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1773 1774
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1775 1776
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1777 1778
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1779

1780

Z
zhangjinchao01 已提交
1781 1782
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1783 1784
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1785 1786
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1787
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1799
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1800 1801 1802 1803 1804

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1805
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1806
    :type name: basestring
1807 1808 1809 1810 1811
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1812 1813 1814 1815
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1816
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1826 1827 1828 1829 1830 1831
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1832 1833


X
xuwei06 已提交
1834
@wrap_name_default()
X
xuwei06 已提交
1835
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1836
@layer_support()
X
xuwei06 已提交
1837 1838 1839
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1840
                 act=None,
X
xuwei06 已提交
1841 1842
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1843
    """
X
xuwei06 已提交
1844
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1845

X
xuwei06 已提交
1846
    If as_row_vector:
X
xuwei06 已提交
1847
    .. math::
X
xuwei06 已提交
1848 1849 1850 1851 1852
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1853 1854 1855 1856 1857

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1858
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1859 1860 1861 1862 1863

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1864
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1865 1866 1867 1868 1869 1870
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1871 1872
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1883
        active_type=act.name,
X
xuwei06 已提交
1884
        num_filters=num_repeats,
X
xuwei06 已提交
1885
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1886
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1887 1888 1889 1890 1891
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1892
        activation=act,
Q
qijun 已提交
1893 1894
        parents=[input])

X
xuwei06 已提交
1895

1896 1897 1898
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1899
@layer_support(ERROR_CLIPPING, DROPOUT)
1900 1901 1902 1903 1904 1905 1906 1907
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1908
    the dimension of each instance is M, and the input reshape_size is N, then the
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1923
    :param name: The name of this layer. It is optional.
1924 1925 1926 1927 1928
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1929 1930 1931 1932 1933
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
1976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1977 1978 1979
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1980
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1981 1982
    :rtype: LayerOutput
    """
1983
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1984
    assert len(input) == 2
1985 1986 1987 1988 1989 1990 1991
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1992 1993 1994 1995
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1996 1997 1998 1999 2000 2001
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2002 2003


L
liaogang 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2020
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2021

L
liaogang 已提交
2022
    :param   input:        A input layer.
L
liaogang 已提交
2023
    :type    input:        LayerOutput.
L
liaogang 已提交
2024
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
2025
    :type    out_size_x:   int|None
L
liaogang 已提交
2026
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
2027
    :type    out_size_y:   int|None
L
liaogang 已提交
2028
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2029
    :type    name:         None|basestring
L
liaogang 已提交
2030
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2031 2032 2033 2034 2035 2036 2037
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2038
    assert input.num_filters is not None
L
liaogang 已提交
2039
    num_channels = input.num_filters
Q
qijun 已提交
2040 2041 2042 2043 2044 2045 2046
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2047
                channels=num_channels)),
Q
qijun 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2057

Z
zhangjinchao01 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2081
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2082 2083 2084
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2085
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2086 2087
    :rtype: LayerOutput
    """
2088 2089 2090
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2091 2092 2093
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2094
        inputs=[weight.name, input.name],
Q
qijun 已提交
2095 2096 2097
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2098 2099 2100 2101 2102 2103


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2104
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2105 2106

    .. math::
2107
       y  = w x
Z
zhangjinchao01 已提交
2108

2109 2110 2111 2112 2113
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2125
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2126 2127 2128
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2129
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2130 2131
    :rtype: LayerOutput
    """
2132 2133 2134
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2135 2136 2137 2138
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2139 2140 2141
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2142 2143 2144 2145 2146 2147


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2148
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
2163
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2164 2165 2166
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2167
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2168 2169 2170 2171 2172 2173
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2174 2175 2176
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2177 2178


2179 2180
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2181
def rotate_layer(input, height, width, name=None, layer_attr=None):
2182
    """
H
Haonan 已提交
2183 2184
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2185 2186

    .. math::
H
Haonan 已提交
2187
       y(j,i,:) = x(M-i-1,j,:)
2188

H
Haonan 已提交
2189
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2190 2191 2192 2193 2194 2195

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2196 2197
                          height=100,
                          width=100)
2198 2199 2200 2201 2202

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2203
    :param name: The name of this layer. It is optional.
2204 2205 2206 2207 2208 2209 2210
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2211 2212 2213
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2214
        width=width,
H
Haonan 已提交
2215 2216 2217 2218 2219 2220 2221 2222
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2223 2224


Z
zhangjinchao01 已提交
2225 2226
@wrap_name_default()
@layer_support()
2227
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2228 2229 2230 2231
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2232
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2233 2234 2235 2236 2237
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2238

2239 2240
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2241

L
Luo Tao 已提交
2242 2243 2244 2245 2246 2247
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2248
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2260
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2261 2262
    :rtype: LayerOutput
    """
2263
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2264 2265 2266 2267 2268 2269
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2270
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2271
    else:
2272 2273
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2274 2275 2276 2277 2278 2279
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2280
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2281
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2282

2283

Z
zhangjinchao01 已提交
2284 2285
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2286
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2287
@layer_support()
Q
qijun 已提交
2288 2289
def hsigmoid(input,
             label,
2290
             num_classes=None,
Q
qijun 已提交
2291 2292 2293 2294
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2306
                        label=data_layer)
Z
zhangjinchao01 已提交
2307 2308 2309 2310 2311 2312 2313

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2314
    :type num_classes: int|None
2315
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2316
    :type name: basestring
2317 2318 2319 2320 2321
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
2322 2323
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2324 2325
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2326
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2327 2328 2329 2330
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2331 2332 2333 2334 2335 2336 2337 2338 2339
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2340 2341 2342
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2343 2344 2345 2346 2347
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2348 2349
    ipts_for_layer = []
    parents = []
2350
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2351
        assert isinstance(each_input, LayerOutput)
2352
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2353 2354 2355 2356
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2357
    l = Layer(
Z
zhangjinchao01 已提交
2358 2359 2360 2361 2362
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2363 2364 2365
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2366

2367

Z
zhangjinchao01 已提交
2368 2369 2370 2371 2372
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2382
                   dilation=1,
Q
qijun 已提交
2383 2384 2385 2386 2387 2388 2389
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2390
                   dilation_y=None,
2391 2392
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2393
    """
2394
    Convolution layer for image. Paddle can support both square and non-square
2395
    input currently.
Z
zhangjinchao01 已提交
2396 2397 2398 2399

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2400

2401
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2402
    and non-square input currently.
2403

X
xuwei06 已提交
2404
    The details of convolution transpose layer,
2405 2406 2407
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2408 2409 2410 2411
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2412 2413 2414
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2415
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2416 2417
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2418

L
Luo Tao 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2429
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2430 2431 2432
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2433 2434 2435
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2436 2437 2438
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2439
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2440 2441 2442 2443 2444
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2445 2446 2447
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2448 2449
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2450 2451 2452
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2453 2454
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2455 2456 2457
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2458 2459
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2460 2461 2462 2463 2464
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2474 2475
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2476
    :param layer_type: specify the layer_type, default is None. If trans=True,
2477 2478
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2479
                       "cudnn_conv"
2480
    :type layer_type: String
D
dangqingqing 已提交
2481
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2482 2483 2484 2485 2486
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2487

Z
zhangjinchao01 已提交
2488
    if filter_size_y is None:
2489 2490 2491 2492 2493 2494
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2495
    if stride_y is None:
2496 2497 2498 2499 2500 2501
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2502
    if padding_y is None:
2503 2504 2505 2506 2507 2508
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2509 2510 2511 2512 2513 2514 2515
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2516 2517
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2518
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2519 2520 2521 2522
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2523

2524
    if layer_type:
W
wanghaoshuang 已提交
2525 2526
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2527
        if trans:
2528
            assert layer_type in ["exconvt", "cudnn_convt"]
2529 2530 2531 2532 2533
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2534

X
xuwei06 已提交
2535
    l = Layer(
Z
zhangjinchao01 已提交
2536
        name=name,
Q
qijun 已提交
2537 2538 2539 2540 2541
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2542
                dilation=dilation,
Q
qijun 已提交
2543 2544 2545 2546 2547
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2548
                dilation_y=dilation_y,
Q
qijun 已提交
2549 2550
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2551 2552 2553 2554
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2555
        type=lt,
Q
qijun 已提交
2556 2557 2558 2559 2560 2561 2562 2563
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2564 2565 2566 2567


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2578 2579
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2580 2581 2582 2583 2584 2585 2586
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2615
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2616
    :type padding: int
2617 2618
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2619 2620 2621 2622
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2623
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2624
    :type pool_size: int
2625 2626
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2627 2628
    :param num_channels: number of input channel.
    :type num_channels: int
2629
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2630 2631
                      MaxPooling.
    :type pool_type: BasePoolingType
2632
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2633
    :type stride: int
2634 2635
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2636 2637
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2638 2639 2640 2641
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2642 2643
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2654 2655 2656 2657
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2658
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2659
        if (
Y
Yu Yang 已提交
2660
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2661
        else pool_type.name
2662 2663 2664 2665
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2666
    l = Layer(
Z
zhangjinchao01 已提交
2667 2668
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2681
                    padding_y=padding_y))
Q
qijun 已提交
2682
        ],
2683
        ceil_mode=ceil_mode,
Q
qijun 已提交
2684 2685 2686 2687 2688 2689 2690
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2691 2692


C
chengduoZH 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
    :type padding: int|tuple|list
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
    :param pool_size: pooling window width
    :type pool_size: int|tuple|list
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
    :type stride: int|tuple|list
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2833 2834
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2835 2836 2837 2838 2839 2840
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2841 2842 2843 2844 2845
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2846 2847 2848 2849
    The example usage is:

    ..  code-block:: python

2850 2851 2852
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2853 2854
                        pool_type=MaxPooling())

2855
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2883
    l = Layer(
Q
qijun 已提交
2884 2885
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2886 2887 2888 2889 2890
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2891
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2903 2904 2905 2906
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2907
    l = Layer(
Q
qijun 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2927 2928 2929 2930


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2931 2932 2933 2934 2935 2936
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2937
                      layer_attr=None):
Z
zhangjinchao01 已提交
2938
    """
2939
    Response normalization across feature maps.
D
dangqingqing 已提交
2940 2941
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2942

L
Luo Tao 已提交
2943 2944 2945
    The example usage is:

    ..  code-block:: python
2946

L
Luo Tao 已提交
2947 2948
        norm = img_cmrnorm_layer(input=net, size=5)

2949
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
2950
    :type name: None|basestring
Z
zhangjinchao01 已提交
2951 2952
    :param input: layer's input.
    :type input: LayerOutput
2953
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2954
    :type size: int
D
dangqingqing 已提交
2955
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2956
    :type scale: float
D
dangqingqing 已提交
2957
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2958 2959 2960 2961 2962
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2963
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2964 2965 2966
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2967
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2968 2969 2970


@wrap_bias_attr_default()
2971 2972
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2973 2974
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2975
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2976 2977 2978
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2979
                     img3D=False,
Q
qijun 已提交
2980 2981 2982 2983
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2984 2985
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2986 2987
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3006 3007 3008
    The example usage is:

    ..  code-block:: python
3009

L
Luo Tao 已提交
3010 3011
        norm = batch_norm_layer(input=net, act=ReluActivation())

3012
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
3026
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
3036
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3054 3055
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3056
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3067
    l = Layer(
Z
zhangjinchao01 已提交
3068
        name=name,
C
chengduoZH 已提交
3069
        img3D=img3D,
Q
qijun 已提交
3070 3071
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3072 3073 3074 3075 3076 3077
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3078
        mean_var_names=mean_var_names,
Q
qijun 已提交
3079
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3080

Q
qijun 已提交
3081 3082 3083 3084 3085 3086 3087
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3111
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3112 3113 3114
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3115
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3116 3117 3118 3119 3120 3121
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3122 3123 3124
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3125 3126


G
guosheng 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3147
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3163 3164 3165
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3166
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3167
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3190 3191 3192
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3193 3194

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3195 3196
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3197 3198
    Please refer to dropout_layer for details.

3199
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3200 3201 3202 3203 3204 3205
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
3206 3207 3208 3209 3210
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3211 3212
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3213
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3214 3215 3216 3217 3218 3219
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3220
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3221 3222 3223 3224 3225 3226 3227
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3228
    l = Layer(
Q
qijun 已提交
3229 3230 3231
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3232 3233
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3234
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3235

Q
qijun 已提交
3236 3237 3238 3239 3240 3241 3242
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3243 3244 3245 3246


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3247
@layer_support(DROPOUT, ERROR_CLIPPING)
3248
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3249 3250 3251 3252
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3253 3254 3255 3256 3257 3258
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3259
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3260 3261
    :type name: basestring
    :param input: input layers or projections
3262
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3263 3264 3265 3266
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3267
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3268 3269 3270 3271 3272 3273 3274 3275
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3276
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3277 3278

    def __is_type__(o, tp):
3279
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3301 3302
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3303

Q
qijun 已提交
3304 3305
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3306

3307 3308
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3309

3310
    layer = Layer(
Q
qijun 已提交
3311 3312
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3313 3314
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3315
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3316
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3317

3318
    sz = layer.config.size
Z
zhangjinchao01 已提交
3319

Q
qijun 已提交
3320 3321 3322 3323 3324 3325 3326 3327
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3328 3329
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3330
@wrap_bias_attr_default(has_bias=False)
3331
@layer_support(DROPOUT, ERROR_CLIPPING)
3332 3333 3334 3335
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3336

3337
    Inputs:
X
xuwei06 已提交
3338
      - a = [a1, a2, ..., am]
3339
      - b = [b1, b2, ..., bn]
3340

X
xuwei06 已提交
3341 3342 3343 3344
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3345 3346 3347 3348 3349 3350 3351

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3352
    :param name: The name of this layer. It is optional.
3353 3354 3355 3356 3357 3358 3359 3360 3361
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3362 3363 3364 3365 3366
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3388
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3389 3390
def memory(name,
           size,
3391
           memory_name=None,
Q
qijun 已提交
3392 3393 3394 3395
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3416 3417 3418 3419 3420 3421 3422 3423 3424
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3425

3426 3427 3428 3429 3430 3431 3432
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3433 3434 3435
    :type name: basestring
    :param size: size of memory.
    :type size: int
3436 3437 3438
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3439
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3449
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3460 3461
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3462

3463 3464 3465 3466 3467 3468 3469 3470
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3471 3472

    lout = LayerOutput(
3473
        name=memory_name,
Q
qijun 已提交
3474 3475 3476
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3477 3478 3479 3480
    return lout


@wrap_bias_attr_default()
3481 3482
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3483 3484 3485
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3486 3487
def lstm_step_layer(input,
                    state,
3488
                    size=None,
Q
qijun 已提交
3489 3490 3491 3492 3493 3494
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3495
    """
3496 3497
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3498 3499 3500

    ..  math::

3501
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3502

3503
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3504

3505
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3506

3507
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3508

L
luotao02 已提交
3509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3510 3511


L
luotao02 已提交
3512
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3513
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3514
    input vectors.
Z
zhangjinchao01 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3525 3526
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3527 3528
    :code:`get_output_layer` to extract this output.

3529
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3530
    :type name: basestring
3531 3532
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
3547 3548 3549 3550 3551
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3552 3553
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3554
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3555 3556
    :rtype: LayerOutput
    """
3557 3558 3559

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3560 3561 3562 3563 3564 3565 3566
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3567
        size=state.size,
Q
qijun 已提交
3568 3569
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3570

Q
qijun 已提交
3571 3572 3573 3574 3575 3576 3577
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3578 3579 3580


@wrap_bias_attr_default()
W
wangyang59 已提交
3581
@wrap_param_attr_default()
Q
qijun 已提交
3582
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3583 3584 3585
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3586 3587 3588 3589 3590 3591 3592
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3593
                   param_attr=None,
Q
qijun 已提交
3594
                   layer_attr=None):
Z
zhangjinchao01 已提交
3595 3596 3597 3598 3599 3600 3601
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
3602
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3603
    :param gate_act:
3604 3605 3606 3607 3608
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3609 3610
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3611
    :param layer_attr:
D
dangqingqing 已提交
3612
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3613 3614 3615 3616 3617 3618 3619 3620
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3621 3622 3623 3624
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3625
        # backward model compatibility.
3626
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3627 3628 3629 3630
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3631
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3632
    return LayerOutput(
Q
qijun 已提交
3633 3634
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3635
        parents=[input, output_mem],
Q
qijun 已提交
3636 3637
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3638 3639


Y
Yu Yang 已提交
3640 3641 3642 3643
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3644
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3662
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3663 3664
    :param act:
    :param gate_act:
3665 3666 3667 3668 3669
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Y
Yu Yang 已提交
3670 3671 3672
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3673
    :rtype: LayerOutput
Y
Yu Yang 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3717 3718 3719 3720
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3721 3722 3723 3724
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3725

3726
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3727 3728 3729 3730 3731 3732 3733
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3734
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3735 3736 3737 3738 3739 3740 3741
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3742 3743 3744 3745 3746 3747 3748
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3749

Q
qijun 已提交
3750 3751 3752 3753 3754
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3755 3756 3757 3758 3759 3760 3761


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3762 3763 3764 3765 3766 3767 3768
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3769
    """
3770 3771
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3772

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
3792 3793 3794 3795 3796
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3797 3798
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3799
    :param name: The name of this layer. It is optional.
3800 3801 3802
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3803
    :return: LayerOutput object.
3804
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3805
    """
Q
qijun 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3821 3822 3823 3824 3825 3826


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3827 3828
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3829
    """
3830

Z
zhangjinchao01 已提交
3831 3832 3833
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3834
        assert input.size is not None
Z
zhangjinchao01 已提交
3835
        if size is not None:
3836
            assert input.size == size
Z
zhangjinchao01 已提交
3837 3838


3839
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3840
    """
3841
    DEPRECATED.
Z
zhangjinchao01 已提交
3842 3843 3844 3845 3846 3847 3848 3849
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3850
    return input
Z
zhangjinchao01 已提交
3851 3852 3853


@wrap_name_default("recurrent_group")
3854
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3855
    """
C
caoying03 已提交
3856 3857 3858 3859 3860
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3905 3906
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3907
    :type reverse: bool
3908

3909 3910
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3911 3912 3913 3914 3915 3916 3917 3918 3919

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3920
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3921 3922 3923 3924
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3925
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3926
        input = [input]
3927
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3928 3929

    def is_in_links(x):
3930
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3931 3932 3933 3934

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3935
        name=name,
3936 3937
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3938 3939
    in_args = []
    for each_input in input:
3940
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3941
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3942
            mem = memory(
3943
                name=None,
Q
qijun 已提交
3944 3945
                size=each_input.input.size,
                boot_layer=each_input.input)
3946
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3947
            in_args.append(mem)
3948 3949
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3950

Z
zhangjinchao01 已提交
3951 3952 3953 3954 3955
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3956 3957 3958 3959 3960 3961
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3962 3963 3964

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3965
    for layer_out in layer_outs:
3966 3967
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3968 3969
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3970 3971 3972 3973 3974
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3975

Z
zhangjinchao01 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4004 4005

    def before_real_step(self):
Q
qijun 已提交
4006 4007 4008 4009 4010 4011 4012 4013 4014
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4015 4016 4017
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4018
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
4038
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4039 4040 4041
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4042
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4043 4044 4045 4046
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4057

4058

H
Haonan 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4071
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4095

Z
zhangjinchao01 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4112
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4113
    :type name: basestring
Z
zhangjinchao01 已提交
4114 4115 4116 4117 4118 4119
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4120
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4121 4122
    :rtype: LayerOutput
    """
Q
qijun 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4134 4135 4136


@wrap_name_default()
Q
qijun 已提交
4137 4138 4139 4140 4141 4142 4143
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4144
                num_results_per_sample=None):
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4156
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4157 4158 4159 4160
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4161 4162 4163 4164 4165
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4166 4167
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4168 4169
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4170 4171
                               bos_id=0,
                               eos_id=1,
4172
                               beam_size=5)
4173 4174 4175 4176 4177 4178 4179 4180 4181

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4182
                 step, and it is applied to sequences with arbitrary length by
4183 4184 4185 4186 4187
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4188 4189
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4190
                  In beam_search, none of the input's type should be LayerOutput.
4191
    :type input: list
4192 4193 4194
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4195
                   symbol is essential, since it is used to initialize the RNN
4196 4197 4198 4199 4200 4201 4202 4203
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4204 4205
    :param max_length: Max generated sequence length.
    :type max_length: int
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4216 4217
    :return: The generated word index.
    :rtype: LayerOutput
4218 4219
    """

Z
zhangjinchao01 已提交
4220 4221 4222 4223 4224
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4225
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4226 4227 4228 4229 4230 4231
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4232 4233 4234
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4235
        if isinstance(each_input, BaseGeneratedInput):
4236 4237
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4238
            generated_input_index = i
4239

Z
zhangjinchao01 已提交
4240 4241 4242
        else:
            real_input.append(each_input)

4243
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4244 4245 4246 4247 4248 4249 4250 4251

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4252 4253 4254 4255 4256 4257
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4258 4259 4260 4261 4262 4263

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4264
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4265 4266
        return predict

4267 4268
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4269

Q
qijun 已提交
4270

4271 4272
def __cost_input__(input, label, weight=None):
    """
4273
    inputs and parents for cost layers.
4274
    """
C
caoying03 已提交
4275 4276 4277 4278 4279 4280
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4281
    if weight is not None:
4282
        assert weight.size == 1
4283 4284 4285
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4286

Z
zhangjinchao01 已提交
4287 4288

@wrap_name_default()
L
luotao1 已提交
4289
@layer_support()
4290 4291 4292 4293 4294 4295
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4296
    """
4297
    sum of square error cost:
L
Luo Tao 已提交
4298 4299 4300

    ..  math::

4301
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4302

4303
    :param name: The name of this layer. It is optional.
4304
    :type name: basestring
Z
zhangjinchao01 已提交
4305
    :param input: Network prediction.
4306
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4307
    :param label: Data label.
4308 4309 4310 4311
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4312 4313
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4314 4315
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4316
    :return: LayerOutput object.
4317
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4318
    """
4319 4320
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4321 4322 4323 4324
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4325
        coeff=coeff,
Q
qijun 已提交
4326
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4327
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4328 4329


4330
regression_cost = square_error_cost
L
Luo Tao 已提交
4331 4332


Z
zhangjinchao01 已提交
4333
@wrap_name_default("cost")
4334
@layer_support()
Q
qijun 已提交
4335 4336 4337 4338
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4339
                        evaluator=classification_error_evaluator,
4340 4341
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4342 4343 4344
    """
    classification cost Layer.

4345
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4346 4347 4348 4349 4350
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4351 4352 4353
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4354
    :param evaluator: Evaluator method.
4355 4356
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4357 4358
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4359
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4360 4361 4362 4363 4364
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4365 4366 4367

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4368 4369 4370 4371
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4372
        coeff=coeff,
Q
qijun 已提交
4373
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4384
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4385

4386
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4387 4388 4389 4390 4391
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4392
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4393

4394

Q
qijun 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4404 4405
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4416 4417
       op = conv_operator(img=input1,
                          filter=input2,
4418
                          filter_size=3,
Z
zhangjinchao01 已提交
4419 4420 4421
                          num_filters=64,
                          num_channels=64)

4422 4423 4424 4425
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4426 4427
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4428 4429 4430
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4431
    :type filter_size_y: int
4432 4433
    :param num_filters: channel of output data.
    :type num_filters: int
4434 4435
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4436
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4437
    :type stride: int
Z
zhangjinchao01 已提交
4438
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4439
    :type stride_y: int
Z
zhangjinchao01 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4453

4454 4455
    if num_channels is None:
        num_channels = img.num_filters
4456 4457

    assert isinstance(filter, LayerOutput)
4458
    assert filter.size is not None
4459

4460 4461 4462
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4474

4475
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4476 4477
    return op

Q
qijun 已提交
4478

4479
@wrap_param_attr_default()
Q
qijun 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4490 4491
                    param_attr=None,
                    trans=False):
4492 4493 4494 4495 4496 4497 4498 4499 4500
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4501
       proj = conv_projection(input=input1,
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4516 4517
    :param num_channels: channel of input data.
    :type num_channels: int
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4530 4531
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4562
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4563 4564 4565 4566 4567
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4568 4569 4570
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4583 4584 4585 4586

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4587

D
dangqingqing 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4605

D
dangqingqing 已提交
4606
    For example,
4607

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4629 4630

    The simply usage is:
D
dangqingqing 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4649
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4692
@wrap_name_default()
L
luotao1 已提交
4693 4694
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4706 4707 4708 4709
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4710 4711 4712 4713 4714

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4715
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4716

4717
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4718
    :type name: basestring
4719 4720
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4721
    :param b: input layer b.
4722
    :type b: LayerOutput
L
luotao1 已提交
4723 4724
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4725
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4726 4727
    :rtype: LayerOutput
    """
4728 4729
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4730 4731 4732
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4733
        inputs=[a.name, b.name],
Q
qijun 已提交
4734
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4735

Q
qijun 已提交
4736 4737
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4738 4739 4740 4741 4742


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4743
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4744
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4745 4746 4747 4748 4749 4750 4751 4752
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4753 4754 4755 4756 4757
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4758
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4759 4760

    In this formular:
4761 4762
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4763 4764
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4765
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4766 4767 4768 4769 4770

    The simple usage is:

    .. code-block:: python

4771
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4772

4773
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4774
    :type name: basestring
4775 4776 4777 4778
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4779
    :param size: the layer dimension.
L
luotao02 已提交
4780
    :type size: int.
Z
zhangjinchao01 已提交
4781 4782 4783
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4784
    :type param_attr: ParameterAttribute
4785 4786 4787 4788 4789
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4790 4791
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4792
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4793 4794
    :rtype: LayerOutput
    """
4795
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4796 4797 4798 4799 4800 4801
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4802 4803 4804 4805
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4806 4807 4808 4809 4810 4811


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4812
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4813 4814
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4815
                       select=None,
Q
qijun 已提交
4816 4817
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4818 4819 4820
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4821 4822 4823
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4834
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4835

4836
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4837 4838 4839
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4840 4841
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4842
                   If is None, acts exactly like fc_layer.
4843
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4844 4845 4846 4847 4848 4849
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4850 4851 4852 4853 4854
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4855 4856
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4857
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4858 4859 4860 4861
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4862
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4863 4864
        param_attr = [param_attr]
    else:
4865
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4866 4867
            assert len(input) == len(param_attr)
        else:
4868 4869
            if "parameter_name" in param_attr.attr and len(input) > 1:
                logger.fatal("You should set the parameter name for each of the input item.")
Z
zhangjinchao01 已提交
4870 4871
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4872 4873 4874 4875
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4876
    Layer(
Q
qijun 已提交
4877 4878 4879
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4880 4881 4882
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4883
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4884 4885 4886 4887
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4888 4889 4890 4891 4892 4893 4894
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4895 4896 4897


@wrap_name_default()
L
luotao1 已提交
4898 4899
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
4912
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4913
    :type name: basestring
L
luotao1 已提交
4914 4915
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4916
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4917 4918
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4919
    l = Layer(
Z
zhangjinchao01 已提交
4920 4921 4922
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4923 4924 4925
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4926 4927 4928


@wrap_name_default()
L
luotao1 已提交
4929
@layer_support()
Q
qijun 已提交
4930 4931 4932 4933
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4934
                          layer_attr=None):
Z
zhangjinchao01 已提交
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
4950
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4951 4952 4953 4954 4955
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4956 4957
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4958
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4959 4960 4961 4962 4963 4964 4965 4966
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4967 4968 4969
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4970 4971 4972


@wrap_name_default()
L
luotao1 已提交
4973
@layer_support()
Q
qijun 已提交
4974
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4975
    """
4976 4977 4978 4979
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4980 4981 4982

    .. math::

4983
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4984

4985 4986 4987 4988 4989
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4990

4991
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4992 4993

    In this formular:
4994 4995 4996 4997 4998 4999
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5000 5001 5002 5003 5004

    The simple usage is:

    .. code-block:: python

5005
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5006 5007
                                       size=elem_dim)

5008 5009 5010 5011
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5012 5013
    :param size: the dimension of this layer.
    :type size: int
5014
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5015
    :type name: basestring
L
luotao1 已提交
5016 5017
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5018
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5019 5020
    :rtype: LayerOutput
    """
5021 5022 5023 5024
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5025
            size = vectors.size / weights.size
5026 5027
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5028 5029
    Layer(
        name=name,
5030
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5031
        size=size,
5032
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5033 5034 5035
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5036

5037

5038
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5039

5040

Z
zhangjinchao01 已提交
5041
@wrap_name_default()
L
luotao1 已提交
5042
@layer_support()
Z
zhangjinchao01 已提交
5043 5044 5045 5046 5047 5048 5049
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5050
                       num_channels=None,
L
luotao1 已提交
5051 5052
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5053 5054
    """
    Expand feature map to minibatch matrix.
5055
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5056
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5067
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5068 5069
    convolution neural network, and before recurrent neural network.

5070 5071 5072 5073
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5074
       block_expand = block_expand_layer(input=layer,
5075
                                         num_channels=128,
5076 5077 5078 5079 5080
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
5081 5082
    :param input: The input layer.
    :type input: LayerOutput
5083 5084
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5097
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5098
    :type name: None|basestring.
L
luotao1 已提交
5099 5100
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5101
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5102 5103
    :rtype: LayerOutput
    """
5104 5105 5106
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5124 5125


5126 5127
@wrap_name_default()
@layer_support()
5128
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5129 5130 5131 5132 5133
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5134
    So groups should be larger than 1, and the num of channels should be able
5135 5136
    to devided by groups.

X
xuwei06 已提交
5137 5138 5139 5140 5141 5142 5143 5144
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5145
    Please refer to Paper:
5146 5147 5148 5149
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
5166
    :param name: The name of this layer. It is optional.
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5188 5189


Z
zhangjinchao01 已提交
5190
@wrap_name_default()
L
luotao1 已提交
5191
@layer_support()
Q
qijun 已提交
5192 5193 5194 5195 5196
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5197
              layer_attr=None):
Z
zhangjinchao01 已提交
5198 5199 5200 5201 5202
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5203 5204
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5205 5206
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5207 5208 5209 5210 5211 5212 5213 5214

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5215
    The example usage is:
Z
zhangjinchao01 已提交
5216 5217 5218 5219 5220 5221 5222 5223

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5224
    :param input: The input layer.
Z
zhangjinchao01 已提交
5225 5226 5227
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5228
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5229
    :type size: int
5230
    :param name: The name of this layer. It is optional.
5231
    :type name: basestring|None
Z
zhangjinchao01 已提交
5232 5233
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5234 5235
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5236
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5237 5238 5239 5240
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5241 5242 5243 5244 5245
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5246
    Layer(
5247 5248 5249 5250
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5251
        inputs=[input.name, label.name],
Q
qijun 已提交
5252
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5253 5254
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5255

5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5267
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5268
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5269 5270 5271 5272 5273 5274 5275
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5276 5277 5278
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5279
    icml2006_GravesFGS06.pdf>`_.
5280 5281 5282

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5283 5284 5285
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5286 5287
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5288
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5289
          'linear' activation is expected instead in the 'input' layer.
5290

C
caoying03 已提交
5291
    The example usage is:
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5307
    :param name: The name of this layer. It is optional.
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5337
@wrap_name_default()
5338
@wrap_param_attr_default()
L
luotao1 已提交
5339
@layer_support()
Q
qijun 已提交
5340 5341 5342 5343 5344 5345
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5346
              coeff=1.0,
L
luotao1 已提交
5347
              layer_attr=None):
Z
zhangjinchao01 已提交
5348 5349 5350 5351
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5352
    The example usage is:
Z
zhangjinchao01 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5363
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5364 5365 5366 5367 5368 5369 5370
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5371
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5372
    :type name: None|basestring
5373 5374
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5375 5376
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5377
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5378 5379 5380 5381 5382
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5383 5384 5385 5386 5387 5388
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5389

Q
qijun 已提交
5390
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5391 5392 5393 5394
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5395 5396 5397 5398
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5399
        coeff=coeff,
Q
qijun 已提交
5400
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5401 5402 5403
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5404 5405 5406 5407
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5408

5409

Z
zhangjinchao01 已提交
5410
@wrap_name_default()
5411
@wrap_param_attr_default()
L
luotao1 已提交
5412
@layer_support()
Q
qijun 已提交
5413 5414 5415 5416 5417
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5418
                       layer_attr=None):
Z
zhangjinchao01 已提交
5419 5420 5421 5422 5423 5424 5425
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5426
    The example usage is:
L
Luo Tao 已提交
5427 5428 5429 5430 5431 5432

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5433 5434 5435 5436 5437 5438 5439 5440
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5441
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5442
    :type name: None|basestring
L
luotao1 已提交
5443 5444
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5445
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5446 5447 5448 5449 5450 5451
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5452
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5453 5454 5455 5456
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5457 5458 5459 5460
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5461
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5462 5463 5464
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5465 5466 5467 5468
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5469

Q
qijun 已提交
5470

Y
Yu Yang 已提交
5471
@wrap_act_default(act=SigmoidActivation())
5472
@wrap_bias_attr_default(has_bias=True)
5473
@wrap_param_attr_default()
5474 5475
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5476 5477
def nce_layer(input,
              label,
C
caoying03 已提交
5478
              num_classes=None,
Y
Yu Yang 已提交
5479
              act=None,
5480
              param_attr=None,
Q
qijun 已提交
5481 5482 5483 5484 5485 5486
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5487 5488 5489 5490 5491 5492 5493 5494 5495
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5496 5497
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5498 5499
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5500
    :param name: The name of this layer. It is optional.
5501
    :type name: basestring
R
ranqiu 已提交
5502
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
5503 5504 5505 5506 5507 5508
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5509
    :type num_classes: int
Y
Yu Yang 已提交
5510 5511
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5512 5513
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5514
    :param num_neg_samples: number of negative samples. Default is 10.
5515
    :type num_neg_samples: int
5516 5517 5518 5519
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
5520 5521 5522 5523 5524
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
5525 5526 5527 5528 5529 5530 5531
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5532 5533 5534 5535 5536 5537 5538 5539
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5540
    assert isinstance(input, collections.Sequence)
5541

5542 5543
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5544 5545
    if num_classes is None:
        num_classes = label.size
5546 5547 5548
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5549
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5550 5551
    if not isinstance(act, BaseActivation):
        raise TypeError()
5552

5553 5554
    ipts_for_layer = []
    parents = []
5555
    for each_input, attr in zip(input, param_attr):
5556
        assert isinstance(each_input, LayerOutput)
5557
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5568
    l = Layer(
5569 5570 5571 5572
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5573
        active_type=act.name,
5574 5575 5576
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5577 5578
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5579 5580 5581 5582 5583
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5584

5585

Z
zhangjinchao01 已提交
5586 5587 5588
"""
following are cost Layers.
"""
5589 5590


Z
zhangjinchao01 已提交
5591
@wrap_name_default()
L
luotao1 已提交
5592
@layer_support()
Q
qijun 已提交
5593 5594 5595 5596 5597 5598 5599
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5600
    """
5601
    A cost Layer for learning to rank using gradient descent. Details can refer
5602 5603
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5604 5605 5606 5607 5608
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5609
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5610

L
luotao02 已提交
5611
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5612

L
luotao02 已提交
5613
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5614 5615 5616 5617 5618 5619 5620 5621

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5622
    The example usage is:
Z
zhangjinchao01 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5639
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5640 5641 5642
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5643 5644
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5645
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5658 5659 5660 5661 5662 5663
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5664

X
xuwei06 已提交
5665
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5666

5667

Z
zhangjinchao01 已提交
5668
@wrap_name_default()
L
luotao1 已提交
5669
@layer_support()
Q
qijun 已提交
5670 5671 5672 5673 5674 5675
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5676 5677 5678
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5679
    The example usage is:
Z
zhangjinchao01 已提交
5680 5681 5682 5683 5684 5685 5686 5687

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5688
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5689 5690 5691 5692
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5693
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5694 5695 5696 5697 5698 5699
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5700 5701 5702
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5703
    :type max_sort_size: int
R
ranqiu 已提交
5704
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5705
    :type name: None|basestring
L
luotao1 已提交
5706 5707
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5708
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5709 5710
    :rtype: LayerOutput
    """
5711 5712 5713
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5714 5715 5716 5717 5718 5719 5720
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5721

Q
qijun 已提交
5722 5723
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5724

5725

Z
zhangjinchao01 已提交
5726
@wrap_name_default()
L
luotao1 已提交
5727
@layer_support()
5728 5729 5730 5731 5732 5733
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5734 5735 5736
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5737 5738
    The example usage is:

Z
zhangjinchao01 已提交
5739 5740
    .. code-block:: python

X
xuwei06 已提交
5741
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5742
                            label=label_layer)
Z
zhangjinchao01 已提交
5743 5744 5745 5746 5747

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5748
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5749
    :type name: None|basestring.
5750 5751
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5752
    :type coeff: float.
5753 5754 5755 5756
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5757 5758
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5759
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5760 5761 5762
    :rtype: LayerOutput.
    """

5763
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5764 5765 5766
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5767
        inputs=ipts,
Q
qijun 已提交
5768 5769
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5770
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5771

5772

Z
zhangjinchao01 已提交
5773
@wrap_name_default()
L
luotao1 已提交
5774
@layer_support()
Q
qijun 已提交
5775 5776 5777 5778
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5779 5780
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5781 5782
    """
    A loss layer for multi class entropy with selfnorm.
5783
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5784

C
caoying03 已提交
5785 5786
    The example usage is:

Z
zhangjinchao01 已提交
5787 5788
    .. code-block:: python

X
xuwei06 已提交
5789
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5790
                                          label=label_layer)
Z
zhangjinchao01 已提交
5791 5792 5793 5794 5795

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5796
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5797 5798 5799 5800 5801
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5802 5803
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5804
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5805 5806
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5807 5808 5809 5810 5811 5812 5813
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5814

Q
qijun 已提交
5815 5816 5817 5818 5819
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5820

5821

X
xuwei06 已提交
5822 5823 5824 5825 5826 5827
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5828 5829
    The example usage is:

X
xuwei06 已提交
5830 5831
    .. code-block:: python

L
Luo Tao 已提交
5832
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5833 5834 5835

    :param input: The first input layer.
    :type input: LayerOutput.
R
ranqiu 已提交
5836
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
5837 5838 5839 5840 5841 5842
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5843
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5844 5845 5846 5847 5848
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5849

Q
qijun 已提交
5850
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5851 5852


Z
zhangjinchao01 已提交
5853
@wrap_name_default()
L
luotao1 已提交
5854
@layer_support()
L
Luo Tao 已提交
5855 5856 5857 5858 5859 5860
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5861
    """
5862 5863 5864
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5865 5866 5867 5868 5869
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5870

C
caoying03 已提交
5871 5872
    The example usage is:

Z
zhangjinchao01 已提交
5873 5874
    .. code-block:: python

L
Luo Tao 已提交
5875 5876 5877 5878 5879 5880
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5881
    :param name: The name of this layer. It is optional.
L
Luo Tao 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5904
@wrap_name_default()
L
luotao1 已提交
5905
@layer_support()
5906 5907 5908 5909 5910
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5911
    """
5912 5913 5914
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5915 5916 5917
    loss is defined as:

    .. math:
5918
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5919
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5920

C
caoying03 已提交
5921 5922
    The example usage is:

Z
zhangjinchao01 已提交
5923 5924
    .. code-block:: python

5925
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5926 5927 5928 5929 5930

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5931
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5932 5933 5934
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5935 5936
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5937
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5938 5939
    :rtype: LayerOutput.
    """
5940 5941 5942
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5943 5944
    Layer(
        name=name,
5945
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5946 5947 5948
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5949 5950
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5951

5952

Z
zhangjinchao01 已提交
5953
@wrap_name_default()
L
luotao1 已提交
5954
@layer_support()
Q
qijun 已提交
5955 5956 5957 5958
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5959
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5960 5961 5962
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5963 5964
    The example usage is:

Z
zhangjinchao01 已提交
5965 5966
    .. code-block:: python

X
xuwei06 已提交
5967
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5968
                                               label=label_layer)
Z
zhangjinchao01 已提交
5969 5970 5971 5972 5973

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5974
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5975 5976 5977
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5978 5979
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5980
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5981 5982 5983
    :rtype: LayerOutput
    """

5984 5985
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5986 5987 5988 5989
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6002 6003


C
caoying03 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6026 6027
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6028
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6029
    """
C
caoying03 已提交
6030 6031 6032
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6033

C
caoying03 已提交
6034 6035 6036 6037 6038
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6039

C
caoying03 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6058
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6079
    :param input: Input beams for this layer.
C
caoying03 已提交
6080
    :type input: BeamInput
R
ranqiu 已提交
6081
    :param name: The name of this layer.
C
caoying03 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6108 6109 6110
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6111 6112
@wrap_name_default()
@layer_support()
6113
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6114 6115
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6116
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6126
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6127

D
dangqingqing 已提交
6128 6129 6130
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6131 6132
    The example usage is:

D
dangqingqing 已提交
6133 6134
    .. code-block:: python

6135 6136
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6137 6138 6139 6140 6141

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6142
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
6143
    :type name: None|basestring
6144 6145
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6159
        coeff=coeff,
D
dangqingqing 已提交
6160 6161 6162
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6182 6183
    The example usage is:

W
wwhu 已提交
6184 6185 6186 6187 6188 6189
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6190
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6216 6217


6218 6219 6220 6221
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6222 6223 6224 6225 6226 6227
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6228
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6229 6230 6231 6232 6233 6234 6235
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6236 6237 6238 6239 6240 6241 6242
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6243 6244


D
dangqingqing 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6258
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6259 6260 6261 6262 6263 6264 6265
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6266
    efficient manner to improve unidirectional RNNs.
6267

R
ranqiu 已提交
6268
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6269 6270 6271 6272
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6273

D
dangqingqing 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6297
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6317 6318


6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6338 6339 6340 6341 6342 6343
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6344
    :param name: The name of this layer. It is optional.
6345 6346 6347 6348
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6349 6350 6351 6352 6353 6354

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6355 6356 6357 6358 6359 6360 6361 6362
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6363
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6364
    assert isinstance(param_attr, ParameterAttribute)
6365 6366 6367

    l = Layer(
        name=name,
C
caoying03 已提交
6368
        type=LayerType.PRELU,
C
caoying03 已提交
6369
        inputs=Input(input.name, **param_attr.attr),
6370 6371 6372 6373 6374 6375 6376
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6377 6378


6379
@wrap_name_default()
C
caoying03 已提交
6380
@layer_support(ERROR_CLIPPING, DROPOUT)
6381 6382 6383 6384 6385 6386 6387
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6388 6389
                     gate_bias_attr=True,
                     inproj_attr=None,
6390 6391 6392 6393 6394 6395 6396
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6397
    product between :match:`X'` and :math:`\sigma` is finally returned.
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
6417
    :param name: The name of this layer. It is optional.
6418 6419 6420 6421 6422 6423 6424 6425
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6426 6427 6428 6429 6430 6431
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6454
        layer_attr=inproj_attr,
6455 6456 6457 6458 6459 6460 6461 6462 6463
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6464
        param_attr=gate_param_attr,
6465 6466 6467 6468 6469
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6470 6471


6472
@layer_support()
6473
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6474 6475
def switch_order_layer(input,
                       name=None,
6476
                       reshape_axis=None,
W
wanghaoshuang 已提交
6477 6478
                       act=None,
                       layer_attr=None):
6479
    """
6480
    This layer switch dimension order of image input.
6481 6482
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6483 6484 6485 6486

    The example usage is:

    .. code-block:: python
6487 6488
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6489
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6490 6491 6492

    :param input: The input layer.
    :type input: LayerOutput
6493
    :param name: The name of this layer. It is optional.
6494
    :type name: basestring
R
ranqiu 已提交
6495 6496
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6497 6498 6499
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6500
    assert isinstance(input, LayerOutput)
6501 6502 6503 6504 6505
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6506 6507
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6508
        inputs=input.name,
6509 6510
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6511
        active_type=act.name,
6512 6513 6514
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6515
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6516
        activation=act,
6517 6518
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6519 6520


6521 6522
@wrap_name_default()
@layer_support()
6523
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6524
    """
6525
    The crop layer crops images by offset and shape. User can set crop shape by
6526
    args 'shape' explicitly or by reference input layer.
6527

6528 6529 6530
    The example usage is:

    .. code-block:: python
W
whs 已提交
6531
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6532 6533 6534 6535

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6536 6537
    :param offset: The crop offset
    :type offset: Sequence
6538 6539 6540 6541 6542 6543 6544
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6545
    :type shape: Sequence | None
6546
    :param name: The name of this layer. It is optional.
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6568 6569


C
caoying03 已提交
6570 6571
@wrap_name_default()
@layer_support()
6572
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6573
    """
6574
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6575
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6576

C
caoying03 已提交
6577 6578 6579
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6580 6581 6582 6583

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6584 6585

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6586

C
caoying03 已提交
6587

6588 6589 6590
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6591
    :type input: LayerOutput
6592
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6593 6594 6595 6596
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6597

6598 6599 6600 6601 6602 6603 6604
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6605
    l = Layer(
6606 6607
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6608 6609 6610 6611 6612 6613 6614
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6615 6616


G
guosheng 已提交
6617
@wrap_name_default("clip")
6618
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6619 6620 6621 6622 6623 6624 6625 6626 6627
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6628
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6629

6630
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6631 6632 6633
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6634 6635 6636 6637
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6638 6639
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6640 6641 6642 6643 6644
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6645 6646
        min=min,
        max=max)
G
guosheng 已提交
6647 6648
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6649 6650


6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6675
    :param name: The name of this layer. It is optional.
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6715 6716


6717 6718
@wrap_name_default()
@layer_support()
6719
def kmax_seq_score_layer(input, name=None, beam_size=1):
6720
    """
C
caoying03 已提交
6721
    This layer accepts one input which are scores over a sequence or a nested
6722 6723 6724 6725
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6726
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6727 6728


6729
    :param name: The name of this layer. It is optional.
6730
    :type name: basestring
C
caoying03 已提交
6731
    :param input: The input layer. It stores scores over a sequence or a nested
6732 6733
        sequence and its size must be 1.
    :type input: LayerOutput.
R
ranqiu 已提交
6734
    :param beam_size: sequence indices with top beam_size scores are returned.
6735 6736 6737 6738
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6739
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6740
                                            "accepts only one input.")
6741
    assert input.size == 1, (
6742
        "input of kmax_seq_score_layer is a score "
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6753 6754


6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6781
        conv = img_conv3d_layer(input=data, filter_size=1,
6782 6783 6784 6785 6786
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6787
    :param name: The name of this layer. It is optional.
6788 6789 6790
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
C
chengduoZH 已提交
6791
    :param filter_size: The x dimension of a filter kernel. Or input a list.
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
    :type filter_size: int|tuple|list
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
6806
    :type bias_attr: ParameterAttribute|None|Bool|Any
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6830 6831 6832 6833 6834 6835
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6836

C
chengduoZH 已提交
6837 6838 6839 6840 6841 6842
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6843

C
chengduoZH 已提交
6844 6845 6846 6847 6848 6849
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6896 6897


G
guosheng 已提交
6898 6899 6900 6901 6902
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6903 6904
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6905 6906
    adds a bias to it.

X
xuwei06 已提交
6907
    This layer is very like the SlopeInterceptLayer, except the scale and
6908 6909
    bias are trainable.

G
guosheng 已提交
6910 6911 6912 6913 6914 6915 6916 6917
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6918
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6919 6920 6921 6922 6923
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6924 6925 6926 6927 6928
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
G
guosheng 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)