layers.py 226.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Q
qijun 已提交
146
]
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153


class LayerType(object):
    """
    Layer type enumerations.
    """

154 155 156 157 158 159 160 161
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
162
    POOLING_AVG = 'average'
163
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
164
    COST = 'cost'
165 166
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
167
    HSIGMOID = 'hsigmoid'
168 169 170 171 172
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
173
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
174
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
175
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
176 177 178
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
179
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
180 181 182 183
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
184
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
185 186 187 188 189 190 191

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
192
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
193 194 195
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
196
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
197
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
198
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
199 200 201 202 203 204 205 206 207 208 209

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
210
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
211
    BLOCK_EXPAND = "blockexpand"
212
    MAXOUT = "maxout"
Q
qijun 已提交
213
    SPP_LAYER = "spp"
D
dangqingqing 已提交
214
    PAD_LAYER = "pad"
W
wwhu 已提交
215
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
216
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
217 218 219

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
220 221
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
222 223 224 225 226

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
227
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
228

229 230 231
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

232 233
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
234
    HUBER_REGRESSION = 'huber_regression'
235
    HUBER_CLASSIFICATION = 'huber_classification'
236 237
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
238
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
239 240 241 242 243 244
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
245
    SWITCH_ORDER_LAYER = 'switch_order'
246
    CROP_LAYER = 'crop'
C
caoying03 已提交
247
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
248
    CLIP_LAYER = 'clip'
249
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
250

251
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
252
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
253

254 255
    RESIZE = 'resize'

Z
zhangjinchao01 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
276
    """
L
Luo Tao 已提交
277
    PaddlePaddle supports three sequence types:
278 279 280

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
281 282
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
283

L
Luo Tao 已提交
284
    Accordingly, AggregateLevel supports two modes:
285

L
Luo Tao 已提交
286
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
287
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
288 289
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
290
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
291 292 293
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
294 295
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
296 297 298
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
321
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
322 323
    """

Q
qijun 已提交
324 325 326 327 328 329 330 331 332
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
333
                 reverse=None):
Z
zhangjinchao01 已提交
334 335
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
336
        assert size is not None
Z
zhangjinchao01 已提交
337 338
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
339
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
340
        self.layer_type = layer_type
341 342
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
343 344 345 346 347 348 349 350
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
351
        self.reverse = reverse
Z
zhangjinchao01 已提交
352

353 354 355 356 357 358 359 360
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

361 362 363 364
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

365 366 367 368 369 370 371 372
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
373 374 375

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
376
DEVICE = 'device'
Z
zhangjinchao01 已提交
377 378 379


def layer_support(*attrs):
380
    attrs_list = list(attrs)
381
    attrs_list.append(DEVICE)
Q
qijun 已提交
382

Z
zhangjinchao01 已提交
383 384 385
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
386
            for attr in attrs_list:
Z
zhangjinchao01 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
403 404 405 406 407
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
447 448
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
449 450 451 452
    proj.origin = input
    return proj


453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
483 484
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
485 486 487 488
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
528 529
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
530 531 532 533
    proj.origin = input
    return proj


534
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
565
    :type input: LayerOutput
Z
zhangjinchao01 已提交
566 567
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
568
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
569 570 571 572 573 574
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
575 576
        if size is None:
            size = input.size - offset
Q
qijun 已提交
577
        proj = IdentityOffsetProjection(
578
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
579 580 581 582
        proj.origin = input
    return proj


583 584
def slice_projection(input, slices):
    """
585 586
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
587 588

    .. math::
589
       output = [input.slices()]
590 591 592 593 594 595 596 597 598 599 600 601 602 603

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
604
    :type slices: pair of int
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
644
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
645 646 647 648
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
649
@wrap_param_attr_default()
650
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
651
    """
652
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

666 667 668 669 670 671 672
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
673 674
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
675
    proj.origin = input
676
    return proj
Z
zhangjinchao01 已提交
677

678 679

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
680 681
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
682

Z
zhangjinchao01 已提交
683
    .. math::
L
Luo Tao 已提交
684
       out.row[i] += scale * (a.row[i] .* b.row[i])
685

Z
zhangjinchao01 已提交
686 687
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
688

Z
zhangjinchao01 已提交
689
    The example usage is:
690

Z
zhangjinchao01 已提交
691
    .. code-block:: python
692

L
Luo Tao 已提交
693
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
694

695 696 697 698
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
699 700
    :param scale: config scalar, default value is one.
    :type scale: float
701 702
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
703
    """
704 705 706
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
707
    a = kwargs.get('x', a)  # For Backward capacity.
708 709 710 711 712 713
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
714
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
715
    op.origin = [a, b]
716
    return op
Z
zhangjinchao01 已提交
717

718

Z
zhangjinchao01 已提交
719
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
720 721 722
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
759 760 761 762 763 764
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
778
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
787 788 789 790 791
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
        :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
792 793 794
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
795 796 797 798 799 800 801
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
802 803 804 805 806
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

807
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
808 809 810 811 812 813 814 815
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
816
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
817
            self.inputs.append(other)
818 819 820 821
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
822 823 824 825 826 827 828 829
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

830
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
831 832
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
833
        assert len(self.inputs) != 0
834
        ml = MixedLayer(
Z
zhangjinchao01 已提交
835 836 837 838 839
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
840
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
841 842 843
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
844
        self.finalized = True
Z
zhangjinchao01 已提交
845 846 847 848 849 850


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
851 852 853 854 855
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
887 888 889 890 891
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
892 893 894 895 896 897 898 899 900
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
901 902 903 904 905 906
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
907
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
908 909 910 911 912 913 914 915
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
916 917
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
925
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
926

R
ranqiu 已提交
927
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
928 929 930
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
931
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
932
    :type height: int|None
L
Luo Tao 已提交
933
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
934
    :type width: int|None
Z
zhangjinchao01 已提交
935 936
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
937
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
938 939
    :rtype: LayerOutput
    """
Q
qijun 已提交
940 941 942 943
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
944
        depth=depth,
L
Luo Tao 已提交
945 946
        height=height,
        width=width,
Q
qijun 已提交
947
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
948

C
chengduoZH 已提交
949 950
    if depth is None:
        depth = 1
951 952
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
953 954
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
955
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
956 957

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
958 959 960 961


@wrap_name_default("embedding")
@wrap_param_attr_default()
962
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
963 964 965 966
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

967
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
968 969 970 971 972 973 974 975 976 977
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
979 980
    :rtype: LayerOutput
    """
Q
qijun 已提交
981 982 983 984 985 986
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
987 988 989 990 991 992 993 994 995
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
996 997 998 999 1000 1001 1002
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1015
    which is equal to:
Z
zhangjinchao01 已提交
1016 1017 1018 1019 1020 1021

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1032 1033 1034 1035 1036
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1037 1038
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1040 1041 1042 1043
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1044
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1045 1046
        param_attr = [param_attr]
    else:
1047
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1048 1049 1050 1051
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1052
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054

    Layer(
Q
qijun 已提交
1055 1056 1057
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1058 1059 1060 1061 1062
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1063 1064 1065
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1066

1067

1068
@wrap_name_default("print")
1069
def printer_layer(input, format=None, name=None):
1070 1071
    """
    Print the output value of input layers. This layer is useful for debugging.
1072

1073
    :param name: The name of this layer. It is optional.
1074 1075 1076
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1077
    :return: LayerOutput
1078
    """
1079 1080 1081 1082 1083
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1084 1085 1086

    Layer(
        name=name,
1087
        format=format,
1088
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1089
        inputs=[l.name for l in input], )
1090
    # this layer don't return anything, can not be input of other layer.
1091

X
xuwei06 已提交
1092 1093 1094 1095 1096 1097 1098
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1099

Y
yuan 已提交
1100
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1101
def priorbox_layer(input,
G
gaoyuan 已提交
1102
                   image,
G
gaoyuan 已提交
1103 1104 1105 1106 1107
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1108 1109 1110
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1111
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1112 1113 1114
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1115 1116
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1128
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1129 1130 1131
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1132
        inputs=[input.name, image.name],
Y
yuan 已提交
1133 1134 1135 1136 1137 1138
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1139 1140
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1141
        parents=[input, image],
G
gaoyuan 已提交
1142 1143 1144
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1160
    :param name: The name of this layer. It is optional.
1161
    :type name: basestring
Y
yangyaming 已提交
1162 1163
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1164
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1165
    :type input_conf: LayerOutput | List of LayerOutput
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1187
    input_loc_num = len(input_loc)
1188 1189 1190 1191 1192 1193

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1194
    input_conf_num = len(input_conf)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1232 1233
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1234

1235
    :param name: The name of this layer. It is optional.
1236
    :type name: basestring
Y
yangyaming 已提交
1237 1238
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1239
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1240
    :type input_conf: LayerOutput | List of LayerOutput.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1262
    input_loc_num = len(input_loc)
1263 1264 1265 1266 1267 1268

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1269 1270
    input_conf_num = len(input_conf)

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1299 1300
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1301 1302 1303 1304 1305
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1306

1307
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1308 1309 1310 1311 1312 1313 1314
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1315
    assert input.num_filters is not None
G
gaoyuan 已提交
1316 1317
    Layer(
        name=name,
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1331 1332
    return LayerOutput(
        name,
1333
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1334 1335 1336 1337 1338
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1339 1340 1341 1342
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1343 1344 1345 1346
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1347
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1348
                  stride=-1,
Z
zhangjinchao01 已提交
1349 1350 1351 1352
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1353 1354
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1355 1356 1357
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1358
    operation. Note that for sequence with sub-sequence, the default value
1359 1360
    of stride is -1.

Z
zhangjinchao01 已提交
1361 1362 1363 1364 1365 1366
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1367
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1368

L
Luo Tao 已提交
1369 1370
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1371
    :type agg_level: AggregateLevel
1372
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1373 1374 1375 1376 1377 1378
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1379
    :param stride: The step size between successive pooling regions.
1380
    :type stride: Int
1381 1382 1383 1384 1385
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1386 1387
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1388
    :return: LayerOutput object.
Y
Yu Yang 已提交
1389
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1390 1391
    """
    extra_dict = dict()
1392
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1393 1394
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1395 1396 1397 1398
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1399 1400
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1401 1402 1403
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1404 1405 1406 1407 1408 1409
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1410
        stride=stride,
Q
qijun 已提交
1411
        **extra_dict)
Z
zhangjinchao01 已提交
1412

Q
qijun 已提交
1413 1414
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1415

Q
qijun 已提交
1416

Z
zhangjinchao01 已提交
1417 1418
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1419
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1420 1421
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1422
@layer_support()
Q
qijun 已提交
1423 1424
def lstmemory(input,
              name=None,
1425
              size=None,
Q
qijun 已提交
1426 1427 1428 1429 1430 1431
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1432 1433 1434 1435 1436 1437 1438 1439
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1440
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1441

L
luotao02 已提交
1442
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1443

L
luotao02 已提交
1444
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1445

L
luotao02 已提交
1446
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1447

L
luotao02 已提交
1448
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1449 1450


C
caoying03 已提交
1451
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1452
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1453 1454 1455 1456
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1457

C
caoying03 已提交
1458
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1459 1460
    to config a simple plain lstm layer.

C
caoying03 已提交
1461 1462 1463 1464
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1470 1471
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1482 1483 1484 1485 1486
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1487 1488 1489 1490
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1491
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1492 1493 1494 1495 1496 1497
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1498
    assert input.size is not None and input.size % 4 == 0
1499

1500 1501 1502 1503 1504
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1505 1506 1507
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1508

Q
qijun 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1519

Q
qijun 已提交
1520 1521 1522 1523 1524
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1525

Z
zhangjinchao01 已提交
1526 1527 1528

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1529
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1530 1531
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1532
@layer_support()
Q
qijun 已提交
1533
def grumemory(input,
1534
              size=None,
Q
qijun 已提交
1535 1536 1537 1538 1539 1540
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1562 1563
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1564 1565 1566 1567 1568

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1569 1570 1571
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1572 1573 1574 1575 1576

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1577
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1578
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1579 1580 1581
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1582

C
caoying03 已提交
1583 1584 1585
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1597 1598
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1599
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1600 1601 1602 1603 1604 1605 1606 1607
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1608 1609 1610 1611 1612
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1613 1614 1615 1616
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1617
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1618 1619 1620 1621
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1622 1623 1624 1625 1626 1627
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1628 1629 1630
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1631

Q
qijun 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1641

Q
qijun 已提交
1642 1643 1644 1645 1646
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1647

Z
zhangjinchao01 已提交
1648 1649 1650

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1651 1652
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1653
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1654
             stride=-1,
Z
zhangjinchao01 已提交
1655 1656 1657 1658
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1659 1660 1661
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1662
    of stride is -1.
1663

L
Luo Tao 已提交
1664 1665 1666 1667 1668 1669
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1670
    :param agg_level: Aggregated level
1671
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1672 1673 1674
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1675
    :param stride: The step size between successive pooling regions.
1676
    :type stride: Int
Z
zhangjinchao01 已提交
1677 1678
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1679
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1680 1681
    :rtype: LayerOutput
    """
1682 1683 1684 1685 1686 1687
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1688
    if agg_level == AggregateLevel.TO_SEQUENCE:
1689 1690
        assert stride == -1

Z
zhangjinchao01 已提交
1691 1692 1693 1694 1695
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1696
        stride=stride,
Q
qijun 已提交
1697 1698 1699 1700 1701 1702
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1703 1704 1705 1706


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1709
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
              stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1715 1716 1717
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1718
    of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: aggregation level
1727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1728 1729 1730
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1731
    :param stride: The step size between successive pooling regions.
1732
    :type stride: Int
Z
zhangjinchao01 已提交
1733 1734
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1736 1737
    :rtype: LayerOutput
    """
1738 1739 1740 1741 1742 1743 1744

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1745
    if agg_level == AggregateLevel.TO_SEQUENCE:
1746 1747
        assert stride == -1

Z
zhangjinchao01 已提交
1748 1749 1750 1751 1752
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1753
        stride=stride,
Q
qijun 已提交
1754 1755 1756 1757 1758 1759
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1760 1761 1762


class ExpandLevel(object):
1763 1764 1765 1766 1767
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1768 1769
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1770 1771
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1772 1773
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1774 1775
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1776 1777
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1778 1779
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1780

1781

Z
zhangjinchao01 已提交
1782 1783
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1784 1785
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1786 1787
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1788
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1800
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1801 1802 1803 1804 1805

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1806
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1807
    :type name: basestring
1808 1809 1810 1811 1812
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
1813 1814 1815 1816
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1817
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1827 1828 1829 1830 1831 1832
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1833 1834


X
xuwei06 已提交
1835
@wrap_name_default()
X
xuwei06 已提交
1836
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1837
@layer_support()
X
xuwei06 已提交
1838 1839 1840
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1841
                 act=None,
X
xuwei06 已提交
1842 1843
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1844
    """
X
xuwei06 已提交
1845
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1846

X
xuwei06 已提交
1847
    If as_row_vector:
X
xuwei06 已提交
1848
    .. math::
X
xuwei06 已提交
1849 1850 1851 1852 1853
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1854 1855 1856 1857 1858

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1859
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1860 1861 1862 1863 1864

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1865
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1866 1867 1868 1869 1870 1871
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1872 1873
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1884
        active_type=act.name,
X
xuwei06 已提交
1885
        num_filters=num_repeats,
X
xuwei06 已提交
1886
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1887
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1888 1889 1890 1891 1892
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1893
        activation=act,
Q
qijun 已提交
1894 1895
        parents=[input])

X
xuwei06 已提交
1896

1897 1898 1899
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1900
@layer_support(ERROR_CLIPPING, DROPOUT)
1901 1902 1903 1904 1905 1906 1907 1908
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1909
    the dimension of each instance is M, and the input reshape_size is N, then the
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1924
    :param name: The name of this layer. It is optional.
1925 1926 1927 1928 1929
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1930 1931 1932 1933 1934
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
1977
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1978 1979 1980
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1982 1983
    :rtype: LayerOutput
    """
1984
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1985
    assert len(input) == 2
1986 1987 1988 1989 1990 1991 1992
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1993 1994 1995 1996
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1997 1998 1999 2000 2001 2002
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2003 2004


L
liaogang 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2021
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2022

L
liaogang 已提交
2023
    :param   input:        A input layer.
L
liaogang 已提交
2024
    :type    input:        LayerOutput.
L
liaogang 已提交
2025
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
2026
    :type    out_size_x:   int|None
L
liaogang 已提交
2027
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
2028
    :type    out_size_y:   int|None
L
liaogang 已提交
2029
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
2030
    :type    name:         None|basestring
L
liaogang 已提交
2031
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2032 2033 2034 2035 2036 2037 2038
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2039
    assert input.num_filters is not None
L
liaogang 已提交
2040
    num_channels = input.num_filters
Q
qijun 已提交
2041 2042 2043 2044 2045 2046 2047
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2048
                channels=num_channels)),
Q
qijun 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2058

Z
zhangjinchao01 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2082
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2083 2084 2085
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2086
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2087 2088
    :rtype: LayerOutput
    """
2089 2090 2091
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2092 2093 2094
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2095
        inputs=[weight.name, input.name],
Q
qijun 已提交
2096 2097 2098
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2099 2100 2101 2102 2103 2104


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2105
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2106 2107

    .. math::
2108
       y  = w x
Z
zhangjinchao01 已提交
2109

2110 2111 2112 2113 2114
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2126
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2127 2128 2129
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2130
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2131 2132
    :rtype: LayerOutput
    """
2133 2134 2135
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2136 2137 2138 2139
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2140 2141 2142
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2143 2144 2145 2146 2147 2148


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2149
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
2164
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2165 2166 2167
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2168
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2169 2170 2171 2172 2173 2174
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2175 2176 2177
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2178 2179


2180 2181
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2182
def rotate_layer(input, height, width, name=None, layer_attr=None):
2183
    """
H
Haonan 已提交
2184 2185
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2186 2187

    .. math::
H
Haonan 已提交
2188
       y(j,i,:) = x(M-i-1,j,:)
2189

H
Haonan 已提交
2190
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2191 2192 2193 2194 2195 2196

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2197 2198
                          height=100,
                          width=100)
2199 2200 2201 2202 2203

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2204
    :param name: The name of this layer. It is optional.
2205 2206 2207 2208 2209 2210 2211
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2212 2213 2214
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2215
        width=width,
H
Haonan 已提交
2216 2217 2218 2219 2220 2221 2222 2223
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2224 2225


Z
zhangjinchao01 已提交
2226 2227
@wrap_name_default()
@layer_support()
2228
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2229 2230 2231 2232
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2233
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2234 2235 2236 2237 2238
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2239

2240 2241
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2242

L
Luo Tao 已提交
2243 2244 2245 2246 2247 2248
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2249
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2261
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2262 2263
    :rtype: LayerOutput
    """
2264
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2265 2266 2267 2268 2269 2270
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2271
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2272
    else:
2273 2274
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2275 2276 2277 2278 2279 2280
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2281
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2282
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2283

2284

Z
zhangjinchao01 已提交
2285 2286
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2287
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2288
@layer_support()
Q
qijun 已提交
2289 2290
def hsigmoid(input,
             label,
2291
             num_classes=None,
Q
qijun 已提交
2292 2293 2294 2295
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2307
                        label=data_layer)
Z
zhangjinchao01 已提交
2308 2309 2310 2311 2312 2313 2314

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2315
    :type num_classes: int|None
2316
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2317
    :type name: basestring
2318 2319 2320 2321 2322
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
2323 2324
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2325 2326
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2327
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2328 2329 2330 2331
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2332 2333 2334 2335 2336 2337 2338 2339 2340
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2341 2342 2343
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2344 2345 2346 2347 2348
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2349 2350
    ipts_for_layer = []
    parents = []
2351
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2352
        assert isinstance(each_input, LayerOutput)
2353
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2354 2355 2356 2357
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2358
    l = Layer(
Z
zhangjinchao01 已提交
2359 2360 2361 2362 2363
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2364 2365 2366
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2367

2368

Z
zhangjinchao01 已提交
2369 2370 2371 2372 2373
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2383
                   dilation=1,
Q
qijun 已提交
2384 2385 2386 2387 2388 2389 2390
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2391
                   dilation_y=None,
2392 2393
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2394
    """
2395
    Convolution layer for image. Paddle can support both square and non-square
2396
    input currently.
Z
zhangjinchao01 已提交
2397 2398 2399 2400

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2401

2402
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2403
    and non-square input currently.
2404

X
xuwei06 已提交
2405
    The details of convolution transpose layer,
2406 2407 2408
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2409 2410 2411 2412
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2413 2414 2415
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2416
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2417 2418
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2419

L
Luo Tao 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2430
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2431 2432 2433
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2434 2435 2436
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2437 2438 2439
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2440
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2441 2442 2443 2444 2445
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2446 2447 2448
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2449 2450
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2451 2452 2453
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2454 2455
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2456 2457 2458
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
W
wanghaoshuang 已提交
2459 2460
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2461 2462 2463 2464 2465
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2475 2476
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2477
    :param layer_type: specify the layer_type, default is None. If trans=True,
2478 2479
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2480
                       "cudnn_conv"
2481
    :type layer_type: String
D
dangqingqing 已提交
2482
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2483 2484 2485 2486 2487
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2488

Z
zhangjinchao01 已提交
2489
    if filter_size_y is None:
2490 2491 2492 2493 2494 2495
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2496
    if stride_y is None:
2497 2498 2499 2500 2501 2502
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2503
    if padding_y is None:
2504 2505 2506 2507 2508 2509
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2510 2511 2512 2513 2514 2515 2516
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2517 2518
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2519
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2520 2521 2522 2523
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2524

2525
    if layer_type:
W
wanghaoshuang 已提交
2526 2527
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2528
        if trans:
2529
            assert layer_type in ["exconvt", "cudnn_convt"]
2530 2531 2532 2533 2534
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2535

X
xuwei06 已提交
2536
    l = Layer(
Z
zhangjinchao01 已提交
2537
        name=name,
Q
qijun 已提交
2538 2539 2540 2541 2542
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2543
                dilation=dilation,
Q
qijun 已提交
2544 2545 2546 2547 2548
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2549
                dilation_y=dilation_y,
Q
qijun 已提交
2550 2551
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2552 2553 2554 2555
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2556
        type=lt,
Q
qijun 已提交
2557 2558 2559 2560 2561 2562 2563 2564
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2565 2566 2567 2568


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2579 2580
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2581 2582 2583 2584 2585 2586 2587
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2616
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2617
    :type padding: int
2618 2619
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2620 2621 2622 2623
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2624
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2625
    :type pool_size: int
2626 2627
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2628 2629
    :param num_channels: number of input channel.
    :type num_channels: int
2630
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2631 2632
                      MaxPooling.
    :type pool_type: BasePoolingType
2633
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2634
    :type stride: int
2635 2636
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2637 2638
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2639 2640 2641 2642
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2643 2644
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2655 2656 2657 2658
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2659
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2660
        if (
Y
Yu Yang 已提交
2661
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2662
        else pool_type.name
2663 2664 2665 2666
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2667
    l = Layer(
Z
zhangjinchao01 已提交
2668 2669
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2682
                    padding_y=padding_y))
Q
qijun 已提交
2683
        ],
2684
        ceil_mode=ceil_mode,
Q
qijun 已提交
2685 2686 2687 2688 2689 2690 2691
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2692 2693


C
chengduoZH 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
    :type padding: int|tuple|list
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
    :param pool_size: pooling window width
    :type pool_size: int|tuple|list
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
    :type stride: int|tuple|list
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2834 2835
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2836 2837 2838 2839 2840 2841
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2842 2843 2844 2845 2846
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2847 2848 2849 2850
    The example usage is:

    ..  code-block:: python

2851 2852 2853
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2854 2855
                        pool_type=MaxPooling())

2856
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2884
    l = Layer(
Q
qijun 已提交
2885 2886
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2887 2888 2889 2890 2891
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2892
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2904 2905 2906 2907
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2908
    l = Layer(
Q
qijun 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2928 2929 2930 2931


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2932 2933 2934 2935 2936 2937
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2938
                      layer_attr=None):
Z
zhangjinchao01 已提交
2939
    """
2940
    Response normalization across feature maps.
D
dangqingqing 已提交
2941 2942
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2943

L
Luo Tao 已提交
2944 2945 2946
    The example usage is:

    ..  code-block:: python
2947

L
Luo Tao 已提交
2948 2949
        norm = img_cmrnorm_layer(input=net, size=5)

2950
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
2951
    :type name: None|basestring
Z
zhangjinchao01 已提交
2952 2953
    :param input: layer's input.
    :type input: LayerOutput
2954
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2955
    :type size: int
D
dangqingqing 已提交
2956
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2957
    :type scale: float
D
dangqingqing 已提交
2958
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2959 2960 2961 2962 2963
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2964
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2965 2966 2967
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2968
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2969 2970 2971


@wrap_bias_attr_default()
2972 2973
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2974 2975
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2976
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2977 2978 2979
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2980
                     img3D=False,
Q
qijun 已提交
2981 2982 2983 2984
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2985 2986
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2987 2988
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3007 3008 3009
    The example usage is:

    ..  code-block:: python
3010

L
Luo Tao 已提交
3011 3012
        norm = batch_norm_layer(input=net, act=ReluActivation())

3013
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
3027
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
3037
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3055 3056
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3057
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3068
    l = Layer(
Z
zhangjinchao01 已提交
3069
        name=name,
C
chengduoZH 已提交
3070
        img3D=img3D,
Q
qijun 已提交
3071 3072
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3073 3074 3075 3076 3077 3078
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3079
        mean_var_names=mean_var_names,
Q
qijun 已提交
3080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3081

Q
qijun 已提交
3082 3083 3084 3085 3086 3087 3088
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3112
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3113 3114 3115
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3116
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3117 3118 3119 3120 3121 3122
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3123 3124 3125
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3126 3127


G
guosheng 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
3148
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3164 3165 3166
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3167
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3168
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3191 3192 3193
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3194 3195

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3196 3197
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3198 3199
    Please refer to dropout_layer for details.

3200
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3201 3202 3203 3204 3205 3206
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
3207 3208 3209 3210 3211
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3212 3213
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3214
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3215 3216 3217 3218 3219 3220
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3221
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3222 3223 3224 3225 3226 3227 3228
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3229
    l = Layer(
Q
qijun 已提交
3230 3231 3232
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3233 3234
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3235
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3236

Q
qijun 已提交
3237 3238 3239 3240 3241 3242 3243
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3244 3245 3246 3247


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3248
@layer_support(DROPOUT, ERROR_CLIPPING)
3249
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3250 3251 3252 3253
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3254 3255 3256 3257 3258 3259
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3260
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3261 3262
    :type name: basestring
    :param input: input layers or projections
3263
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3264 3265 3266 3267
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3268
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3269 3270 3271 3272 3273 3274 3275 3276
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3277
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3278 3279

    def __is_type__(o, tp):
3280
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3302 3303
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3304

Q
qijun 已提交
3305 3306
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3307

3308 3309
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3310

3311
    layer = Layer(
Q
qijun 已提交
3312 3313
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3314 3315
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3316
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3317
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3318

3319
    sz = layer.config.size
Z
zhangjinchao01 已提交
3320

Q
qijun 已提交
3321 3322 3323 3324 3325 3326 3327 3328
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3329 3330
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3331
@wrap_bias_attr_default(has_bias=False)
3332
@layer_support(DROPOUT, ERROR_CLIPPING)
3333 3334 3335 3336
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3337

3338
    Inputs:
X
xuwei06 已提交
3339
      - a = [a1, a2, ..., am]
3340
      - b = [b1, b2, ..., bn]
3341

X
xuwei06 已提交
3342 3343 3344 3345
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3346 3347 3348 3349 3350 3351 3352

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3353
    :param name: The name of this layer. It is optional.
3354 3355 3356 3357 3358 3359 3360 3361 3362
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3363 3364 3365 3366 3367
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3389
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3390 3391
def memory(name,
           size,
3392
           memory_name=None,
Q
qijun 已提交
3393 3394 3395 3396
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3417 3418 3419 3420 3421 3422 3423 3424 3425
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3426

3427 3428 3429 3430 3431 3432 3433
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3434 3435 3436
    :type name: basestring
    :param size: size of memory.
    :type size: int
3437 3438 3439
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3440
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3450
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3461 3462
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3463

3464 3465 3466 3467 3468 3469 3470 3471
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3472 3473

    lout = LayerOutput(
3474
        name=memory_name,
Q
qijun 已提交
3475 3476 3477
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3478 3479 3480 3481
    return lout


@wrap_bias_attr_default()
3482 3483
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3484 3485 3486
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3487 3488
def lstm_step_layer(input,
                    state,
3489
                    size=None,
Q
qijun 已提交
3490 3491 3492 3493 3494 3495
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3496
    """
3497 3498
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3499 3500 3501

    ..  math::

3502
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3503

3504
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3505

3506
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3507

3508
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3509

L
luotao02 已提交
3510
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3511 3512


L
luotao02 已提交
3513
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3514
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3515
    input vectors.
Z
zhangjinchao01 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3526 3527
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3528 3529
    :code:`get_output_layer` to extract this output.

3530
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3531
    :type name: basestring
3532 3533
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
3548 3549 3550 3551 3552
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
3553 3554
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3555
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3556 3557
    :rtype: LayerOutput
    """
3558 3559 3560

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3561 3562 3563 3564 3565 3566 3567
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3568
        size=state.size,
Q
qijun 已提交
3569 3570
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3571

Q
qijun 已提交
3572 3573 3574 3575 3576 3577 3578
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3579 3580 3581


@wrap_bias_attr_default()
W
wangyang59 已提交
3582
@wrap_param_attr_default()
Q
qijun 已提交
3583
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3584 3585 3586
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3587 3588 3589 3590 3591 3592 3593
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3594
                   param_attr=None,
Q
qijun 已提交
3595
                   layer_attr=None):
Z
zhangjinchao01 已提交
3596 3597 3598 3599 3600 3601 3602
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
3603
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3604
    :param gate_act:
3605 3606 3607 3608 3609
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3610 3611
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3612
    :param layer_attr:
D
dangqingqing 已提交
3613
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3614 3615 3616 3617 3618 3619 3620 3621
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3622 3623 3624 3625
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3626
        # backward model compatibility.
3627
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3628 3629 3630 3631
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3632
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3633
    return LayerOutput(
Q
qijun 已提交
3634 3635
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3636
        parents=[input, output_mem],
Q
qijun 已提交
3637 3638
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3639 3640


Y
Yu Yang 已提交
3641 3642 3643 3644
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3645
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3663
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3664 3665
    :param act:
    :param gate_act:
3666 3667 3668 3669 3670
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Y
Yu Yang 已提交
3671 3672 3673
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3674
    :rtype: LayerOutput
Y
Yu Yang 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3718 3719 3720 3721
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3722 3723 3724 3725
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3726

3727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3728 3729 3730 3731 3732 3733 3734
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3736 3737 3738 3739 3740 3741 3742
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3743 3744 3745 3746 3747 3748 3749
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3750

Q
qijun 已提交
3751 3752 3753 3754 3755
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3756 3757 3758 3759 3760 3761 3762


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3763 3764 3765 3766 3767 3768 3769
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3770
    """
3771 3772
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
3793 3794 3795 3796 3797
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
3798 3799
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3800
    :param name: The name of this layer. It is optional.
3801 3802 3803
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3804
    :return: LayerOutput object.
3805
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3806
    """
Q
qijun 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3822 3823 3824 3825 3826 3827


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3828 3829
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3830
    """
3831

Z
zhangjinchao01 已提交
3832 3833 3834
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3835
        assert input.size is not None
Z
zhangjinchao01 已提交
3836
        if size is not None:
3837
            assert input.size == size
Z
zhangjinchao01 已提交
3838 3839


3840
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3841
    """
3842
    DEPRECATED.
Z
zhangjinchao01 已提交
3843 3844 3845 3846 3847 3848 3849 3850
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3851
    return input
Z
zhangjinchao01 已提交
3852 3853 3854


@wrap_name_default("recurrent_group")
3855
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3856
    """
C
caoying03 已提交
3857 3858 3859 3860 3861
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3906 3907
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3908
    :type reverse: bool
3909

3910 3911
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3912 3913 3914 3915 3916 3917 3918 3919 3920

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3921
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3922 3923 3924 3925
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3926
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3927
        input = [input]
3928
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3929 3930

    def is_in_links(x):
3931
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3932 3933 3934 3935

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3936
        name=name,
3937 3938
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3939 3940
    in_args = []
    for each_input in input:
3941
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3942
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3943
            mem = memory(
3944
                name=None,
Q
qijun 已提交
3945 3946
                size=each_input.input.size,
                boot_layer=each_input.input)
3947
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3948
            in_args.append(mem)
3949 3950
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3951

Z
zhangjinchao01 已提交
3952 3953 3954 3955 3956
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3957 3958 3959 3960 3961 3962
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3963 3964 3965

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3966
    for layer_out in layer_outs:
3967 3968
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3969 3970
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3971 3972 3973 3974 3975
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3976

Z
zhangjinchao01 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4005 4006

    def before_real_step(self):
Q
qijun 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4016 4017 4018
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4019
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
4039
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4040 4041 4042
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4044 4045 4046 4047
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4058

4059

H
Haonan 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4072
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4096

Z
zhangjinchao01 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4113
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4114
    :type name: basestring
Z
zhangjinchao01 已提交
4115 4116 4117 4118 4119 4120
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4121
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4122 4123
    :rtype: LayerOutput
    """
Q
qijun 已提交
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4135 4136 4137


@wrap_name_default()
Q
qijun 已提交
4138 4139 4140 4141 4142 4143 4144
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4145
                num_results_per_sample=None):
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4157
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4158 4159 4160 4161
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4162 4163 4164 4165 4166
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4167 4168
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4169 4170
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4171 4172
                               bos_id=0,
                               eos_id=1,
4173
                               beam_size=5)
4174 4175 4176 4177 4178 4179 4180 4181 4182

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4183
                 step, and it is applied to sequences with arbitrary length by
4184 4185 4186 4187 4188
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4189 4190
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4191
                  In beam_search, none of the input's type should be LayerOutput.
4192
    :type input: list
4193 4194 4195
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4196
                   symbol is essential, since it is used to initialize the RNN
4197 4198 4199 4200 4201 4202 4203 4204
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4205 4206
    :param max_length: Max generated sequence length.
    :type max_length: int
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4217 4218
    :return: The generated word index.
    :rtype: LayerOutput
4219 4220
    """

Z
zhangjinchao01 已提交
4221 4222 4223 4224 4225
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4226
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4227 4228 4229 4230 4231 4232
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4233 4234 4235
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4236
        if isinstance(each_input, BaseGeneratedInput):
4237 4238
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4239
            generated_input_index = i
4240

Z
zhangjinchao01 已提交
4241 4242 4243
        else:
            real_input.append(each_input)

4244
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4245 4246 4247 4248 4249 4250 4251 4252

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4253 4254 4255 4256 4257 4258
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4259 4260 4261 4262 4263 4264

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4265
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4266 4267
        return predict

4268 4269
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4270

Q
qijun 已提交
4271

4272 4273
def __cost_input__(input, label, weight=None):
    """
4274
    inputs and parents for cost layers.
4275
    """
C
caoying03 已提交
4276 4277 4278 4279 4280 4281
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4282
    if weight is not None:
4283
        assert weight.size == 1
4284 4285 4286
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4287

Z
zhangjinchao01 已提交
4288 4289

@wrap_name_default()
L
luotao1 已提交
4290
@layer_support()
4291 4292 4293 4294 4295 4296
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4297
    """
4298
    sum of square error cost:
L
Luo Tao 已提交
4299 4300 4301

    ..  math::

4302
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4303

4304
    :param name: The name of this layer. It is optional.
4305
    :type name: basestring
Z
zhangjinchao01 已提交
4306
    :param input: Network prediction.
4307
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4308
    :param label: Data label.
4309 4310 4311 4312
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4313 4314
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4315 4316
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4317
    :return: LayerOutput object.
4318
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4319
    """
4320 4321
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4322 4323 4324 4325
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4326
        coeff=coeff,
Q
qijun 已提交
4327
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4328
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4329 4330


4331
regression_cost = square_error_cost
L
Luo Tao 已提交
4332 4333


Z
zhangjinchao01 已提交
4334
@wrap_name_default("cost")
4335
@layer_support()
Q
qijun 已提交
4336 4337 4338 4339
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4340
                        evaluator=classification_error_evaluator,
4341 4342
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4343 4344 4345
    """
    classification cost Layer.

4346
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4347 4348 4349 4350 4351
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4352 4353 4354
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4355
    :param evaluator: Evaluator method.
4356 4357
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4358 4359
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4360
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4361 4362 4363 4364 4365
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4366 4367 4368

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4369 4370 4371 4372
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4373
        coeff=coeff,
Q
qijun 已提交
4374
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4385
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4386

4387
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4388 4389 4390 4391 4392
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4393
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4394

4395

Q
qijun 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4405 4406
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4417 4418
       op = conv_operator(img=input1,
                          filter=input2,
4419
                          filter_size=3,
Z
zhangjinchao01 已提交
4420 4421 4422
                          num_filters=64,
                          num_channels=64)

4423 4424 4425 4426
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4427 4428
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4429 4430 4431
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4432
    :type filter_size_y: int
4433 4434
    :param num_filters: channel of output data.
    :type num_filters: int
4435 4436
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4437
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4438
    :type stride: int
Z
zhangjinchao01 已提交
4439
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4440
    :type stride_y: int
Z
zhangjinchao01 已提交
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4454

4455 4456
    if num_channels is None:
        num_channels = img.num_filters
4457 4458

    assert isinstance(filter, LayerOutput)
4459
    assert filter.size is not None
4460

4461 4462 4463
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4475

4476
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4477 4478
    return op

Q
qijun 已提交
4479

4480
@wrap_param_attr_default()
Q
qijun 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4491 4492
                    param_attr=None,
                    trans=False):
4493 4494 4495 4496 4497 4498 4499 4500 4501
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4502
       proj = conv_projection(input=input1,
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4517 4518
    :param num_channels: channel of input data.
    :type num_channels: int
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4531 4532
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4563
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4564 4565 4566 4567 4568
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4569 4570 4571
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4584 4585 4586 4587

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4588

D
dangqingqing 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4606

D
dangqingqing 已提交
4607
    For example,
4608

4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4630 4631

    The simply usage is:
D
dangqingqing 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4650
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4693
@wrap_name_default()
L
luotao1 已提交
4694 4695
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4707 4708 4709 4710
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4711 4712 4713 4714 4715

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4716
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4717

4718
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4719
    :type name: basestring
4720 4721
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4722
    :param b: input layer b.
4723
    :type b: LayerOutput
L
luotao1 已提交
4724 4725
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4726
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4727 4728
    :rtype: LayerOutput
    """
4729 4730
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4731 4732 4733
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4734
        inputs=[a.name, b.name],
Q
qijun 已提交
4735
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4736

Q
qijun 已提交
4737 4738
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4739 4740 4741 4742 4743


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4744
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4745
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4746 4747 4748 4749 4750 4751 4752 4753
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4754 4755 4756 4757 4758
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4759
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4760 4761

    In this formular:
4762 4763
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4764 4765
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4766
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4767 4768 4769 4770 4771

    The simple usage is:

    .. code-block:: python

4772
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4773

4774
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4775
    :type name: basestring
4776 4777 4778 4779
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4780
    :param size: the layer dimension.
L
luotao02 已提交
4781
    :type size: int.
Z
zhangjinchao01 已提交
4782 4783 4784
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4785
    :type param_attr: ParameterAttribute
4786 4787 4788 4789 4790
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4791 4792
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4793
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4794 4795
    :rtype: LayerOutput
    """
4796
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4797 4798 4799 4800 4801 4802
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4803 4804 4805 4806
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4807 4808 4809 4810 4811 4812


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4813
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4814 4815
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4816
                       select=None,
Q
qijun 已提交
4817 4818
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4819 4820 4821
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4822 4823 4824
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4835
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4836

4837
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4838 4839 4840
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4841 4842
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4843
                   If is None, acts exactly like fc_layer.
4844
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4845 4846 4847 4848 4849 4850
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4851 4852 4853 4854 4855
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
Z
zhangjinchao01 已提交
4856 4857
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4858
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4859 4860 4861 4862
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4863
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4864 4865
        param_attr = [param_attr]
    else:
4866
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4867 4868 4869 4870
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4871 4872 4873 4874
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4875
    Layer(
Q
qijun 已提交
4876 4877 4878
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4879 4880 4881
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4882
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4883 4884 4885 4886
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4887 4888 4889 4890 4891 4892 4893
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4894 4895 4896


@wrap_name_default()
L
luotao1 已提交
4897 4898
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
4911
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4912
    :type name: basestring
L
luotao1 已提交
4913 4914
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4915
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4916 4917
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4918
    l = Layer(
Z
zhangjinchao01 已提交
4919 4920 4921
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4922 4923 4924
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4925 4926 4927


@wrap_name_default()
L
luotao1 已提交
4928
@layer_support()
Q
qijun 已提交
4929 4930 4931 4932
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4933
                          layer_attr=None):
Z
zhangjinchao01 已提交
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
4949
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4950 4951 4952 4953 4954
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4955 4956
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4957
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4958 4959 4960 4961 4962 4963 4964 4965
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4966 4967 4968
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4969 4970 4971


@wrap_name_default()
L
luotao1 已提交
4972
@layer_support()
Q
qijun 已提交
4973
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4974
    """
4975 4976 4977 4978
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4979 4980 4981

    .. math::

4982
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4983

4984 4985 4986 4987 4988
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4989

4990
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4991 4992

    In this formular:
4993 4994 4995 4996 4997 4998
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4999 5000 5001 5002 5003

    The simple usage is:

    .. code-block:: python

5004
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5005 5006
                                       size=elem_dim)

5007 5008 5009 5010
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5011 5012
    :param size: the dimension of this layer.
    :type size: int
5013
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5014
    :type name: basestring
L
luotao1 已提交
5015 5016
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5017
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5018 5019
    :rtype: LayerOutput
    """
5020 5021 5022 5023
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5024
            size = vectors.size / weights.size
5025 5026
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5027 5028
    Layer(
        name=name,
5029
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5030
        size=size,
5031
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5032 5033 5034
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5035

5036

5037
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5038

5039

Z
zhangjinchao01 已提交
5040
@wrap_name_default()
L
luotao1 已提交
5041
@layer_support()
Z
zhangjinchao01 已提交
5042 5043 5044 5045 5046 5047 5048
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5049
                       num_channels=None,
L
luotao1 已提交
5050 5051
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5052 5053
    """
    Expand feature map to minibatch matrix.
5054
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5055
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5066
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5067 5068
    convolution neural network, and before recurrent neural network.

5069 5070 5071 5072
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5073
       block_expand = block_expand_layer(input=layer,
5074
                                         num_channels=128,
5075 5076 5077 5078 5079
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
5080 5081
    :param input: The input layer.
    :type input: LayerOutput
5082 5083
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5096
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5097
    :type name: None|basestring.
L
luotao1 已提交
5098 5099
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5100
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5101 5102
    :rtype: LayerOutput
    """
5103 5104 5105
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5123 5124


5125 5126
@wrap_name_default()
@layer_support()
5127
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5128 5129 5130 5131 5132
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5133
    So groups should be larger than 1, and the num of channels should be able
5134 5135
    to devided by groups.

X
xuwei06 已提交
5136 5137 5138 5139 5140 5141 5142 5143
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5144
    Please refer to Paper:
5145 5146 5147 5148
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5149

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
5165
    :param name: The name of this layer. It is optional.
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5187 5188


Z
zhangjinchao01 已提交
5189
@wrap_name_default()
L
luotao1 已提交
5190
@layer_support()
Q
qijun 已提交
5191 5192 5193 5194 5195
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5196
              layer_attr=None):
Z
zhangjinchao01 已提交
5197 5198 5199 5200 5201
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5202 5203
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5204 5205
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5206 5207 5208 5209 5210 5211 5212 5213

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5214
    The example usage is:
Z
zhangjinchao01 已提交
5215 5216 5217 5218 5219 5220 5221 5222

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5223
    :param input: The input layer.
Z
zhangjinchao01 已提交
5224 5225 5226
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5227
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5228
    :type size: int
5229
    :param name: The name of this layer. It is optional.
5230
    :type name: basestring|None
Z
zhangjinchao01 已提交
5231 5232
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5233 5234
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5235
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5236 5237 5238 5239
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5240 5241 5242 5243 5244
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5245
    Layer(
5246 5247 5248 5249
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5250
        inputs=[input.name, label.name],
Q
qijun 已提交
5251
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5252 5253
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5254

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5266
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5267
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5268 5269 5270 5271 5272 5273 5274
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5275 5276 5277
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5278
    icml2006_GravesFGS06.pdf>`_.
5279 5280 5281

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5282 5283 5284
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5285 5286
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5287
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5288
          'linear' activation is expected instead in the 'input' layer.
5289

C
caoying03 已提交
5290
    The example usage is:
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5306
    :param name: The name of this layer. It is optional.
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5336
@wrap_name_default()
5337
@wrap_param_attr_default()
L
luotao1 已提交
5338
@layer_support()
Q
qijun 已提交
5339 5340 5341 5342 5343 5344
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5345
              coeff=1.0,
L
luotao1 已提交
5346
              layer_attr=None):
Z
zhangjinchao01 已提交
5347 5348 5349 5350
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5351
    The example usage is:
Z
zhangjinchao01 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5362
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5363 5364 5365 5366 5367 5368 5369
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5370
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5371
    :type name: None|basestring
5372 5373
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5374 5375
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5376
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5377 5378 5379 5380 5381
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5382 5383 5384 5385 5386 5387
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5388

Q
qijun 已提交
5389
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5390 5391 5392 5393
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5394 5395 5396 5397
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5398
        coeff=coeff,
Q
qijun 已提交
5399
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5400 5401 5402
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5403 5404 5405 5406
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5407

5408

Z
zhangjinchao01 已提交
5409
@wrap_name_default()
5410
@wrap_param_attr_default()
L
luotao1 已提交
5411
@layer_support()
Q
qijun 已提交
5412 5413 5414 5415 5416
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5417
                       layer_attr=None):
Z
zhangjinchao01 已提交
5418 5419 5420 5421 5422 5423 5424
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5425
    The example usage is:
L
Luo Tao 已提交
5426 5427 5428 5429 5430 5431

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5432 5433 5434 5435 5436 5437 5438 5439
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5440
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5441
    :type name: None|basestring
L
luotao1 已提交
5442 5443
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5444
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5445 5446 5447 5448 5449 5450
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5451
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5452 5453 5454 5455
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5456 5457 5458 5459
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5460
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5461 5462 5463
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5464 5465 5466 5467
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5468

Q
qijun 已提交
5469

Y
Yu Yang 已提交
5470
@wrap_act_default(act=SigmoidActivation())
5471
@wrap_bias_attr_default(has_bias=True)
5472
@wrap_param_attr_default()
5473 5474
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5475 5476
def nce_layer(input,
              label,
C
caoying03 已提交
5477
              num_classes=None,
Y
Yu Yang 已提交
5478
              act=None,
5479
              param_attr=None,
Q
qijun 已提交
5480 5481 5482 5483 5484 5485
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5486 5487 5488 5489 5490 5491 5492 5493 5494
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5495 5496
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5497 5498
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5499
    :param name: The name of this layer. It is optional.
5500
    :type name: basestring
R
ranqiu 已提交
5501
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
5502 5503 5504 5505 5506 5507
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5508
    :type num_classes: int
Y
Yu Yang 已提交
5509 5510
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5511 5512
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5513
    :param num_neg_samples: number of negative samples. Default is 10.
5514
    :type num_neg_samples: int
5515 5516 5517 5518
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
5519 5520 5521 5522 5523
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
5524 5525 5526 5527 5528 5529 5530
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5531 5532 5533 5534 5535 5536 5537 5538
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5539
    assert isinstance(input, collections.Sequence)
5540

5541 5542
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5543 5544
    if num_classes is None:
        num_classes = label.size
5545 5546 5547
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5548
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5549 5550
    if not isinstance(act, BaseActivation):
        raise TypeError()
5551

5552 5553
    ipts_for_layer = []
    parents = []
5554
    for each_input, attr in zip(input, param_attr):
5555
        assert isinstance(each_input, LayerOutput)
5556
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5567
    l = Layer(
5568 5569 5570 5571
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5572
        active_type=act.name,
5573 5574 5575
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5576 5577
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5578 5579 5580 5581 5582
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5583

5584

Z
zhangjinchao01 已提交
5585 5586 5587
"""
following are cost Layers.
"""
5588 5589


Z
zhangjinchao01 已提交
5590
@wrap_name_default()
L
luotao1 已提交
5591
@layer_support()
Q
qijun 已提交
5592 5593 5594 5595 5596 5597 5598
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5599
    """
5600
    A cost Layer for learning to rank using gradient descent. Details can refer
5601 5602
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5603 5604 5605 5606 5607
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5608
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5609

L
luotao02 已提交
5610
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5611

L
luotao02 已提交
5612
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5613 5614 5615 5616 5617 5618 5619 5620

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5621
    The example usage is:
Z
zhangjinchao01 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5638
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5639 5640 5641
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5642 5643
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5644
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5657 5658 5659 5660 5661 5662
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5663

X
xuwei06 已提交
5664
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5665

5666

Z
zhangjinchao01 已提交
5667
@wrap_name_default()
L
luotao1 已提交
5668
@layer_support()
Q
qijun 已提交
5669 5670 5671 5672 5673 5674
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5675 5676 5677
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5678
    The example usage is:
Z
zhangjinchao01 已提交
5679 5680 5681 5682 5683 5684 5685 5686

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5687
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5688 5689 5690 5691
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5692
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5693 5694 5695 5696 5697 5698
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5699 5700 5701
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5702
    :type max_sort_size: int
R
ranqiu 已提交
5703
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5704
    :type name: None|basestring
L
luotao1 已提交
5705 5706
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5707
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5708 5709
    :rtype: LayerOutput
    """
5710 5711 5712
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5713 5714 5715 5716 5717 5718 5719
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5720

Q
qijun 已提交
5721 5722
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5723

5724

Z
zhangjinchao01 已提交
5725
@wrap_name_default()
L
luotao1 已提交
5726
@layer_support()
5727 5728 5729 5730 5731 5732
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5733 5734 5735
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5736 5737
    The example usage is:

Z
zhangjinchao01 已提交
5738 5739
    .. code-block:: python

X
xuwei06 已提交
5740
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5741
                            label=label_layer)
Z
zhangjinchao01 已提交
5742 5743 5744 5745 5746

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5747
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5748
    :type name: None|basestring.
5749 5750
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5751
    :type coeff: float.
5752 5753 5754 5755
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5756 5757
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5758
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5759 5760 5761
    :rtype: LayerOutput.
    """

5762
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5763 5764 5765
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5766
        inputs=ipts,
Q
qijun 已提交
5767 5768
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5769
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5770

5771

Z
zhangjinchao01 已提交
5772
@wrap_name_default()
L
luotao1 已提交
5773
@layer_support()
Q
qijun 已提交
5774 5775 5776 5777
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5778 5779
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5780 5781
    """
    A loss layer for multi class entropy with selfnorm.
5782
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5783

C
caoying03 已提交
5784 5785
    The example usage is:

Z
zhangjinchao01 已提交
5786 5787
    .. code-block:: python

X
xuwei06 已提交
5788
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5789
                                          label=label_layer)
Z
zhangjinchao01 已提交
5790 5791 5792 5793 5794

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5795
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5796 5797 5798 5799 5800
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5801 5802
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5803
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5804 5805
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5806 5807 5808 5809 5810 5811 5812
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5813

Q
qijun 已提交
5814 5815 5816 5817 5818
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5819

5820

X
xuwei06 已提交
5821 5822 5823 5824 5825 5826
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5827 5828
    The example usage is:

X
xuwei06 已提交
5829 5830
    .. code-block:: python

L
Luo Tao 已提交
5831
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5832 5833 5834

    :param input: The first input layer.
    :type input: LayerOutput.
R
ranqiu 已提交
5835
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
5836 5837 5838 5839 5840 5841
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5842
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5843 5844 5845 5846 5847
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5848

Q
qijun 已提交
5849
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5850 5851


Z
zhangjinchao01 已提交
5852
@wrap_name_default()
L
luotao1 已提交
5853
@layer_support()
L
Luo Tao 已提交
5854 5855 5856 5857 5858 5859
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5860
    """
5861 5862 5863
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5864 5865 5866 5867 5868
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5869

C
caoying03 已提交
5870 5871
    The example usage is:

Z
zhangjinchao01 已提交
5872 5873
    .. code-block:: python

L
Luo Tao 已提交
5874 5875 5876 5877 5878 5879
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5880
    :param name: The name of this layer. It is optional.
L
Luo Tao 已提交
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
    :type name: None|basestring.
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5903
@wrap_name_default()
L
luotao1 已提交
5904
@layer_support()
5905 5906 5907 5908 5909
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5910
    """
5911 5912 5913
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5914 5915 5916
    loss is defined as:

    .. math:
5917
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5918
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5919

C
caoying03 已提交
5920 5921
    The example usage is:

Z
zhangjinchao01 已提交
5922 5923
    .. code-block:: python

5924
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5925 5926 5927 5928 5929

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5930
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5931 5932 5933
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5934 5935
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5936
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5937 5938
    :rtype: LayerOutput.
    """
5939 5940 5941
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5942 5943
    Layer(
        name=name,
5944
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5945 5946 5947
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5948 5949
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5950

5951

Z
zhangjinchao01 已提交
5952
@wrap_name_default()
L
luotao1 已提交
5953
@layer_support()
Q
qijun 已提交
5954 5955 5956 5957
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5958
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5959 5960 5961
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5962 5963
    The example usage is:

Z
zhangjinchao01 已提交
5964 5965
    .. code-block:: python

X
xuwei06 已提交
5966
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5967
                                               label=label_layer)
Z
zhangjinchao01 已提交
5968 5969 5970 5971 5972

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5973
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5974 5975 5976
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5977 5978
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5979
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5980 5981 5982
    :rtype: LayerOutput
    """

5983 5984
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5985 5986 5987 5988
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6001 6002


C
caoying03 已提交
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6025 6026
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6027
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6028
    """
C
caoying03 已提交
6029 6030 6031
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6032

C
caoying03 已提交
6033 6034 6035 6036 6037
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6038

C
caoying03 已提交
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6057
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6078
    :param input: Input beams for this layer.
C
caoying03 已提交
6079
    :type input: BeamInput
R
ranqiu 已提交
6080
    :param name: The name of this layer.
C
caoying03 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6107 6108 6109
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6110 6111
@wrap_name_default()
@layer_support()
6112
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6113 6114
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6115
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6116 6117 6118 6119 6120 6121 6122 6123 6124

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6125
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6126

D
dangqingqing 已提交
6127 6128 6129
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6130 6131
    The example usage is:

D
dangqingqing 已提交
6132 6133
    .. code-block:: python

6134 6135
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6136 6137 6138 6139 6140

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6141
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
6142
    :type name: None|basestring
6143 6144
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6158
        coeff=coeff,
D
dangqingqing 已提交
6159 6160 6161
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6181 6182
    The example usage is:

W
wwhu 已提交
6183 6184 6185 6186 6187 6188
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6189
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6215 6216


6217 6218 6219 6220
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6221 6222 6223 6224 6225 6226
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6227
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6228 6229 6230 6231 6232 6233 6234
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6235 6236 6237 6238 6239 6240 6241
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6242 6243


D
dangqingqing 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6257
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6258 6259 6260 6261 6262 6263 6264
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6265
    efficient manner to improve unidirectional RNNs.
6266

R
ranqiu 已提交
6267
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6268 6269 6270 6271
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6272

D
dangqingqing 已提交
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6296
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6316 6317


6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6337 6338 6339 6340 6341 6342
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6343
    :param name: The name of this layer. It is optional.
6344 6345 6346 6347
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6348 6349 6350 6351 6352 6353

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6354 6355 6356 6357 6358 6359 6360 6361
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6362
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6363
    assert isinstance(param_attr, ParameterAttribute)
6364 6365 6366

    l = Layer(
        name=name,
C
caoying03 已提交
6367
        type=LayerType.PRELU,
C
caoying03 已提交
6368
        inputs=Input(input.name, **param_attr.attr),
6369 6370 6371 6372 6373 6374 6375
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6376 6377


6378
@wrap_name_default()
C
caoying03 已提交
6379
@layer_support(ERROR_CLIPPING, DROPOUT)
6380 6381 6382 6383 6384 6385 6386
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6387 6388
                     gate_bias_attr=True,
                     inproj_attr=None,
6389 6390 6391 6392 6393 6394 6395
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6396
    product between :match:`X'` and :math:`\sigma` is finally returned.
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
6416
    :param name: The name of this layer. It is optional.
6417 6418 6419 6420 6421 6422 6423 6424
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6425 6426 6427 6428 6429 6430
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6453
        layer_attr=inproj_attr,
6454 6455 6456 6457 6458 6459 6460 6461 6462
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6463
        param_attr=gate_param_attr,
6464 6465 6466 6467 6468
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6469 6470


6471
@layer_support()
6472
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6473 6474
def switch_order_layer(input,
                       name=None,
6475
                       reshape_axis=None,
W
wanghaoshuang 已提交
6476 6477
                       act=None,
                       layer_attr=None):
6478
    """
6479
    This layer switch dimension order of image input.
6480 6481
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6482 6483 6484 6485

    The example usage is:

    .. code-block:: python
6486 6487
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6488
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6489 6490 6491

    :param input: The input layer.
    :type input: LayerOutput
6492
    :param name: The name of this layer. It is optional.
6493
    :type name: basestring
R
ranqiu 已提交
6494 6495
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6496 6497 6498
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6499
    assert isinstance(input, LayerOutput)
6500 6501 6502 6503 6504
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6505 6506
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6507
        inputs=input.name,
6508 6509
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6510
        active_type=act.name,
6511 6512 6513
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6514
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6515
        activation=act,
6516 6517
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6518 6519


6520 6521
@wrap_name_default()
@layer_support()
6522
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6523
    """
6524
    The crop layer crops images by offset and shape. User can set crop shape by
6525
    args 'shape' explicitly or by reference input layer.
6526

6527 6528 6529
    The example usage is:

    .. code-block:: python
W
whs 已提交
6530
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6531 6532 6533 6534

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6535 6536
    :param offset: The crop offset
    :type offset: Sequence
6537 6538 6539 6540 6541 6542 6543
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6544
    :type shape: Sequence | None
6545
    :param name: The name of this layer. It is optional.
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6567 6568


C
caoying03 已提交
6569 6570
@wrap_name_default()
@layer_support()
6571
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6572
    """
6573
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6574
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6575

C
caoying03 已提交
6576 6577 6578
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6579 6580 6581 6582

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6583 6584

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6585

C
caoying03 已提交
6586

6587 6588 6589
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6590
    :type input: LayerOutput
6591
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6592 6593 6594 6595
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6596

6597 6598 6599 6600 6601 6602 6603
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6604
    l = Layer(
6605 6606
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6607 6608 6609 6610 6611 6612 6613
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6614 6615


G
guosheng 已提交
6616
@wrap_name_default("clip")
6617
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6627
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6628

6629
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6630 6631 6632
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6633 6634 6635 6636
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6637 6638
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6639 6640 6641 6642 6643
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6644 6645
        min=min,
        max=max)
G
guosheng 已提交
6646 6647
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6648 6649


6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6674
    :param name: The name of this layer. It is optional.
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6714 6715


6716 6717
@wrap_name_default()
@layer_support()
6718
def kmax_seq_score_layer(input, name=None, beam_size=1):
6719
    """
C
caoying03 已提交
6720
    This layer accepts one input which are scores over a sequence or a nested
6721 6722 6723 6724
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6725
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6726 6727


6728
    :param name: The name of this layer. It is optional.
6729
    :type name: basestring
C
caoying03 已提交
6730
    :param input: The input layer. It stores scores over a sequence or a nested
6731 6732
        sequence and its size must be 1.
    :type input: LayerOutput.
R
ranqiu 已提交
6733
    :param beam_size: sequence indices with top beam_size scores are returned.
6734 6735 6736 6737
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6738
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6739
                                            "accepts only one input.")
6740
    assert input.size == 1, (
6741
        "input of kmax_seq_score_layer is a score "
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6752 6753


6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6780
        conv = img_conv3d_layer(input=data, filter_size=1,
6781 6782 6783 6784 6785
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6786
    :param name: The name of this layer. It is optional.
6787 6788 6789
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
C
chengduoZH 已提交
6790
    :param filter_size: The x dimension of a filter kernel. Or input a list.
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
    :type filter_size: int|tuple|list
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
6805
    :type bias_attr: ParameterAttribute|None|Bool|Any
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6829 6830 6831 6832 6833 6834
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6835

C
chengduoZH 已提交
6836 6837 6838 6839 6840 6841
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6842

C
chengduoZH 已提交
6843 6844 6845 6846 6847 6848
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6895 6896


G
guosheng 已提交
6897 6898 6899 6900 6901
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6902 6903
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6904 6905
    adds a bias to it.

X
xuwei06 已提交
6906
    This layer is very like the SlopeInterceptLayer, except the scale and
6907 6908
    bias are trainable.

G
guosheng 已提交
6909 6910 6911 6912 6913 6914 6915 6916
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6917
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6918 6919 6920 6921 6922
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6923 6924 6925 6926 6927
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
    :type bias_attr: ParameterAttribute|None|Bool|Any
G
guosheng 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

    :param input: The input to this layer.
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param size: The resized output dimesion of this layer.
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)