layers.py 246.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
125
    'roi_pool_layer',
Q
qijun 已提交
126
    'spp_layer',
D
dangqingqing 已提交
127
    'pad_layer',
L
Luo Tao 已提交
128
    'eos_layer',
129
    'smooth_l1_cost',
130
    'layer_support',
W
wwhu 已提交
131
    'multiplex_layer',
D
dangqingqing 已提交
132
    'row_conv_layer',
133
    'dropout_layer',
134
    'prelu_layer',
135
    'switch_order_layer',
136
    'gated_unit_layer',
137
    'crop_layer',
138
    'sub_nested_seq_layer',
139
    'clip_layer',
140
    'slice_projection',
141
    'seq_slice_layer',
142
    'kmax_seq_score_layer',
C
chengduoZH 已提交
143
    'img_pool3d_layer',
G
guosheng 已提交
144
    'scale_shift_layer',
C
chengduoZH 已提交
145
    'img_conv3d_layer',
146
    'resize_layer',
Y
yangyaming 已提交
147
    'sub_seq_layer',
Y
yangyaming 已提交
148
    'scale_sub_region_layer',
X
xzl 已提交
149
    'upsample_layer',
Q
qijun 已提交
150
]
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157


class LayerType(object):
    """
    Layer type enumerations.
    """

158 159 160 161 162 163 164 165
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
166
    POOLING_AVG = 'average'
X
xzl 已提交
167
    UPSAMPLE_LAYER = 'upsample'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
172
    HSIGMOID = 'hsigmoid'
173 174 175 176 177
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
178
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
179
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
180
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
181 182 183
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
184
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
185 186 187 188
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
189
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
190 191 192 193 194 195 196

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
197
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
198 199 200
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
201
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
202
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
203
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
204 205 206 207 208 209 210 211 212 213 214

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
215
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
216
    BLOCK_EXPAND = "blockexpand"
217
    MAXOUT = "maxout"
Q
qijun 已提交
218
    SPP_LAYER = "spp"
D
dangqingqing 已提交
219
    PAD_LAYER = "pad"
W
wwhu 已提交
220
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
221
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
222 223 224

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
225 226
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
227
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
228 229 230 231 232

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
233
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
234

235 236 237
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

238 239
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
240
    HUBER_REGRESSION = 'huber_regression'
241
    HUBER_CLASSIFICATION = 'huber_classification'
242 243
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
244
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
245 246 247 248 249 250
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
251
    SWITCH_ORDER_LAYER = 'switch_order'
252
    CROP_LAYER = 'crop'
C
caoying03 已提交
253
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
254
    CLIP_LAYER = 'clip'
255
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
256

257
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
258
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
259

260
    RESIZE = 'resize'
Y
yangyaming 已提交
261
    SUB_SEQ_LAYER = 'subseq'
262

Y
yangyaming 已提交
263
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
285
    """
L
Luo Tao 已提交
286
    PaddlePaddle supports three sequence types:
287 288 289

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
290 291
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
292

L
Luo Tao 已提交
293
    Accordingly, AggregateLevel supports two modes:
294

L
Luo Tao 已提交
295
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
296
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
297 298
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
299
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
300 301 302
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
303 304
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
305 306 307
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
330
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
331 332
    """

Q
qijun 已提交
333 334 335 336 337 338 339 340 341
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
342
                 reverse=None):
Z
zhangjinchao01 已提交
343 344
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
345
        assert size is not None
Z
zhangjinchao01 已提交
346 347
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
348
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
349
        self.layer_type = layer_type
350 351
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
352 353 354 355 356 357 358 359
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
360
        self.reverse = reverse
Z
zhangjinchao01 已提交
361

362 363 364 365 366 367 368 369
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

370 371 372 373
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

374 375 376 377 378 379 380 381
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
382 383 384

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
385
DEVICE = 'device'
Z
zhangjinchao01 已提交
386 387 388


def layer_support(*attrs):
389
    attrs_list = list(attrs)
390
    attrs_list.append(DEVICE)
Q
qijun 已提交
391

Z
zhangjinchao01 已提交
392 393 394
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
395
            for attr in attrs_list:
Z
zhangjinchao01 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
412 413 414 415 416
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
447
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
456 457
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
458 459 460 461
    proj.origin = input
    return proj


462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
483
    :param input: The input of this layer.
484 485 486 487 488 489 490 491
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
492 493
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
494 495 496 497
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
528
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
529 530 531 532 533 534 535 536
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
537 538
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
539 540 541 542
    proj.origin = input
    return proj


543
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
573
    :param input: The input of this layer.
574
    :type input: LayerOutput
Z
zhangjinchao01 已提交
575 576
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
577
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
578 579 580 581 582 583
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
584 585
        if size is None:
            size = input.size - offset
Q
qijun 已提交
586
        proj = IdentityOffsetProjection(
587
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
588 589 590 591
        proj.origin = input
    return proj


592 593
def slice_projection(input, slices):
    """
594 595
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
596 597

    .. math::
598
       output = [input.slices()]
599 600 601 602 603 604 605 606 607

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
608
    :param input: The input of this layer.
609 610 611 612
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
613
    :type slices: pair of int
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
646
    :param input: The input of this layer.
X
xuwei06 已提交
647 648 649 650 651 652
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
653
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
654 655 656 657
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
658
@wrap_param_attr_default()
659
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
660
    """
661
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
675
    :param input: The input of this layer.
676 677 678 679 680 681
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
682 683
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
684
    proj.origin = input
685
    return proj
Z
zhangjinchao01 已提交
686

687 688

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
689 690
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
691

Z
zhangjinchao01 已提交
692
    .. math::
L
Luo Tao 已提交
693
       out.row[i] += scale * (a.row[i] .* b.row[i])
694

Z
zhangjinchao01 已提交
695 696
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
697

Z
zhangjinchao01 已提交
698
    The example usage is:
699

Z
zhangjinchao01 已提交
700
    .. code-block:: python
701

L
Luo Tao 已提交
702
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
703

704 705 706 707
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
708 709
    :param scale: config scalar, default value is one.
    :type scale: float
710 711
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
712
    """
713 714 715
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
716
    a = kwargs.get('x', a)  # For Backward capacity.
717 718 719 720 721 722
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
723
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
724
    op.origin = [a, b]
725
    return op
Z
zhangjinchao01 已提交
726

727

Z
zhangjinchao01 已提交
728
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
729 730 731
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
746
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
747 748 749 750 751 752 753 754 755
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
756
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
757 758 759 760 761 762 763 764 765 766 767
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
768 769 770 771 772 773
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
787
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
788 789 790 791 792 793
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
794
        :param act: Activation type.
Z
zhangjinchao01 已提交
795
        :type act: BaseActivation
R
ranqiu 已提交
796 797 798
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
799
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
800 801 802
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
803 804 805 806 807 808 809
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
810 811 812 813 814
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

815
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
816 817 818 819 820 821 822 823
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
824
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
825
            self.inputs.append(other)
826 827 828 829
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
830 831 832 833 834 835 836 837
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

838
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
839 840
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
841
        assert len(self.inputs) != 0
842
        ml = MixedLayer(
Z
zhangjinchao01 已提交
843 844 845 846 847
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
848
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
849 850 851
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
852
        self.finalized = True
Z
zhangjinchao01 已提交
853 854 855 856 857 858


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
859 860 861 862 863
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
891
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
892
                  then this function will just return layer's name.
893
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
894
    :type act: BaseActivation
R
ranqiu 已提交
895 896 897
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
898
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
899 900 901 902 903 904 905 906 907
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
908 909 910 911 912 913
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
914
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
915 916 917 918 919 920 921 922
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
923 924
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
925 926 927 928 929 930 931
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
932
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
933

R
ranqiu 已提交
934
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
935 936 937
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
938
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
939
    :type height: int | None
L
Luo Tao 已提交
940
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
941
    :type width: int | None
Z
zhangjinchao01 已提交
942 943
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
944
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
945 946
    :rtype: LayerOutput
    """
Q
qijun 已提交
947 948 949 950
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
951
        depth=depth,
L
Luo Tao 已提交
952 953
        height=height,
        width=width,
Q
qijun 已提交
954
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
955

C
chengduoZH 已提交
956 957
    if depth is None:
        depth = 1
958 959
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
960 961
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
962
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
963 964

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
965 966 967 968


@wrap_name_default("embedding")
@wrap_param_attr_default()
969
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
970 971 972 973
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

974
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
975
    :type name: basestring
R
ranqiu 已提交
976
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
977 978 979 980 981
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
982
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
983
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
984
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
986 987
    :rtype: LayerOutput
    """
Q
qijun 已提交
988 989 990 991 992 993
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
994 995 996 997 998 999 1000 1001 1002
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1003 1004 1005 1006 1007 1008 1009
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1022
    which is equal to:
Z
zhangjinchao01 已提交
1023 1024 1025 1026 1027 1028

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1029
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1030
    :type name: basestring
R
ranqiu 已提交
1031 1032
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1033 1034
    :param size: The layer dimension.
    :type size: int
1035
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1036 1037 1038
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1039 1040 1041
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1042
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1043
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1044
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1045
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1046 1047 1048 1049
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1050
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1051 1052
        param_attr = [param_attr]
    else:
1053
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1054 1055
            assert len(input) == len(param_attr)
        else:
1056
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1057
                logger.fatal(
W
wangmeng28 已提交
1058 1059 1060 1061 1062
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1063 1064
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1065
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1066 1067

    Layer(
Q
qijun 已提交
1068 1069 1070
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1071 1072 1073 1074 1075
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1076 1077 1078
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1079

1080

1081
@wrap_name_default("print")
1082
def printer_layer(input, format=None, name=None):
1083 1084
    """
    Print the output value of input layers. This layer is useful for debugging.
1085

1086
    :param name: The name of this layer. It is optional.
1087
    :type name: basestring
R
ranqiu 已提交
1088 1089
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1090
    :return: LayerOutput
1091
    """
1092 1093 1094 1095 1096
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1097 1098 1099

    Layer(
        name=name,
1100
        format=format,
1101
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1102
        inputs=[l.name for l in input], )
1103
    # this layer don't return anything, can not be input of other layer.
1104

X
xuwei06 已提交
1105 1106 1107 1108 1109 1110 1111
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1112

Y
yuan 已提交
1113
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1114
def priorbox_layer(input,
G
gaoyuan 已提交
1115
                   image,
G
gaoyuan 已提交
1116 1117 1118 1119 1120
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1121 1122 1123
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1124
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1125
    :type name: basestring
R
ranqiu 已提交
1126
    :param input: The input of this layer.
Y
yuan 已提交
1127
    :type input: LayerOutput
G
gaoyuan 已提交
1128 1129
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1141
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1142 1143 1144
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1145
        inputs=[input.name, image.name],
Y
yuan 已提交
1146 1147 1148 1149 1150 1151
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1152 1153
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1154
        parents=[input, image],
G
gaoyuan 已提交
1155 1156 1157
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1173
    :param name: The name of this layer. It is optional.
1174
    :type name: basestring
Y
yangyaming 已提交
1175 1176
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1177
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1178
    :type input_conf: LayerOutput | List of LayerOutput
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1200
    input_loc_num = len(input_loc)
1201 1202 1203 1204 1205 1206

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1207
    input_conf_num = len(input_conf)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1245 1246
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1247

1248
    :param name: The name of this layer. It is optional.
1249
    :type name: basestring
Y
yangyaming 已提交
1250 1251
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1252
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1253
    :type input_conf: LayerOutput | List of LayerOutput.
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1275
    input_loc_num = len(input_loc)
1276 1277 1278 1279 1280 1281

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1282 1283
    input_conf_num = len(input_conf)

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1312 1313 1314 1315 1316 1317
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1318
                   num_channels=None,
G
guosheng 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1336 1337
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1338 1339
    :return: LayerOutput
    """
G
guosheng 已提交
1340 1341 1342 1343
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1344 1345 1346 1347 1348 1349
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1350 1351
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1352 1353
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1354 1355


1356 1357
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1358 1359 1360 1361 1362
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1363

1364
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1365
    :type name: basestring
R
ranqiu 已提交
1366
    :param input: The input of this layer.
G
gaoyuan 已提交
1367 1368 1369 1370 1371
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1372
    assert input.num_filters is not None
G
gaoyuan 已提交
1373 1374
    Layer(
        name=name,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1388 1389
    return LayerOutput(
        name,
1390
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1391 1392 1393 1394 1395
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1396 1397 1398 1399
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1400 1401 1402 1403
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1404
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1405
                  stride=-1,
Z
zhangjinchao01 已提交
1406 1407 1408 1409
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1410 1411
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1412 1413 1414
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1415
    operation. Note that for sequence with sub-sequence, the default value
1416 1417
    of stride is -1.

Z
zhangjinchao01 已提交
1418 1419 1420 1421 1422 1423
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1424
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1425

L
Luo Tao 已提交
1426 1427
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1428
    :type agg_level: AggregateLevel
1429
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1430
    :type name: basestring
R
ranqiu 已提交
1431
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1432 1433 1434
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1435
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1436
    :param stride: The step size between successive pooling regions.
1437
    :type stride: Int
R
ranqiu 已提交
1438 1439 1440
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1441
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1442
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1443
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1444
    :return: LayerOutput object.
Y
Yu Yang 已提交
1445
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1446 1447
    """
    extra_dict = dict()
1448
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1449 1450
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1451 1452 1453 1454
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1455 1456
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1457 1458 1459
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1460 1461 1462 1463 1464 1465
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1466
        stride=stride,
Q
qijun 已提交
1467
        **extra_dict)
Z
zhangjinchao01 已提交
1468

Q
qijun 已提交
1469 1470
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1471

Q
qijun 已提交
1472

Z
zhangjinchao01 已提交
1473 1474
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1475
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1476 1477
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1478
@layer_support()
Q
qijun 已提交
1479 1480
def lstmemory(input,
              name=None,
1481
              size=None,
Q
qijun 已提交
1482 1483 1484 1485 1486 1487
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1488 1489 1490 1491 1492 1493 1494 1495
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1496
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1497

L
luotao02 已提交
1498
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1503

L
luotao02 已提交
1504
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1505 1506


C
caoying03 已提交
1507
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1508
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1509 1510 1511 1512
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1513

C
caoying03 已提交
1514
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1515 1516
    to config a simple plain lstm layer.

C
caoying03 已提交
1517 1518 1519 1520
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1521 1522 1523 1524 1525

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1526 1527
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1528
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1529 1530 1531
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1532
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1533 1534 1535 1536 1537
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1538 1539 1540
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1541
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1542
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1543
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1544
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1545
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1546
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1547 1548 1549 1550 1551 1552
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1553
    assert input.size is not None and input.size % 4 == 0
1554

1555 1556 1557 1558 1559
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1560 1561 1562
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1563

Q
qijun 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1574

Q
qijun 已提交
1575 1576 1577 1578 1579
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1580

Z
zhangjinchao01 已提交
1581 1582 1583

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1584
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1585 1586
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1587
@layer_support()
Q
qijun 已提交
1588
def grumemory(input,
1589
              size=None,
Q
qijun 已提交
1590 1591 1592 1593 1594 1595
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1617 1618
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1619 1620 1621 1622 1623

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1624 1625 1626
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1627 1628 1629 1630 1631

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1632
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1633
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1634 1635 1636
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1637

C
caoying03 已提交
1638 1639 1640
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1641 1642 1643 1644 1645 1646 1647 1648

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1649 1650
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1651
    :type input: LayerOutput.
1652 1653
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1654
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1655
    :type reverse: bool
R
ranqiu 已提交
1656
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1657 1658 1659 1660 1661 1662
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1663 1664 1665
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1666
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1667
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1668
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1669
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1670
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1671
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1672 1673 1674 1675
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1676 1677 1678 1679 1680 1681
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1682 1683 1684
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1685

Q
qijun 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1695

Q
qijun 已提交
1696 1697 1698 1699 1700
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1701

Z
zhangjinchao01 已提交
1702 1703 1704

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1705 1706
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1707
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1708
             stride=-1,
Z
zhangjinchao01 已提交
1709 1710 1711 1712
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1713 1714 1715
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1716
    of stride is -1.
1717

L
Luo Tao 已提交
1718 1719 1720 1721 1722 1723
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1724
    :param agg_level: Aggregated level
1725
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1726
    :type name: basestring
R
ranqiu 已提交
1727
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1728
    :type input: LayerOutput
L
Luo Tao 已提交
1729
    :param stride: The step size between successive pooling regions.
1730
    :type stride: Int
Z
zhangjinchao01 已提交
1731 1732
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1733
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1734 1735
    :rtype: LayerOutput
    """
1736 1737 1738 1739 1740 1741
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1742
    if agg_level == AggregateLevel.TO_SEQUENCE:
1743 1744
        assert stride == -1

Z
zhangjinchao01 已提交
1745 1746 1747 1748 1749
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1750
        stride=stride,
Q
qijun 已提交
1751 1752 1753 1754 1755 1756
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1757 1758 1759 1760


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1761 1762
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1763
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1764
              stride=-1,
Z
zhangjinchao01 已提交
1765 1766 1767 1768
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1769 1770 1771
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1772
    of stride is -1.
1773

L
Luo Tao 已提交
1774 1775 1776 1777 1778 1779
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1780
    :param agg_level: aggregation level
1781
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1782
    :type name: basestring
R
ranqiu 已提交
1783
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1784
    :type input: LayerOutput
L
Luo Tao 已提交
1785
    :param stride: The step size between successive pooling regions.
1786
    :type stride: Int
Z
zhangjinchao01 已提交
1787 1788
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1789
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1790 1791
    :rtype: LayerOutput
    """
1792 1793 1794 1795 1796 1797 1798

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1799
    if agg_level == AggregateLevel.TO_SEQUENCE:
1800 1801
        assert stride == -1

Z
zhangjinchao01 已提交
1802 1803 1804 1805 1806
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1807
        stride=stride,
Q
qijun 已提交
1808 1809 1810 1811 1812 1813
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1814 1815 1816


class ExpandLevel(object):
1817 1818 1819 1820 1821
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1822 1823
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1824 1825
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1826 1827
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1828 1829
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1830 1831
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1832 1833
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1834

1835

Z
zhangjinchao01 已提交
1836 1837
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1838 1839
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1840 1841
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1842
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1854
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1855

R
ranqiu 已提交
1856
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1857 1858 1859
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1860
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1861
    :type name: basestring
R
ranqiu 已提交
1862 1863 1864
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1865
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1866 1867 1868 1869
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1870
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1880 1881 1882 1883 1884 1885
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1886 1887


X
xuwei06 已提交
1888
@wrap_name_default()
X
xuwei06 已提交
1889
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1890
@layer_support()
X
xuwei06 已提交
1891 1892 1893
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1894
                 act=None,
X
xuwei06 已提交
1895 1896
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1897
    """
X
xuwei06 已提交
1898
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1899

X
xuwei06 已提交
1900
    If as_row_vector:
X
xuwei06 已提交
1901
    .. math::
X
xuwei06 已提交
1902 1903 1904 1905 1906
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1907 1908 1909 1910 1911

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1912
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1913

R
ranqiu 已提交
1914
    :param input: The input of this layer.
X
xuwei06 已提交
1915 1916 1917
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1918
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1919 1920 1921 1922 1923 1924
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1925
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1926
    :type act: BaseActivation
X
xuwei06 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1937
        active_type=act.name,
X
xuwei06 已提交
1938
        num_filters=num_repeats,
X
xuwei06 已提交
1939
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1940
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1941 1942 1943 1944 1945
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1946
        activation=act,
Q
qijun 已提交
1947 1948
        parents=[input])

X
xuwei06 已提交
1949

1950 1951 1952
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1953
@layer_support(ERROR_CLIPPING, DROPOUT)
1954 1955 1956 1957 1958 1959 1960 1961
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1962
    the dimension of each instance is M, and the input reshape_size is N, then the
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1973
    :param input: The input of this layer.
1974 1975 1976
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1977
    :param name: The name of this layer. It is optional.
1978
    :type name: basestring
1979
    :param act: Activation type. IdentityActivation is the default activation.
1980 1981 1982
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1983 1984 1985
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1986
    :type bias_attr: ParameterAttribute | None | bool | Any
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2025 2026
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2027 2028
    :param weight: Weight layer.
    :type weight: LayerOutput
2029
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2030 2031 2032
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2033
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2034 2035
    :rtype: LayerOutput
    """
2036
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2037
    assert len(input) == 2
2038 2039 2040 2041 2042 2043 2044
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2045 2046 2047 2048
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2049 2050 2051 2052 2053 2054
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2055 2056


L
liaogang 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2073
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2074

L
liaogang 已提交
2075
    :param   input:        A input layer.
L
liaogang 已提交
2076
    :type    input:        LayerOutput.
L
liaogang 已提交
2077
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2078
    :type    out_size_x:   int | None
L
liaogang 已提交
2079
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2080
    :type    out_size_y:   int | None
L
liaogang 已提交
2081
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2082
    :type    name:         None | basestring
L
liaogang 已提交
2083
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2084 2085 2086 2087 2088 2089 2090
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2091
    assert input.num_filters is not None
L
liaogang 已提交
2092
    num_channels = input.num_filters
Q
qijun 已提交
2093 2094 2095 2096 2097 2098 2099
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2100
                channels=num_channels)),
Q
qijun 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2110

Z
zhangjinchao01 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2130
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2131 2132 2133
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2134
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2135 2136 2137
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2138
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2139 2140
    :rtype: LayerOutput
    """
2141 2142 2143
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2144 2145 2146
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2147
        inputs=[weight.name, input.name],
Q
qijun 已提交
2148 2149 2150
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2151 2152 2153 2154 2155 2156


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2157
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2158 2159

    .. math::
2160
       y  = w x
Z
zhangjinchao01 已提交
2161

2162 2163 2164 2165 2166
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2167 2168 2169 2170 2171 2172 2173

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2174
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2175 2176 2177
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2178
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2179 2180 2181
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2182
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2183 2184
    :rtype: LayerOutput
    """
2185 2186 2187
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2188 2189 2190 2191
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2192 2193 2194
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2195 2196 2197 2198 2199 2200


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2201
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2214
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2215
    :type input: LayerOutput
2216
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2217 2218 2219
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2220
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2221 2222 2223 2224 2225 2226
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2227 2228 2229
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2230 2231


2232 2233
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2234
def rotate_layer(input, height, width, name=None, layer_attr=None):
2235
    """
H
Haonan 已提交
2236 2237
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2238 2239

    .. math::
H
Haonan 已提交
2240
       y(j,i,:) = x(M-i-1,j,:)
2241

H
Haonan 已提交
2242
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2243 2244 2245 2246 2247 2248

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2249 2250
                          height=100,
                          width=100)
2251

R
ranqiu 已提交
2252
    :param input: The input of this layer.
2253 2254 2255
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2256
    :param name: The name of this layer. It is optional.
2257 2258 2259 2260 2261 2262 2263
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2264 2265 2266
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2267
        width=width,
H
Haonan 已提交
2268 2269 2270 2271 2272 2273 2274 2275
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2276 2277


Z
zhangjinchao01 已提交
2278 2279
@wrap_name_default()
@layer_support()
2280
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2281 2282 2283 2284
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2285
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2286 2287 2288 2289 2290
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2291

2292 2293
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2294

L
Luo Tao 已提交
2295 2296 2297 2298 2299 2300
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2301
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2313
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2314 2315
    :rtype: LayerOutput
    """
2316
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2317 2318 2319 2320 2321 2322
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2323
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2324
    else:
2325 2326
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2327 2328 2329 2330 2331 2332
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2333
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2334
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2335

2336

Z
zhangjinchao01 已提交
2337 2338
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2339
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2340
@layer_support()
Q
qijun 已提交
2341 2342
def hsigmoid(input,
             label,
2343
             num_classes=None,
Q
qijun 已提交
2344 2345 2346 2347
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2359
                        label=data_layer)
Z
zhangjinchao01 已提交
2360

R
ranqiu 已提交
2361 2362
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2363 2364 2365
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2366
    :type num_classes: int | None
2367
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2368
    :type name: basestring
R
ranqiu 已提交
2369 2370 2371
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2372
    :type bias_attr: ParameterAttribute | None | bool | Any
2373
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2374
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2375 2376
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2377
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2378 2379 2380 2381
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2382 2383 2384 2385 2386 2387 2388 2389 2390
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2391 2392 2393
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2394 2395 2396 2397 2398
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2399 2400
    ipts_for_layer = []
    parents = []
2401
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2402
        assert isinstance(each_input, LayerOutput)
2403
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2404 2405 2406 2407
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2408
    l = Layer(
Z
zhangjinchao01 已提交
2409 2410 2411 2412 2413
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2414 2415 2416
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2417

2418

Z
zhangjinchao01 已提交
2419 2420 2421 2422 2423
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2433
                   dilation=1,
Q
qijun 已提交
2434 2435 2436 2437 2438 2439 2440
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2441
                   dilation_y=None,
2442 2443
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2444
    """
2445
    Convolution layer for image. Paddle can support both square and non-square
2446
    input currently.
Z
zhangjinchao01 已提交
2447 2448 2449 2450

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2451

2452
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2453
    and non-square input currently.
2454

X
xuwei06 已提交
2455
    The details of convolution transpose layer,
2456 2457 2458
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2459 2460 2461 2462
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2463 2464 2465
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2466
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2467 2468
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2469

L
Luo Tao 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2480
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2481
    :type name: basestring
R
ranqiu 已提交
2482
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2483
    :type input: LayerOutput
2484 2485
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2486
    :type filter_size: int | tuple | list
C
caoying03 已提交
2487 2488 2489
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2490
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2491
    :param num_filters: Each filter group's number of filter
2492
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2493 2494 2495
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2496 2497
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2498
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2499 2500
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2501 2502
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2503
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2504 2505
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2506 2507
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2508
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2509 2510
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2511 2512 2513
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2514
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2524 2525
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2526
    :param layer_type: specify the layer_type, default is None. If trans=True,
2527 2528
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2529
                       "cudnn_conv"
2530
    :type layer_type: String
D
dangqingqing 已提交
2531
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2532 2533 2534 2535 2536
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2537

Z
zhangjinchao01 已提交
2538
    if filter_size_y is None:
2539 2540 2541 2542 2543 2544
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2545
    if stride_y is None:
2546 2547 2548 2549 2550 2551
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2552
    if padding_y is None:
2553 2554 2555 2556 2557 2558
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2559 2560 2561 2562 2563 2564 2565
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2566 2567
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2568
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2569 2570 2571 2572
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2573

2574
    if layer_type:
W
wanghaoshuang 已提交
2575
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2576 2577 2578
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2579
        if trans:
2580
            assert layer_type in ["exconvt", "cudnn_convt"]
2581 2582 2583 2584 2585
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2586

X
xuwei06 已提交
2587
    l = Layer(
Z
zhangjinchao01 已提交
2588
        name=name,
Q
qijun 已提交
2589 2590 2591 2592 2593
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2594
                dilation=dilation,
Q
qijun 已提交
2595 2596 2597 2598 2599
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2600
                dilation_y=dilation_y,
Q
qijun 已提交
2601 2602
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2603 2604 2605 2606
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2607
        type=lt,
Q
qijun 已提交
2608 2609 2610 2611 2612 2613 2614 2615
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2616 2617 2618 2619


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2630 2631
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2632 2633 2634 2635 2636 2637 2638
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2667
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2668
    :type padding: int
2669
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2670
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2671 2672
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2673
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2674
    :type input: LayerOutput
2675
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2676
    :type pool_size: int
2677
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2678
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2679 2680
    :param num_channels: number of input channel.
    :type num_channels: int
2681
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2682 2683
                      MaxPooling.
    :type pool_type: BasePoolingType
2684
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2685
    :type stride: int
2686
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2687
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2688 2689
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2690 2691 2692 2693
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2694 2695
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2706
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2707
                               CudnnMaxPooling], \
X
xzl 已提交
2708
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2709

2710
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2711
        if (
Y
Yu Yang 已提交
2712
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2713
        else pool_type.name
2714 2715 2716 2717
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2718
    l = Layer(
Z
zhangjinchao01 已提交
2719 2720
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2733
                    padding_y=padding_y))
Q
qijun 已提交
2734
        ],
2735
        ceil_mode=ceil_mode,
Q
qijun 已提交
2736 2737 2738 2739 2740 2741 2742
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2743 2744


C
chengduoZH 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2797
    :type padding: int | tuple | list
C
chengduoZH 已提交
2798 2799
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2800
    :param input: The input of this layer.
C
chengduoZH 已提交
2801 2802
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2803
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2804 2805 2806 2807 2808 2809
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2810
    :type stride: int | tuple | list
C
chengduoZH 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

X
xzl 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
@wrap_name_default("upsample")
@layer_support()
def upsample_layer(input,
                   name=None,
                   scale=None,
                   scale_y=None,
                   upsample_size=None,
                   upsample_size_y=None,
                   pad_out_x=False,
                   pad_out_y=False,
                   layer_attr=None):
    """
    The DePooling process.
    Inputs should be a list of length 2. The first input is a layer,
    and the second input should be the MaxWithMaskPoolingLayer

    The example usage is:

    ..  code-block:: python
        pool1 = paddle.v2.layer.img_pool(input=input, pool_size=2, stride=2,
                                        pool_type=paddle.pooling.MaxWithMask())
        upsample = paddle.v2.layer.upsample(input=[layer1, pool1])

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: contains an input layer and a MaxWithMaskPoolingLayer
    :type input: list | tuple | collections.Sequence
    :param scale: outputSize =  scale * inputSize
    :type scale: int | list | tuple | .
    :param scale_y: scale_y will be equal to scale, if it's value is None, 
    :type scale: int | None. 
    :param upsample_size: specify the outputSize.
    :type upsample_size: int | list | tuple.
    :param upsample_size_y: specify the y dimension outputSize.
    :type upsample_size_y: int.
    :param pad_out_x: specify exact x dimension size. This parameter only works when scale is 2
    :type pad_out_x: bool.
    :param pad_out_y: specify exact y dimension size. This parameter only works when scale is 2
    :type pad_out_y: bool.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert (scale is not None) or (upsample_size is not None), \
            'scale or upsample_size, there must be one to be designated'

    assert len(input) == 2, 'layer input size must be 2'
    assert input[1].layer_type == LayerType.POOL_LAYER, \
            'the second input should be the MaxPoolWithMaskLayer'

    scale_y = scale \
            if scale is not None else scale_y
    upsample_size_y = upsample_size  \
            if upsample_size is not None else upsample_size_y

    layer_type = LayerType.UPSAMPLE_LAYER

    layer = Layer(
        name=name,
        type=layer_type,
        inputs=[
            Input(
                input[0].name,
                upsample=Upsample(scale, scale_y, pad_out_x, pad_out_y,
                                  upsample_size, upsample_size_y)),
            Input(input[1].name)
        ],
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    sz = layer.config.size

    return LayerOutput(name, layer_type=layer_type, parents=input, size=sz)

C
chengduoZH 已提交
2959

Q
qijun 已提交
2960 2961
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2962 2963 2964 2965 2966 2967
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2968 2969 2970 2971 2972
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2973 2974 2975 2976
    The example usage is:

    ..  code-block:: python

2977 2978 2979
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2980 2981
                        pool_type=MaxPooling())

2982
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2983
    :type name: basestring
R
ranqiu 已提交
2984
    :param input: The input of this layer.
Q
qijun 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3010
    l = Layer(
Q
qijun 已提交
3011 3012
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3013 3014 3015 3016 3017
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3018
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3030 3031 3032 3033
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3034
    l = Layer(
Q
qijun 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3054 3055 3056 3057


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3058 3059 3060 3061 3062 3063
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3064
                      layer_attr=None):
Z
zhangjinchao01 已提交
3065
    """
3066
    Response normalization across feature maps.
D
dangqingqing 已提交
3067 3068
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
3069

L
Luo Tao 已提交
3070 3071 3072
    The example usage is:

    ..  code-block:: python
3073

L
Luo Tao 已提交
3074 3075
        norm = img_cmrnorm_layer(input=net, size=5)

3076
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3077 3078
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3079
    :type input: LayerOutput
3080
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3081
    :type size: int
D
dangqingqing 已提交
3082
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3083
    :type scale: float
D
dangqingqing 已提交
3084
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3085 3086 3087 3088 3089
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3090
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3091 3092 3093
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3094
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3095 3096 3097


@wrap_bias_attr_default()
3098 3099
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3100 3101
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3102
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3103 3104 3105
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3106
                     img3D=False,
Q
qijun 已提交
3107 3108 3109 3110
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3111 3112
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3113 3114
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3133 3134 3135
    The example usage is:

    ..  code-block:: python
3136

L
Luo Tao 已提交
3137 3138
        norm = batch_norm_layer(input=net, act=ReluActivation())

3139
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3140 3141 3142 3143
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3154
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3155
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3156
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3166
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3178
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3179 3180 3181 3182 3183
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3184 3185
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3186
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3196
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3197
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3198
    l = Layer(
Z
zhangjinchao01 已提交
3199
        name=name,
C
chengduoZH 已提交
3200
        img3D=img3D,
Q
qijun 已提交
3201 3202
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3203 3204 3205 3206 3207 3208
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3209
        mean_var_names=mean_var_names,
Q
qijun 已提交
3210
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3211

Q
qijun 已提交
3212 3213 3214 3215 3216 3217 3218
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3240
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3241
    :type input: LayerOutput
3242
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3243 3244 3245
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3246
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3247 3248 3249 3250 3251 3252
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3253 3254 3255
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3256 3257


G
guosheng 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3276
    :param input: The input of this layer.
G
guosheng 已提交
3277
    :type input: LayerOutput
3278
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3294 3295 3296
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3297
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3298
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3321 3322 3323
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3324 3325

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3326 3327
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3328 3329
    Please refer to dropout_layer for details.

3330
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3331 3332 3333
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3334
    :type input: LayerOutput | list | tuple
3335
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3336
    :type act: BaseActivation
R
ranqiu 已提交
3337 3338 3339
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3340
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3341 3342
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3343
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3344 3345 3346 3347 3348 3349
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3350
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3351 3352 3353 3354 3355 3356 3357
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3358
    l = Layer(
Q
qijun 已提交
3359 3360 3361
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3362 3363
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3364
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3365

Q
qijun 已提交
3366 3367 3368 3369 3370 3371 3372
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3373 3374 3375 3376


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3377
@layer_support(DROPOUT, ERROR_CLIPPING)
3378
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3379 3380 3381 3382
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3383 3384 3385 3386 3387 3388
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3389
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3390 3391
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3392
    :type input: list | tuple | collections.Sequence
3393
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3394 3395 3396
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3397
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3398 3399 3400 3401 3402 3403 3404 3405
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3406
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3407 3408

    def __is_type__(o, tp):
3409
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3431 3432
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3433

Q
qijun 已提交
3434 3435
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3436

3437 3438
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3439

3440
    layer = Layer(
Q
qijun 已提交
3441 3442
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3443 3444
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3445
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3446
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3447

3448
    sz = layer.config.size
Z
zhangjinchao01 已提交
3449

Q
qijun 已提交
3450 3451 3452 3453 3454 3455 3456 3457
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3458 3459
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3460
@wrap_bias_attr_default(has_bias=False)
3461
@layer_support(DROPOUT, ERROR_CLIPPING)
3462 3463 3464 3465
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3466

3467
    Inputs:
X
xuwei06 已提交
3468
      - a = [a1, a2, ..., am]
3469
      - b = [b1, b2, ..., bn]
3470

X
xuwei06 已提交
3471 3472 3473 3474
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3475 3476 3477 3478 3479 3480 3481

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3482
    :param name: The name of this layer. It is optional.
3483 3484 3485 3486 3487
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
3488
    :param act: Activation type. IdentityActivation is the default activation.
3489 3490 3491
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3492 3493 3494
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3495
    :type bias_attr: ParameterAttribute | None | bool | Any
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3517
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3518 3519
def memory(name,
           size,
3520
           memory_name=None,
Q
qijun 已提交
3521 3522 3523 3524
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3545 3546 3547 3548 3549 3550 3551 3552 3553
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3554

3555 3556 3557 3558 3559 3560 3561
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3562 3563 3564
    :type name: basestring
    :param size: size of memory.
    :type size: int
3565 3566 3567
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3568
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3569 3570
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3571
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3572
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3573
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3574 3575 3576 3577
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3578
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3589 3590
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3591

3592 3593 3594 3595 3596 3597 3598 3599
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3600 3601

    lout = LayerOutput(
3602
        name=memory_name,
Q
qijun 已提交
3603 3604 3605
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3606 3607 3608 3609
    return lout


@wrap_bias_attr_default()
3610 3611
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3612 3613 3614
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3615 3616
def lstm_step_layer(input,
                    state,
3617
                    size=None,
Q
qijun 已提交
3618 3619 3620 3621 3622 3623
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3624
    """
3625 3626
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3627 3628 3629

    ..  math::

3630
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3631

3632
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3633

3634
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3635

3636
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3637

L
luotao02 已提交
3638
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3639 3640


L
luotao02 已提交
3641
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3642
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3643
    input vectors.
Z
zhangjinchao01 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3654
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3655
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3656 3657
    :code:`get_output_layer` to extract this output.

3658
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3659
    :type name: basestring
R
ranqiu 已提交
3660 3661
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3662
    :type size: int
R
ranqiu 已提交
3663
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3664
    :type input: LayerOutput
3665
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3666
    :type state: LayerOutput
3667
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3668
    :type act: BaseActivation
3669 3670
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3671
    :type gate_act: BaseActivation
3672 3673
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3674
    :type state_act: BaseActivation
R
ranqiu 已提交
3675 3676 3677
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3678
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3679
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3680
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3681
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3682 3683
    :rtype: LayerOutput
    """
3684 3685 3686

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3687 3688 3689 3690 3691 3692 3693
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3694
        size=state.size,
Q
qijun 已提交
3695 3696
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3697

Q
qijun 已提交
3698 3699 3700 3701 3702 3703 3704
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3705 3706 3707


@wrap_bias_attr_default()
W
wangyang59 已提交
3708
@wrap_param_attr_default()
Q
qijun 已提交
3709
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3710 3711 3712
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3713 3714 3715 3716 3717 3718 3719
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3720
                   param_attr=None,
Q
qijun 已提交
3721
                   layer_attr=None):
Z
zhangjinchao01 已提交
3722 3723
    """

R
ranqiu 已提交
3724
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3725
    :type input: LayerOutput
R
ranqiu 已提交
3726 3727 3728 3729 3730 3731
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3732 3733
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3734
    :type act: BaseActivation
3735
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3736
    :type name: basestring
3737 3738
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3739
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3740 3741 3742 3743
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3744
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3745 3746 3747 3748
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3749
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3750 3751 3752 3753 3754 3755 3756 3757
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3758 3759 3760 3761
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3762
        # backward model compatibility.
3763
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3764 3765 3766 3767
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3768
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3769
    return LayerOutput(
Q
qijun 已提交
3770 3771
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3772
        parents=[input, output_mem],
Q
qijun 已提交
3773 3774
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3775 3776


Y
Yu Yang 已提交
3777 3778 3779 3780
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3781
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3793
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3794 3795
    and DROPOUT.

3796
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3797 3798 3799 3800 3801 3802
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3803
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3804
    :type name: basestring
3805 3806
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3807
    :type act: BaseActivation
3808 3809
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3810
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3811 3812 3813 3814
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3815
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3816 3817 3818 3819 3820
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3821
    :rtype: LayerOutput
Y
Yu Yang 已提交
3822 3823 3824 3825 3826 3827
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3828
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3829 3830 3831 3832
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3833

Y
Yu Yang 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3871 3872 3873 3874
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3875 3876 3877 3878
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3879

3880
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3881
    :type name: basestring
R
ranqiu 已提交
3882
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3883 3884
                   multiple outputs.
    :type input: LayerOutput
3885
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3886
    :type arg_name: basestring
R
ranqiu 已提交
3887 3888
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3889
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3890 3891 3892 3893 3894 3895 3896
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3897 3898 3899 3900 3901 3902 3903
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3904

Q
qijun 已提交
3905 3906 3907 3908 3909
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3910 3911 3912 3913 3914 3915 3916


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3917 3918 3919 3920 3921 3922 3923
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3924
    """
3925 3926
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3943
    :param input: The input of this layer.
3944
    :type input: LayerOutput
3945
    :param act: Activation type. TanhActivation is the default activation.
3946
    :type act: BaseActivation
P
peterzhang2029 已提交
3947 3948 3949 3950
    :param bias_attr: The parameter attribute for bias. If this parameter is set to 
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3951
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3952 3953
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3954
    :type param_attr: ParameterAttribute
3955
    :param name: The name of this layer. It is optional.
3956
    :type name: basestring
R
ranqiu 已提交
3957 3958
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3959
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3960
    :return: LayerOutput object.
3961
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3962
    """
Q
qijun 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3978 3979 3980 3981 3982


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
3983
    and can be a sequence or non-sequence.
3984 3985
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3986
    """
3987

Z
zhangjinchao01 已提交
3988 3989 3990
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3991
        assert input.size is not None
Z
zhangjinchao01 已提交
3992
        if size is not None:
3993
            assert input.size == size
Z
zhangjinchao01 已提交
3994 3995


3996
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3997
    """
3998
    DEPRECATED.
Z
zhangjinchao01 已提交
3999 4000 4001 4002 4003 4004 4005 4006
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4007
    return input
Z
zhangjinchao01 已提交
4008 4009 4010


@wrap_name_default("recurrent_group")
4011
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4012
    """
C
caoying03 已提交
4013 4014 4015
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4016 4017
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4039 4040
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4041

R
ranqiu 已提交
4042 4043 4044
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4045 4046 4047 4048
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4049
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4050 4051 4052 4053 4054 4055 4056
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4057
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4058

R
ranqiu 已提交
4059
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4060

R
ranqiu 已提交
4061
    :param reverse: If reverse is set to True, the recurrent unit will process the
4062
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4063
    :type reverse: bool
4064

4065 4066
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4067 4068 4069 4070 4071 4072 4073

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4074
    :type targetInlink: LayerOutput | SubsequenceInput
4075

D
dangqingqing 已提交
4076
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4077 4078 4079 4080
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4081
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4082
        input = [input]
4083
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4084 4085

    def is_in_links(x):
4086
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4087 4088 4089 4090

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4091
        name=name,
4092 4093
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4094 4095
    in_args = []
    for each_input in input:
4096
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4097
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4098
            mem = memory(
4099
                name=None,
Q
qijun 已提交
4100 4101
                size=each_input.input.size,
                boot_layer=each_input.input)
4102
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4103
            in_args.append(mem)
4104 4105
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4106

Z
zhangjinchao01 已提交
4107 4108 4109 4110 4111
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4112 4113 4114 4115 4116 4117
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4118 4119 4120

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4121
    for layer_out in layer_outs:
4122 4123
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4124 4125
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4126 4127 4128 4129 4130
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4131

Z
zhangjinchao01 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4160 4161

    def before_real_step(self):
Q
qijun 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4171 4172 4173
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4174
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4192
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4193
    :type input: LayerOutput
4194
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4195
    :type name: basestring
R
ranqiu 已提交
4196 4197
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4198
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4199
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4200 4201 4202 4203
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4214

4215

H
Haonan 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4228
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4229
    :type name: basestring
R
ranqiu 已提交
4230
    :param input1: The first input layer.
H
Haonan 已提交
4231
    :type input: LayerOutput
R
ranqiu 已提交
4232
    :param input2: The second input layer.
H
Haonan 已提交
4233
    :type input2: LayerOutput
R
ranqiu 已提交
4234 4235
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4236 4237 4238 4239 4240 4241 4242
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4253

Z
zhangjinchao01 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4270
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4271
    :type name: basestring
R
ranqiu 已提交
4272
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4273
    :type input: LayerOutput
R
ranqiu 已提交
4274
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4275
    :type eos_id: int
R
ranqiu 已提交
4276 4277
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4278
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4279
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4280 4281
    :rtype: LayerOutput
    """
Q
qijun 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4293 4294 4295


@wrap_name_default()
Q
qijun 已提交
4296 4297 4298 4299 4300 4301 4302
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4303
                num_results_per_sample=None):
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4315
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4316 4317 4318 4319
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4320 4321 4322 4323 4324
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4325 4326
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4327 4328
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4329 4330
                               bos_id=0,
                               eos_id=1,
4331
                               beam_size=5)
4332 4333 4334 4335 4336 4337

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4338 4339
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4340
    :type name: basestring
4341
    :param step: A callable function that defines the calculation in a time
4342
                 step, and it is applied to sequences with arbitrary length by
4343 4344 4345 4346 4347
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4348 4349
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4350
                  In beam_search, none of the input's type should be LayerOutput.
4351
    :type input: list
4352 4353 4354
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4355
                   symbol is essential, since it is used to initialize the RNN
4356 4357 4358 4359 4360 4361 4362 4363
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4364 4365
    :param max_length: Max generated sequence length.
    :type max_length: int
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4376 4377
    :return: The generated word index.
    :rtype: LayerOutput
4378 4379
    """

Z
zhangjinchao01 已提交
4380 4381 4382 4383 4384
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4385
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4386 4387 4388 4389 4390 4391
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4392 4393 4394
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4395
        if isinstance(each_input, BaseGeneratedInput):
4396 4397
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4398
            generated_input_index = i
4399

Z
zhangjinchao01 已提交
4400 4401 4402
        else:
            real_input.append(each_input)

4403
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4404 4405 4406 4407 4408 4409 4410 4411

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4412 4413 4414 4415 4416 4417
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4418 4419 4420 4421 4422 4423

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4424
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4425 4426
        return predict

4427 4428
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4429

Q
qijun 已提交
4430

4431 4432
def __cost_input__(input, label, weight=None):
    """
4433
    inputs and parents for cost layers.
4434
    """
C
caoying03 已提交
4435 4436 4437 4438 4439 4440
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4441
    if weight is not None:
4442
        assert weight.size == 1
4443 4444 4445
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4446

Z
zhangjinchao01 已提交
4447 4448

@wrap_name_default()
L
luotao1 已提交
4449
@layer_support()
4450 4451 4452 4453 4454 4455
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4456
    """
4457
    sum of square error cost:
L
Luo Tao 已提交
4458 4459 4460

    ..  math::

4461
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4462

4463
    :param name: The name of this layer. It is optional.
4464
    :type name: basestring
R
ranqiu 已提交
4465
    :param input: The first input layer.
4466
    :type input: LayerOutput
R
ranqiu 已提交
4467
    :param label: The input label.
4468
    :type label: LayerOutput
R
ranqiu 已提交
4469 4470
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4471
    :type weight: LayerOutput
R
ranqiu 已提交
4472
    :param coeff: The weight of the gradient in the back propagation.
4473
                  1.0 is the default value.
4474
    :type coeff: float
R
ranqiu 已提交
4475 4476
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4477
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4478
    :return: LayerOutput object.
4479
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4480
    """
4481 4482
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4483 4484 4485 4486
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4487
        coeff=coeff,
Q
qijun 已提交
4488
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4489
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4490 4491


4492
regression_cost = square_error_cost
L
Luo Tao 已提交
4493 4494


Z
zhangjinchao01 已提交
4495
@wrap_name_default("cost")
4496
@layer_support()
Q
qijun 已提交
4497 4498 4499 4500
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4501
                        evaluator=classification_error_evaluator,
4502 4503
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4504 4505 4506
    """
    classification cost Layer.

4507
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4508
    :type name: basestring
R
ranqiu 已提交
4509
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4510
    :type input: LayerOutput
R
ranqiu 已提交
4511
    :param label: The input label.
Z
zhangjinchao01 已提交
4512
    :type label: LayerOutput
R
ranqiu 已提交
4513 4514
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4515
    :type weight: LayerOutput
R
ranqiu 已提交
4516 4517 4518 4519
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4520
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4521
    :param coeff: The weight of the gradient in the back propagation.
4522
                  1.0 is the default value.
4523
    :type coeff: float
D
dangqingqing 已提交
4524
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4525 4526 4527 4528 4529
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4530 4531 4532

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4533 4534 4535 4536
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4537
        coeff=coeff,
Q
qijun 已提交
4538
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4549
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4550

4551
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4552 4553 4554 4555 4556
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4557
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4558

4559

Q
qijun 已提交
4560 4561 4562 4563 4564 4565 4566 4567 4568
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4569 4570
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4571 4572 4573 4574
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4575
    supports GPU mode.
Z
zhangjinchao01 已提交
4576 4577 4578 4579 4580

    The example usage is:

    .. code-block:: python

4581 4582
       op = conv_operator(img=input1,
                          filter=input2,
4583
                          filter_size=3,
Z
zhangjinchao01 已提交
4584 4585 4586
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4587
    :param img: The input image.
4588
    :type img: LayerOutput
R
ranqiu 已提交
4589
    :param filter: The input filter.
4590
    :type filter: LayerOutput
R
ranqiu 已提交
4591
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4592
    :type filter_size: int
R
ranqiu 已提交
4593 4594 4595
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4596
    :type filter_size_y: int
R
ranqiu 已提交
4597
    :param num_filters: The number of the output channels.
4598
    :type num_filters: int
R
ranqiu 已提交
4599 4600 4601
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4602
    :type num_channels: int
R
ranqiu 已提交
4603
    :param stride: The stride on the x axis.
L
luotao02 已提交
4604
    :type stride: int
R
ranqiu 已提交
4605 4606
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4607
    :type stride_y: int
R
ranqiu 已提交
4608
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4609
    :type padding: int
R
ranqiu 已提交
4610 4611
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4622

4623 4624
    if num_channels is None:
        num_channels = img.num_filters
4625 4626

    assert isinstance(filter, LayerOutput)
4627
    assert filter.size is not None
4628

4629 4630 4631
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4643

4644
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4645 4646
    return op

Q
qijun 已提交
4647

4648
@wrap_param_attr_default()
Q
qijun 已提交
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4659 4660
                    param_attr=None,
                    trans=False):
4661
    """
R
ranqiu 已提交
4662 4663 4664
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4665 4666 4667 4668 4669

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4670
       proj = conv_projection(input=input1,
4671 4672 4673 4674
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4675
    :param input: The input of this layer.
4676
    :type input: LayerOutput
R
ranqiu 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size is not provided.
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4686
    :type filter_size_y: int
R
ranqiu 已提交
4687
    :param num_filters: The number of filters.
4688
    :type num_filters: int
R
ranqiu 已提交
4689
    :param num_channels: The number of the input channels.
4690
    :type num_channels: int
R
ranqiu 已提交
4691 4692 4693 4694 4695 4696 4697
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4698
    :type stride_y: int
R
ranqiu 已提交
4699 4700 4701 4702 4703 4704 4705
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4706 4707 4708
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4709 4710
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4711
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4712
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4713
    :type trans: bool
R
ranqiu 已提交
4714 4715
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4744
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4745 4746 4747 4748 4749
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4750 4751 4752
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4765 4766 4767 4768

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4769

D
dangqingqing 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4780 4781
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4782

R
ranqiu 已提交
4783 4784 4785 4786
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4787

D
dangqingqing 已提交
4788
    For example,
4789

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4811 4812

    The simply usage is:
D
dangqingqing 已提交
4813 4814 4815 4816 4817 4818 4819 4820

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4821
    :param input: The input of this layer.
D
dangqingqing 已提交
4822
    :type input: LayerOutput
R
ranqiu 已提交
4823
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4824
    :type pad_c: list | None
R
ranqiu 已提交
4825
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4826
    :type pad_h: list | None
R
ranqiu 已提交
4827
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4828
    :type pad_w: list | None
R
ranqiu 已提交
4829 4830
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4831
    :type layer_attr: ExtraLayerAttribute
4832
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4875
@wrap_name_default()
L
luotao1 已提交
4876 4877
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4878
    """
R
ranqiu 已提交
4879
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4880 4881 4882 4883 4884 4885 4886 4887
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4888
    In this formula:
4889 4890 4891 4892
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4893 4894 4895 4896 4897

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4898
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4899

4900
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4901
    :type name: basestring
R
ranqiu 已提交
4902
    :param a: The first input of this layer.
4903
    :type a: LayerOutput
R
ranqiu 已提交
4904
    :param b: The second input of this layer.
4905
    :type b: LayerOutput
R
ranqiu 已提交
4906 4907
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4908
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4909
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4910 4911
    :rtype: LayerOutput
    """
4912 4913
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4914 4915 4916
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4917
        inputs=[a.name, b.name],
Q
qijun 已提交
4918
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4919

Q
qijun 已提交
4920 4921
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4922 4923 4924 4925 4926


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4927
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4928
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4929 4930 4931 4932 4933 4934 4935 4936
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4937
    """
R
ranqiu 已提交
4938 4939
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
4940 4941

    .. math::
4942
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4943 4944

    In this formular:
4945 4946
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4947 4948
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4949
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4950 4951 4952 4953 4954

    The simple usage is:

    .. code-block:: python

4955
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4956

4957
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4958
    :type name: basestring
R
ranqiu 已提交
4959
    :param a: The first input of this layer.
4960
    :type a: LayerOutput
R
ranqiu 已提交
4961
    :param b: The second input of this layer.
4962
    :type b: LayerOutput
R
ranqiu 已提交
4963 4964
    :param size: The dimension of this layer.
    :type size: int
4965
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
4966
    :type act: BaseActivation
R
ranqiu 已提交
4967 4968
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4969
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
4970 4971 4972 4973
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
4974
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
4975 4976
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
4977
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4979 4980
    :rtype: LayerOutput
    """
4981
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4982 4983 4984 4985 4986 4987
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4988 4989 4990 4991
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4992 4993 4994 4995 4996 4997


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4998
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4999 5000
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5001
                       select=None,
Q
qijun 已提交
5002 5003
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5004 5005 5006
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5007 5008 5009
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5010 5011
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5012
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5013 5014 5015 5016 5017 5018 5019
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5020
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5021

5022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5023
    :type name: basestring
R
ranqiu 已提交
5024 5025
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5026 5027 5028 5029
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5030
    :type select: LayerOutput
R
ranqiu 已提交
5031 5032
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5033
    :type size: int
5034
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5035
    :type act: BaseActivation
R
ranqiu 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5046
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5047 5048 5049 5050
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5051
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5052 5053
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5054
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5055
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5056 5057 5058 5059
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5060
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5061 5062
        param_attr = [param_attr]
    else:
5063
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5064 5065
            assert len(input) == len(param_attr)
        else:
5066
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5067
                logger.fatal(
W
wangmeng28 已提交
5068 5069 5070 5071 5072
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5073 5074
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5075 5076 5077 5078
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5079
    Layer(
Q
qijun 已提交
5080 5081 5082
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5083 5084 5085
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5086
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5087 5088 5089 5090
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5091 5092 5093 5094 5095 5096 5097
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5098 5099 5100


@wrap_name_default()
L
luotao1 已提交
5101 5102
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5103
    """
R
ranqiu 已提交
5104
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5105 5106 5107 5108 5109 5110 5111 5112
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5113
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5114
    :type input: LayerOutput
5115
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5116
    :type name: basestring
R
ranqiu 已提交
5117 5118 5119
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5120
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5121 5122
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5123
    l = Layer(
Z
zhangjinchao01 已提交
5124 5125 5126
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5127 5128 5129
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5130 5131 5132


@wrap_name_default()
L
luotao1 已提交
5133
@layer_support()
Q
qijun 已提交
5134 5135 5136 5137
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5138
                          layer_attr=None):
Z
zhangjinchao01 已提交
5139
    """
R
ranqiu 已提交
5140
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5151
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5152
    :type input: LayerOutput
5153
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5154
    :type name: basestring
R
ranqiu 已提交
5155 5156 5157 5158 5159 5160 5161
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5162
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5163 5164 5165 5166 5167 5168 5169 5170
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5171 5172 5173
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5174 5175 5176


@wrap_name_default()
L
luotao1 已提交
5177
@layer_support()
Q
qijun 已提交
5178
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5179
    """
5180 5181 5182 5183
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5184 5185 5186

    .. math::

5187
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5188

5189 5190 5191 5192 5193
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5194

5195
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5196 5197

    In this formular:
5198 5199 5200 5201 5202 5203
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5204 5205 5206 5207 5208

    The simple usage is:

    .. code-block:: python

5209
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5210 5211
                                       size=elem_dim)

5212 5213 5214 5215
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5216
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5217
    :type size: int
5218
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5219
    :type name: basestring
R
ranqiu 已提交
5220 5221 5222
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5223
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5224 5225
    :rtype: LayerOutput
    """
5226 5227 5228 5229
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5230
            size = vectors.size / weights.size
5231 5232
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5233 5234
    Layer(
        name=name,
5235
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5236
        size=size,
5237
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5238 5239 5240
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5241

5242

5243
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5244

5245

Z
zhangjinchao01 已提交
5246
@wrap_name_default()
L
luotao1 已提交
5247
@layer_support()
Z
zhangjinchao01 已提交
5248 5249 5250 5251 5252 5253 5254
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5255
                       num_channels=None,
L
luotao1 已提交
5256 5257
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5258 5259
    """
    Expand feature map to minibatch matrix.
5260
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5261
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5262 5263 5264 5265 5266 5267 5268

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5269
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5270
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5271
    The number of time steps is outputH * outputW and the dimension of each
5272
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5273
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5274

5275 5276 5277 5278
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5279
       block_expand = block_expand_layer(input=layer,
5280
                                         num_channels=128,
5281 5282 5283 5284 5285
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5286
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5287
    :type input: LayerOutput
R
ranqiu 已提交
5288 5289 5290 5291
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5304
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5305 5306 5307 5308
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5309
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5310 5311
    :rtype: LayerOutput
    """
5312 5313 5314
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5332 5333


5334 5335
@wrap_name_default()
@layer_support()
5336
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5337
    """
R
ranqiu 已提交
5338 5339 5340 5341
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5342

5343
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5344 5345 5346 5347 5348 5349 5350
    to be devided by groups.

    Reference:
        Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
        Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf
5351

X
xuwei06 已提交
5352 5353 5354 5355 5356 5357 5358 5359
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5360 5361 5362 5363 5364 5365 5366 5367
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5368
    :param input: The input of this layer.
5369
    :type input: LayerOutput
R
ranqiu 已提交
5370 5371 5372 5373
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5374 5375
    :param groups: The group number of input layer.
    :type groups: int
5376
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5377 5378 5379
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5399 5400


Z
zhangjinchao01 已提交
5401
@wrap_name_default()
L
luotao1 已提交
5402
@layer_support()
Q
qijun 已提交
5403 5404 5405 5406 5407
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5408
              layer_attr=None):
Z
zhangjinchao01 已提交
5409 5410
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5411
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5412 5413
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5414 5415 5416 5417
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5418 5419

    Note:
R
ranqiu 已提交
5420 5421 5422 5423 5424
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5425

C
caoying03 已提交
5426
    The example usage is:
Z
zhangjinchao01 已提交
5427 5428 5429 5430 5431 5432 5433 5434

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5435
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5436
    :type input: LayerOutput
R
ranqiu 已提交
5437
    :param label: The input label.
Z
zhangjinchao01 已提交
5438
    :type label: LayerOutput
R
ranqiu 已提交
5439
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5440
    :type size: int
5441
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5442 5443
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5444
    :type norm_by_times: bool
R
ranqiu 已提交
5445 5446 5447
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5448
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5449 5450 5451 5452
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5453 5454 5455 5456 5457
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5458
    Layer(
5459 5460 5461 5462
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5463
        inputs=[input.name, label.name],
Q
qijun 已提交
5464
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5465 5466
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5467

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5479
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5480
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5481 5482 5483 5484 5485 5486 5487
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5488 5489 5490 5491
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5492 5493

    Note:
R
ranqiu 已提交
5494 5495 5496
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5497
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5498
          should be consistent with those used in your labels.
5499
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5500
          'linear' activation is expected to be used instead in the 'input' layer.
5501

C
caoying03 已提交
5502
    The example usage is:
5503 5504 5505 5506 5507 5508 5509 5510 5511

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5512
    :param input: The input of this layer.
5513
    :type input: LayerOutput
R
ranqiu 已提交
5514
    :param label: The input label.
5515
    :type label: LayerOutput
R
ranqiu 已提交
5516
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5517
    :type size: int
5518
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5519 5520
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5521
    :type blank: int
R
ranqiu 已提交
5522
    :param norm_by_times: Whether to do normalization by times. False is the default.
5523
    :type norm_by_times: bool
R
ranqiu 已提交
5524 5525 5526
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5549
@wrap_name_default()
5550
@wrap_param_attr_default()
L
luotao1 已提交
5551
@layer_support()
Q
qijun 已提交
5552 5553 5554 5555 5556 5557
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5558
              coeff=1.0,
L
luotao1 已提交
5559
              layer_attr=None):
Z
zhangjinchao01 已提交
5560 5561 5562 5563
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5564
    The example usage is:
Z
zhangjinchao01 已提交
5565 5566 5567 5568 5569 5570 5571

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5572
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5573
    :type input: LayerOutput
R
ranqiu 已提交
5574
    :param label: The input label.
5575
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5576 5577
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5578 5579
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5580
    :type weight: LayerOutput
R
ranqiu 已提交
5581 5582
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5583
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5584
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5585 5586
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5587
                  1.0 is the default value.
5588
    :type coeff: float
R
ranqiu 已提交
5589 5590 5591
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5592
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5593 5594 5595 5596 5597
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5598 5599 5600 5601 5602 5603
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5604

Q
qijun 已提交
5605
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5606 5607 5608 5609
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5610 5611 5612 5613
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5614
        coeff=coeff,
Q
qijun 已提交
5615
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5616 5617 5618
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5619 5620 5621 5622
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5623

5624

Z
zhangjinchao01 已提交
5625
@wrap_name_default()
5626
@wrap_param_attr_default()
L
luotao1 已提交
5627
@layer_support()
Q
qijun 已提交
5628 5629 5630 5631 5632
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5633
                       layer_attr=None):
Z
zhangjinchao01 已提交
5634 5635 5636
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5637 5638 5639
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5640

C
caoying03 已提交
5641
    The example usage is:
L
Luo Tao 已提交
5642 5643 5644 5645 5646 5647

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5648 5649
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5650
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5651
    :type size: int
R
ranqiu 已提交
5652 5653 5654 5655
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5656
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5657
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5658 5659 5660 5661
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5662
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5663 5664 5665 5666 5667 5668
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5669
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5670 5671 5672 5673
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5674 5675 5676 5677
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5678
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5679 5680 5681
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5682 5683 5684 5685
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5686

Q
qijun 已提交
5687

C
caoying03 已提交
5688 5689 5690 5691 5692
"""
Following are cost Layers.
"""


5693
@wrap_bias_attr_default(has_bias=True)
5694
@wrap_param_attr_default()
5695 5696
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5697 5698
def nce_layer(input,
              label,
C
caoying03 已提交
5699
              num_classes=None,
5700
              param_attr=None,
Q
qijun 已提交
5701 5702 5703 5704 5705 5706
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5707 5708
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5709 5710 5711 5712

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5713 5714 5715 5716 5717

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5718 5719
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5720 5721
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5722
    :param name: The name of this layer. It is optional.
5723
    :type name: basestring
R
ranqiu 已提交
5724
    :param input: The first input of this layer.
R
ranqiu 已提交
5725
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5726
    :param label: The input label.
5727
    :type label: LayerOutput
C
caoying03 已提交
5728
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5729
                   mini-batch. It is optional.
5730
    :type weight: LayerOutput
R
ranqiu 已提交
5731
    :param num_classes: The number of classes.
5732
    :type num_classes: int
5733
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5734
    :type act: BaseActivation
R
ranqiu 已提交
5735 5736
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5737
    :type param_attr: ParameterAttribute
5738 5739
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5740
    :type num_neg_samples: int
C
caoying03 已提交
5741 5742 5743
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5744
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5745 5746 5747
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5748
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5749 5750 5751 5752
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5753
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5754 5755
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5756
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5757
    :return: LayerOutput object.
5758 5759 5760 5761
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5762 5763 5764 5765 5766 5767 5768 5769
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5770
    assert isinstance(input, collections.Sequence)
5771

5772 5773
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5774 5775
    if num_classes is None:
        num_classes = label.size
5776 5777 5778
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5779
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5780

5781 5782
    ipts_for_layer = []
    parents = []
5783
    for each_input, attr in zip(input, param_attr):
5784
        assert isinstance(each_input, LayerOutput)
5785
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5796
    l = Layer(
5797 5798 5799 5800
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5801
        active_type=SigmoidActivation().name,
5802 5803 5804
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5805 5806
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5807 5808 5809 5810
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5811
        activation=SigmoidActivation())
5812 5813


Z
zhangjinchao01 已提交
5814
@wrap_name_default()
L
luotao1 已提交
5815
@layer_support()
Q
qijun 已提交
5816 5817 5818 5819 5820 5821 5822
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5823
    """
R
ranqiu 已提交
5824 5825 5826 5827 5828
    A cost Layer for learning to rank using gradient descent.

    Reference:
        Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
Z
zhangjinchao01 已提交
5829 5830 5831

    .. math::

L
luotao02 已提交
5832
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5833

L
luotao02 已提交
5834
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5835

L
luotao02 已提交
5836
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5837 5838 5839 5840 5841 5842 5843 5844

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5845
    The example usage is:
Z
zhangjinchao01 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5859 5860
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5861
    :type weight: LayerOutput
R
ranqiu 已提交
5862
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5863 5864
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5865
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5866
    :type coeff: float
R
ranqiu 已提交
5867 5868
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5869
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5870
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5883 5884 5885 5886 5887 5888
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5889

X
xuwei06 已提交
5890
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5891

5892

Z
zhangjinchao01 已提交
5893
@wrap_name_default()
L
luotao1 已提交
5894
@layer_support()
Q
qijun 已提交
5895 5896 5897 5898 5899 5900
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5901 5902 5903
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5904
    The example usage is:
Z
zhangjinchao01 已提交
5905 5906 5907 5908 5909 5910 5911 5912

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5913 5914
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5915
    :type input: LayerOutput
R
ranqiu 已提交
5916
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5917 5918
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5919
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5920
                     minimum size of the list.
Z
zhangjinchao01 已提交
5921
    :type NDCG_num: int
R
ranqiu 已提交
5922 5923 5924 5925 5926
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5927
    :type max_sort_size: int
R
ranqiu 已提交
5928
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5929 5930 5931
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5932
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5933
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5934 5935
    :rtype: LayerOutput
    """
5936 5937 5938
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5939 5940 5941 5942 5943 5944 5945
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5946

Q
qijun 已提交
5947 5948
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5949

5950

Z
zhangjinchao01 已提交
5951
@wrap_name_default()
L
luotao1 已提交
5952
@layer_support()
5953 5954 5955 5956 5957 5958
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5959 5960 5961
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5962 5963
    The example usage is:

Z
zhangjinchao01 已提交
5964 5965
    .. code-block:: python

X
xuwei06 已提交
5966
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5967
                            label=label_layer)
Z
zhangjinchao01 已提交
5968 5969 5970 5971

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5972
    :type input: LayerOutput
R
ranqiu 已提交
5973
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5974 5975
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5976
                  1.0 is the default value.
R
ranqiu 已提交
5977
    :type coeff: float
R
ranqiu 已提交
5978 5979
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
5980
    :type weight: LayerOutout
R
ranqiu 已提交
5981 5982
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5983
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5984
    :return: LayerOutput object.
R
ranqiu 已提交
5985
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5986 5987
    """

5988
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5989 5990 5991
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5992
        inputs=ipts,
Q
qijun 已提交
5993 5994
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5995
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5996

5997

Z
zhangjinchao01 已提交
5998
@wrap_name_default()
L
luotao1 已提交
5999
@layer_support()
Q
qijun 已提交
6000 6001 6002 6003
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6004 6005
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6006 6007
    """
    A loss layer for multi class entropy with selfnorm.
6008
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6009

C
caoying03 已提交
6010 6011
    The example usage is:

Z
zhangjinchao01 已提交
6012 6013
    .. code-block:: python

X
xuwei06 已提交
6014
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6015
                                          label=label_layer)
Z
zhangjinchao01 已提交
6016 6017

    :param input: The first input layer.
R
ranqiu 已提交
6018
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6019
    :param label: The input label.
R
ranqiu 已提交
6020
    :type input: LayerOutput
R
ranqiu 已提交
6021
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6022 6023
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6024
                  1.0 is the default value.
R
ranqiu 已提交
6025
    :type coeff: float
Z
zhangjinchao01 已提交
6026
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6027 6028 6029
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6030
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6031
    :return: LayerOutput object.
R
ranqiu 已提交
6032
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6033
    """
Q
qijun 已提交
6034 6035 6036 6037 6038 6039 6040
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6041

Q
qijun 已提交
6042 6043 6044 6045 6046
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6047

6048

X
xuwei06 已提交
6049 6050 6051 6052
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6053
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6054

C
caoying03 已提交
6055 6056
    The example usage is:

X
xuwei06 已提交
6057 6058
    .. code-block:: python

L
Luo Tao 已提交
6059
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6060

R
ranqiu 已提交
6061
    :param input: The input of this layer.
R
ranqiu 已提交
6062
    :type input: LayerOutput
R
ranqiu 已提交
6063
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6064 6065 6066
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6067 6068 6069 6070
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6071
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6072 6073 6074 6075 6076
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6077

Q
qijun 已提交
6078
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6079 6080


Z
zhangjinchao01 已提交
6081
@wrap_name_default()
L
luotao1 已提交
6082
@layer_support()
L
Luo Tao 已提交
6083 6084 6085 6086 6087 6088
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6089
    """
6090 6091 6092
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6093 6094 6095 6096 6097
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6098

C
caoying03 已提交
6099 6100
    The example usage is:

Z
zhangjinchao01 已提交
6101 6102
    .. code-block:: python

L
Luo Tao 已提交
6103
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6104 6105

    :param input: The first input layer.
R
ranqiu 已提交
6106
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6107
    :param label: The input label.
R
ranqiu 已提交
6108
    :type input: LayerOutput
R
ranqiu 已提交
6109
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6110
    :type name: basestring
L
Luo Tao 已提交
6111
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6112 6113
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6114
                  1.0 is the default value.
R
ranqiu 已提交
6115 6116 6117
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6118
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6119
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6120 6121
    :rtype: LayerOutput.
    """
6122
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6134
@wrap_name_default()
L
luotao1 已提交
6135
@layer_support()
6136 6137 6138 6139 6140
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6141
    """
6142 6143 6144
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6145 6146 6147
    loss is defined as:

    .. math:
6148
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6149
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6150

C
caoying03 已提交
6151 6152
    The example usage is:

Z
zhangjinchao01 已提交
6153 6154
    .. code-block:: python

6155
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6156 6157

    :param input: The first input layer.
R
ranqiu 已提交
6158
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6159
    :param label: The input label.
R
ranqiu 已提交
6160
    :type input: LayerOutput
R
ranqiu 已提交
6161
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6162 6163
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6164
                  1.0 is the default value.
R
ranqiu 已提交
6165 6166 6167
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6168
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6169
    :return: LayerOutput object.
R
ranqiu 已提交
6170
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6171
    """
6172 6173 6174
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6175 6176
    Layer(
        name=name,
6177
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6178 6179 6180
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6181 6182
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6183

6184

Z
zhangjinchao01 已提交
6185
@wrap_name_default()
L
luotao1 已提交
6186
@layer_support()
Q
qijun 已提交
6187 6188 6189 6190
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6191
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6192 6193 6194
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6195 6196
    The example usage is:

Z
zhangjinchao01 已提交
6197 6198
    .. code-block:: python

X
xuwei06 已提交
6199
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6200
                                               label=label_layer)
Z
zhangjinchao01 已提交
6201 6202 6203 6204 6205

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6206
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6207 6208
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6209
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6210
    :type coeff: float
R
ranqiu 已提交
6211 6212
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6213
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6214
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6215 6216 6217
    :rtype: LayerOutput
    """

6218 6219
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6220 6221 6222 6223
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6236 6237


C
caoying03 已提交
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6260 6261
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6262
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6263
    """
C
caoying03 已提交
6264 6265 6266
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6267

C
caoying03 已提交
6268 6269 6270 6271 6272
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6273

C
caoying03 已提交
6274 6275 6276 6277 6278
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6279

C
caoying03 已提交
6280 6281 6282
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6283

C
caoying03 已提交
6284 6285 6286 6287
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6288

C
caoying03 已提交
6289 6290 6291
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6292
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6293 6294
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6295

D
dangqingqing 已提交
6296

C
caoying03 已提交
6297 6298
    The example usage is:

D
dangqingqing 已提交
6299 6300
    .. code-block:: python

C
caoying03 已提交
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6313
    :param input: Input beams for this layer.
C
caoying03 已提交
6314
    :type input: BeamInput
R
ranqiu 已提交
6315
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6342 6343 6344
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6345 6346
@wrap_name_default()
@layer_support()
6347
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6348 6349
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6350
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6351 6352 6353 6354 6355 6356 6357 6358 6359

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6360
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6361

R
ranqiu 已提交
6362 6363 6364
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6365

C
caoying03 已提交
6366 6367
    The example usage is:

D
dangqingqing 已提交
6368 6369
    .. code-block:: python

6370 6371
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6372 6373 6374 6375 6376

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6377
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6378
    :type name: basestring
R
ranqiu 已提交
6379
    :param coeff: The weight of the gradient in the back propagation.
6380
                  1.0 is the default value.
6381
    :type coeff: float
R
ranqiu 已提交
6382 6383
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6396
        coeff=coeff,
D
dangqingqing 已提交
6397 6398 6399
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6400 6401 6402 6403 6404


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6405 6406 6407
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6408
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6409 6410
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6411 6412 6413 6414 6415 6416 6417 6418

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6419 6420
    The example usage is:

W
wwhu 已提交
6421 6422 6423 6424 6425 6426
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6427
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6428
    :type name: basestring
R
ranqiu 已提交
6429 6430
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6454 6455


6456 6457 6458 6459
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6460 6461 6462 6463 6464 6465
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6466
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6467
    :type name: basestring
R
ranqiu 已提交
6468
    :param input: The input of this layer.
R
ranqiu 已提交
6469 6470 6471 6472 6473
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6474 6475 6476 6477 6478 6479 6480
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6481 6482


D
dangqingqing 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6496
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6497 6498 6499 6500 6501 6502 6503
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6504
    efficient manner to improve unidirectional RNNs.
6505

R
ranqiu 已提交
6506
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6507 6508 6509 6510
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6511

D
dangqingqing 已提交
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6527
    :param input: The input of this layer.
D
dangqingqing 已提交
6528 6529 6530 6531
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6532
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6533
    :type act: BaseActivation
R
ranqiu 已提交
6534 6535
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6536
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6537 6538
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6539
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6555 6556


6557 6558 6559 6560 6561 6562 6563 6564 6565
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6566
    The Parametric Relu activation that actives outputs with a learnable weight.
6567 6568 6569 6570 6571 6572 6573 6574 6575

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6576 6577 6578 6579 6580 6581
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6582
    :param name: The name of this layer. It is optional.
6583
    :type name: basestring
R
ranqiu 已提交
6584
    :param input: The input of this layer.
6585
    :type input: LayerOutput
R
ranqiu 已提交
6586
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6587 6588

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6589 6590
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6591 6592

    :type partial_sum: int
6593
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6594 6595 6596
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6597
    :type layer_attr: ExtraLayerAttribute | None
6598 6599 6600 6601
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6602
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6603
    assert isinstance(param_attr, ParameterAttribute)
6604 6605 6606

    l = Layer(
        name=name,
C
caoying03 已提交
6607
        type=LayerType.PRELU,
C
caoying03 已提交
6608
        inputs=Input(input.name, **param_attr.attr),
6609 6610 6611 6612 6613 6614 6615
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6616 6617


6618
@wrap_name_default()
C
caoying03 已提交
6619
@layer_support(ERROR_CLIPPING, DROPOUT)
6620 6621 6622 6623 6624 6625 6626
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6627 6628
                     gate_bias_attr=True,
                     inproj_attr=None,
6629 6630 6631 6632 6633 6634 6635
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6636
    product between :match:`X'` and :math:`\sigma` is finally returned.
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6650
    :param input: The input of this layer.
6651
    :type input: LayerOutput
R
ranqiu 已提交
6652
    :param size: The dimension of this layer's output.
6653
    :type size: int
6654 6655
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6656
    :type act: BaseActivation
6657
    :param name: The name of this layer. It is optional.
6658
    :type name: basestring
R
ranqiu 已提交
6659 6660
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6661
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6662 6663 6664
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6665
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6666
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6667
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6668 6669 6670
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6671
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6672 6673 6674
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6675
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6676
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6677
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6678 6679 6680
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6681
    :type layer_attr: ExtraLayerAttribute | None
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6694
        layer_attr=inproj_attr,
6695 6696 6697 6698 6699 6700 6701 6702 6703
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6704
        param_attr=gate_param_attr,
6705 6706 6707 6708 6709
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6710 6711


6712
@layer_support()
6713
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6714 6715
def switch_order_layer(input,
                       name=None,
6716
                       reshape_axis=None,
W
wanghaoshuang 已提交
6717 6718
                       act=None,
                       layer_attr=None):
6719
    """
6720
    This layer switch dimension order of image input.
6721 6722
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6723 6724 6725 6726

    The example usage is:

    .. code-block:: python
6727 6728
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6729
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6730

R
ranqiu 已提交
6731
    :param input: The input of this layer.
6732
    :type input: LayerOutput
6733
    :param name: The name of this layer. It is optional.
6734
    :type name: basestring
R
ranqiu 已提交
6735 6736
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6737 6738 6739
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6740
    assert isinstance(input, LayerOutput)
6741 6742 6743 6744 6745
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6746 6747
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6748
        inputs=input.name,
6749 6750
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6751
        active_type=act.name,
6752 6753 6754
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6755
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6756
        activation=act,
6757 6758
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6759 6760


6761 6762
@wrap_name_default()
@layer_support()
6763
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6764
    """
R
ranqiu 已提交
6765 6766 6767
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6768

6769 6770 6771
    The example usage is:

    .. code-block:: python
W
whs 已提交
6772
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6773

R
ranqiu 已提交
6774 6775
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6776 6777
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6778
    :type offset: Sequence
R
ranqiu 已提交
6779
    :param axis: The start axis to be cropped. For image input layer:
6780 6781 6782 6783
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6784 6785
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6786
    :type shape: Sequence | None
6787
    :param name: The name of this layer. It is optional.
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6809 6810


C
caoying03 已提交
6811 6812
@wrap_name_default()
@layer_support()
6813
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6814
    """
6815
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6816
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6817

C
caoying03 已提交
6818 6819 6820
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6821 6822 6823 6824

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6825

R
ranqiu 已提交
6826
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6827

C
caoying03 已提交
6828

R
ranqiu 已提交
6829
    :param input: The input of this layer. It is a nested sequence.
6830
    :type input: LayerOutput
R
ranqiu 已提交
6831
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6832
    :type input: LayerOutput
6833
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6834 6835 6836 6837
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6838

6839 6840 6841 6842 6843 6844 6845
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6846
    l = Layer(
6847 6848
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6849 6850 6851 6852 6853 6854 6855
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6856 6857


G
guosheng 已提交
6858
@wrap_name_default("clip")
6859
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6869
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6870

6871
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6872
    :type name: basestring
R
ranqiu 已提交
6873
    :param input: The input of this layer.
G
guosheng 已提交
6874
    :type input: LayerOutput.
6875
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6876
    :type min: float
6877
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6878
    :type max: float
6879 6880
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6881 6882 6883 6884 6885
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6886 6887
        min=min,
        max=max)
G
guosheng 已提交
6888 6889
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6890 6891


6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6916
    :param name: The name of this layer. It is optional.
6917
    :type name: basestring
R
ranqiu 已提交
6918
    :param input: The input of this layer, which should be a sequence.
6919
    :type input: LayerOutput
R
ranqiu 已提交
6920
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6921
    :type starts: LayerOutput | None
R
ranqiu 已提交
6922
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6923
    :type ends: LayerOutput | None
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6955 6956


6957 6958
@wrap_name_default()
@layer_support()
6959
def kmax_seq_score_layer(input, name=None, beam_size=1):
6960
    """
R
ranqiu 已提交
6961
    This layer accepts one input which is scores over a sequence or a nested
6962 6963 6964 6965
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6966
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6967 6968


6969
    :param name: The name of this layer. It is optional.
6970
    :type name: basestring
R
ranqiu 已提交
6971 6972
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6973
    :type input: LayerOutput
R
ranqiu 已提交
6974 6975
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6976 6977 6978
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6979
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6980
                                            "accepts only one input.")
6981
    assert input.size == 1, (
6982
        "input of kmax_seq_score_layer is a score "
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6993 6994


6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7021
        conv = img_conv3d_layer(input=data, filter_size=1,
7022 7023 7024 7025 7026
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7027
    :param name: The name of this layer. It is optional.
7028
    :type name: basestring
R
ranqiu 已提交
7029
    :param input: The input of this layer.
7030
    :type input: LayerOutput
R
ranqiu 已提交
7031 7032
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7033
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7034 7035
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7036
    :param act: Activation type. ReluActivation is the default activation.
7037
    :type act: BaseActivation
R
ranqiu 已提交
7038
    :param groups: The number of the filter groups.
7039
    :type groups: int
R
ranqiu 已提交
7040 7041
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7042
    :type stride: int | tuple | list
R
ranqiu 已提交
7043 7044
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7045
    :type padding: int | tuple | list
R
ranqiu 已提交
7046 7047 7048
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7049
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7050
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7051 7052
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7053
    :type num_channels: int
R
ranqiu 已提交
7054 7055
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7056
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7057
    :param shared_biases: Whether biases will be shared between filters or not.
7058
    :type shared_biases: bool
R
ranqiu 已提交
7059 7060
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7061
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7062
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7063
    :type trans: bool
R
ranqiu 已提交
7064 7065 7066 7067
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7068 7069 7070 7071 7072 7073 7074
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7075 7076 7077 7078 7079 7080
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7081

C
chengduoZH 已提交
7082 7083 7084 7085 7086 7087
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7088

C
chengduoZH 已提交
7089 7090 7091 7092 7093 7094
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7141 7142


G
guosheng 已提交
7143 7144 7145 7146 7147
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7148
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7149
    the input matrix. For each element, the layer first re-scales it and then
7150 7151
    adds a bias to it.

X
xuwei06 已提交
7152
    This layer is very like the SlopeInterceptLayer, except the scale and
7153 7154
    bias are trainable.

G
guosheng 已提交
7155 7156 7157 7158 7159 7160 7161 7162
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7163
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7164
    :type name: basestring
R
ranqiu 已提交
7165 7166
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7167 7168
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7169
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7170 7171 7172
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7173
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7184 7185 7186 7187 7188 7189 7190 7191 7192


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7193
    :param input: The input of this layer.
7194 7195 7196
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7197
    :param size: The resized output dimension of this layer.
7198 7199 7200 7201 7202 7203
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7223 7224
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7225
    :type offsets: LayerOutput
R
ranqiu 已提交
7226
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7227
    :type sizes: LayerOutput
7228
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7229
    :type act: BaseActivation.
R
ranqiu 已提交
7230 7231 7232
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7258 7259


Y
yangyaming 已提交
7260 7261
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7262
    """
Y
yangyaming 已提交
7263 7264 7265 7266 7267 7268
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7269 7270 7271

    .. code-block:: python

Y
yangyaming 已提交
7272 7273 7274
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7290 7291
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7292 7293 7294 7295 7296 7297 7298
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7299
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7300 7301 7302 7303 7304
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7305
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7306
        parents=[input, indices],
Y
yangyaming 已提交
7307
        num_filters=input.num_filters,
Y
yangyaming 已提交
7308
        size=input.size)