layers.py 233.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Y
yangyaming 已提交
146
    'sub_seq_layer',
Q
qijun 已提交
147
]
Z
zhangjinchao01 已提交
148 149 150 151 152 153 154


class LayerType(object):
    """
    Layer type enumerations.
    """

155 156 157 158 159 160 161 162
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
163
    POOLING_AVG = 'average'
164
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
165
    COST = 'cost'
166 167
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
168
    HSIGMOID = 'hsigmoid'
169 170 171 172 173
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
174
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
175
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
176
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
177 178 179
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
180
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
181 182 183 184
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
185
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
186 187 188 189 190 191 192

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
193
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
194 195 196
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
197
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
198
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
199
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
200 201 202 203 204 205 206 207 208 209 210

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
211
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
212
    BLOCK_EXPAND = "blockexpand"
213
    MAXOUT = "maxout"
Q
qijun 已提交
214
    SPP_LAYER = "spp"
D
dangqingqing 已提交
215
    PAD_LAYER = "pad"
W
wwhu 已提交
216
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
217
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
218 219 220

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
221 222
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
223 224 225 226 227

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
228
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
229

230 231 232
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

233 234
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
235
    HUBER_REGRESSION = 'huber_regression'
236
    HUBER_CLASSIFICATION = 'huber_classification'
237 238
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
239
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
240 241 242 243 244 245
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
246
    SWITCH_ORDER_LAYER = 'switch_order'
247
    CROP_LAYER = 'crop'
C
caoying03 已提交
248
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
249
    CLIP_LAYER = 'clip'
250
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
251

252
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
253
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
254

255
    RESIZE = 'resize'
Y
yangyaming 已提交
256
    SUB_SEQ_LAYER = 'subseq'
257

Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
278
    """
L
Luo Tao 已提交
279
    PaddlePaddle supports three sequence types:
280 281 282

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
283 284
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
285

L
Luo Tao 已提交
286
    Accordingly, AggregateLevel supports two modes:
287

L
Luo Tao 已提交
288
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
289
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
290 291
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
292
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
293 294 295
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
296 297
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
298 299 300
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
323
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
324 325
    """

Q
qijun 已提交
326 327 328 329 330 331 332 333 334
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
335
                 reverse=None):
Z
zhangjinchao01 已提交
336 337
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
338
        assert size is not None
Z
zhangjinchao01 已提交
339 340
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
341
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
342
        self.layer_type = layer_type
343 344
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
345 346 347 348 349 350 351 352
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
353
        self.reverse = reverse
Z
zhangjinchao01 已提交
354

355 356 357 358 359 360 361 362
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

363 364 365 366
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

367 368 369 370 371 372 373 374
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
375 376 377

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
378
DEVICE = 'device'
Z
zhangjinchao01 已提交
379 380 381


def layer_support(*attrs):
382
    attrs_list = list(attrs)
383
    attrs_list.append(DEVICE)
Q
qijun 已提交
384

Z
zhangjinchao01 已提交
385 386 387
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
388
            for attr in attrs_list:
Z
zhangjinchao01 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
405 406 407 408 409
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
440
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
449 450
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
451 452 453 454
    proj.origin = input
    return proj


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
476
    :param input: The input of this layer.
477 478 479 480 481 482 483 484
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
485 486
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
487 488 489 490
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
521
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
522 523 524 525 526 527 528 529
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
530 531
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
532 533 534 535
    proj.origin = input
    return proj


536
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
566
    :param input: The input of this layer.
567
    :type input: LayerOutput
Z
zhangjinchao01 已提交
568 569
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
570
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
571 572 573 574 575 576
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
577 578
        if size is None:
            size = input.size - offset
Q
qijun 已提交
579
        proj = IdentityOffsetProjection(
580
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
581 582 583 584
        proj.origin = input
    return proj


585 586
def slice_projection(input, slices):
    """
587 588
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
589 590

    .. math::
591
       output = [input.slices()]
592 593 594 595 596 597 598 599 600

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
601
    :param input: The input of this layer.
602 603 604 605
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
606
    :type slices: pair of int
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
639
    :param input: The input of this layer.
X
xuwei06 已提交
640 641 642 643 644 645
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
646
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
647 648 649 650
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
651
@wrap_param_attr_default()
652
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
653
    """
654
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
668
    :param input: The input of this layer.
669 670 671 672 673 674
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
675 676
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
677
    proj.origin = input
678
    return proj
Z
zhangjinchao01 已提交
679

680 681

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
682 683
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
684

Z
zhangjinchao01 已提交
685
    .. math::
L
Luo Tao 已提交
686
       out.row[i] += scale * (a.row[i] .* b.row[i])
687

Z
zhangjinchao01 已提交
688 689
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
690

Z
zhangjinchao01 已提交
691
    The example usage is:
692

Z
zhangjinchao01 已提交
693
    .. code-block:: python
694

L
Luo Tao 已提交
695
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
696

697 698 699 700
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
701 702
    :param scale: config scalar, default value is one.
    :type scale: float
703 704
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
705
    """
706 707 708
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
709
    a = kwargs.get('x', a)  # For Backward capacity.
710 711 712 713 714 715
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
716
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
717
    op.origin = [a, b]
718
    return op
Z
zhangjinchao01 已提交
719

720

Z
zhangjinchao01 已提交
721
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
722 723 724
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
739
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
740 741 742 743 744 745 746 747 748
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
749
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
750 751 752 753 754 755 756 757 758 759 760
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
761 762 763 764 765 766
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
780
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
781 782 783 784 785 786
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
787
        :param act: Activation type.
Z
zhangjinchao01 已提交
788
        :type act: BaseActivation
R
ranqiu 已提交
789 790 791
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
792
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
793 794 795
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
796 797 798 799 800 801 802
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
803 804 805 806 807
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

808
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
809 810 811 812 813 814 815 816
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
817
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
818
            self.inputs.append(other)
819 820 821 822
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
823 824 825 826 827 828 829 830
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

831
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
832 833
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
834
        assert len(self.inputs) != 0
835
        ml = MixedLayer(
Z
zhangjinchao01 已提交
836 837 838 839 840
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
841
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
842 843 844
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
845
        self.finalized = True
Z
zhangjinchao01 已提交
846 847 848 849 850 851


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
852 853 854 855 856
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
884
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
885
                  then this function will just return layer's name.
R
ranqiu 已提交
886
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
887
    :type act: BaseActivation
R
ranqiu 已提交
888 889 890
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
891
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
892 893 894 895 896 897 898 899 900
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
901 902 903 904 905 906
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
907
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
908 909 910 911 912 913 914 915
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
916 917
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
925
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
926

R
ranqiu 已提交
927
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
928 929 930
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
931
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
932
    :type height: int | None
L
Luo Tao 已提交
933
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
934
    :type width: int | None
Z
zhangjinchao01 已提交
935 936
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
937
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
938 939
    :rtype: LayerOutput
    """
Q
qijun 已提交
940 941 942 943
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
944
        depth=depth,
L
Luo Tao 已提交
945 946
        height=height,
        width=width,
Q
qijun 已提交
947
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
948

C
chengduoZH 已提交
949 950
    if depth is None:
        depth = 1
951 952
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
953 954
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
955
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
956 957

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
958 959 960 961


@wrap_name_default("embedding")
@wrap_param_attr_default()
962
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
963 964 965 966
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

967
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
968
    :type name: basestring
R
ranqiu 已提交
969
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
970 971 972 973 974
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
975
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
976
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
977
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
979 980
    :rtype: LayerOutput
    """
Q
qijun 已提交
981 982 983 984 985 986
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
987 988 989 990 991 992 993 994 995
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
996 997 998 999 1000 1001 1002
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1015
    which is equal to:
Z
zhangjinchao01 已提交
1016 1017 1018 1019 1020 1021

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1023
    :type name: basestring
R
ranqiu 已提交
1024 1025
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1026 1027
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1028
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1029 1030 1031
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1032 1033 1034
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1035
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1036
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1037
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1038
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1039 1040 1041 1042
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1043
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1044 1045
        param_attr = [param_attr]
    else:
1046
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1047 1048
            assert len(input) == len(param_attr)
        else:
1049
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1050
                logger.fatal(
W
wangmeng28 已提交
1051 1052 1053 1054 1055
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1056 1057
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1058
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1059 1060

    Layer(
Q
qijun 已提交
1061 1062 1063
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1064 1065 1066 1067 1068
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1069 1070 1071
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1072

1073

1074
@wrap_name_default("print")
1075
def printer_layer(input, format=None, name=None):
1076 1077
    """
    Print the output value of input layers. This layer is useful for debugging.
1078

1079
    :param name: The name of this layer. It is optional.
1080
    :type name: basestring
R
ranqiu 已提交
1081 1082
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1083
    :return: LayerOutput
1084
    """
1085 1086 1087 1088 1089
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1090 1091 1092

    Layer(
        name=name,
1093
        format=format,
1094
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1095
        inputs=[l.name for l in input], )
1096
    # this layer don't return anything, can not be input of other layer.
1097

X
xuwei06 已提交
1098 1099 1100 1101 1102 1103 1104
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1105

Y
yuan 已提交
1106
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1107
def priorbox_layer(input,
G
gaoyuan 已提交
1108
                   image,
G
gaoyuan 已提交
1109 1110 1111 1112 1113
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1114 1115 1116
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1117
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1118
    :type name: basestring
R
ranqiu 已提交
1119
    :param input: The input of this layer.
Y
yuan 已提交
1120
    :type input: LayerOutput
G
gaoyuan 已提交
1121 1122
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1134
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1135 1136 1137
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1138
        inputs=[input.name, image.name],
Y
yuan 已提交
1139 1140 1141 1142 1143 1144
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1145 1146
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1147
        parents=[input, image],
G
gaoyuan 已提交
1148 1149 1150
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1166
    :param name: The name of this layer. It is optional.
1167
    :type name: basestring
Y
yangyaming 已提交
1168 1169
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1170
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1171
    :type input_conf: LayerOutput | List of LayerOutput
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1193
    input_loc_num = len(input_loc)
1194 1195 1196 1197 1198 1199

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1200
    input_conf_num = len(input_conf)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1238 1239
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1240

1241
    :param name: The name of this layer. It is optional.
1242
    :type name: basestring
Y
yangyaming 已提交
1243 1244
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1245
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1246
    :type input_conf: LayerOutput | List of LayerOutput.
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1268
    input_loc_num = len(input_loc)
1269 1270 1271 1272 1273 1274

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1275 1276
    input_conf_num = len(input_conf)

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1305 1306
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1307 1308 1309 1310 1311
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1312

1313
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1314
    :type name: basestring
R
ranqiu 已提交
1315
    :param input: The input of this layer.
G
gaoyuan 已提交
1316 1317 1318 1319 1320
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1321
    assert input.num_filters is not None
G
gaoyuan 已提交
1322 1323
    Layer(
        name=name,
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1337 1338
    return LayerOutput(
        name,
1339
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1340 1341 1342 1343 1344
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1345 1346 1347 1348
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1349 1350 1351 1352
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1353
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1354
                  stride=-1,
Z
zhangjinchao01 已提交
1355 1356 1357 1358
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1359 1360
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1361 1362 1363
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1364
    operation. Note that for sequence with sub-sequence, the default value
1365 1366
    of stride is -1.

Z
zhangjinchao01 已提交
1367 1368 1369 1370 1371 1372
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1373
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1374

L
Luo Tao 已提交
1375 1376
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1377
    :type agg_level: AggregateLevel
1378
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1379
    :type name: basestring
R
ranqiu 已提交
1380
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1381 1382 1383
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1384
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1385
    :param stride: The step size between successive pooling regions.
1386
    :type stride: Int
R
ranqiu 已提交
1387 1388 1389
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1390
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1391
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1392
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1393
    :return: LayerOutput object.
Y
Yu Yang 已提交
1394
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1395 1396
    """
    extra_dict = dict()
1397
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1398 1399
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1400 1401 1402 1403
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1404 1405
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1406 1407 1408
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1409 1410 1411 1412 1413 1414
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1415
        stride=stride,
Q
qijun 已提交
1416
        **extra_dict)
Z
zhangjinchao01 已提交
1417

Q
qijun 已提交
1418 1419
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1420

Q
qijun 已提交
1421

Z
zhangjinchao01 已提交
1422 1423
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1424
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1425 1426
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1427
@layer_support()
Q
qijun 已提交
1428 1429
def lstmemory(input,
              name=None,
1430
              size=None,
Q
qijun 已提交
1431 1432 1433 1434 1435 1436
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1437 1438 1439 1440 1441 1442 1443 1444
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1445
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1446

L
luotao02 已提交
1447
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1448

L
luotao02 已提交
1449
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1450

L
luotao02 已提交
1451
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1452

L
luotao02 已提交
1453
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1454 1455


C
caoying03 已提交
1456
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1457
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1458 1459 1460 1461
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1462

C
caoying03 已提交
1463
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1464 1465
    to config a simple plain lstm layer.

C
caoying03 已提交
1466 1467 1468 1469
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1470 1471 1472 1473 1474

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1475 1476
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1477
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1478 1479 1480
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1481
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1482 1483 1484 1485 1486
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1487 1488 1489
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1490
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1491
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1492
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1493
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1494
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1495
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1496 1497 1498 1499 1500 1501
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1502
    assert input.size is not None and input.size % 4 == 0
1503

1504 1505 1506 1507 1508
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1509 1510 1511
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1512

Q
qijun 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1523

Q
qijun 已提交
1524 1525 1526 1527 1528
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1529

Z
zhangjinchao01 已提交
1530 1531 1532

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1533
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1534 1535
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1536
@layer_support()
Q
qijun 已提交
1537
def grumemory(input,
1538
              size=None,
Q
qijun 已提交
1539 1540 1541 1542 1543 1544
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1566 1567
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1568 1569 1570 1571 1572

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1573 1574 1575
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1576 1577 1578 1579 1580

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1581
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1582
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1583 1584 1585
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1586

C
caoying03 已提交
1587 1588 1589
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1590 1591 1592 1593 1594 1595 1596 1597

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1598 1599
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1600
    :type input: LayerOutput.
1601 1602
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1603
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1604
    :type reverse: bool
R
ranqiu 已提交
1605
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610 1611
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1612 1613 1614
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1615
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1616
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1617
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1618
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1619
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1620
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1621 1622 1623 1624
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1625 1626 1627 1628 1629 1630
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1631 1632 1633
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1634

Q
qijun 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1644

Q
qijun 已提交
1645 1646 1647 1648 1649
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1650

Z
zhangjinchao01 已提交
1651 1652 1653

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1654 1655
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1656
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1657
             stride=-1,
Z
zhangjinchao01 已提交
1658 1659 1660 1661
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1662 1663 1664
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1665
    of stride is -1.
1666

L
Luo Tao 已提交
1667 1668 1669 1670 1671 1672
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1673
    :param agg_level: Aggregated level
1674
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1675
    :type name: basestring
R
ranqiu 已提交
1676
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1677
    :type input: LayerOutput
L
Luo Tao 已提交
1678
    :param stride: The step size between successive pooling regions.
1679
    :type stride: Int
Z
zhangjinchao01 已提交
1680 1681
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1682
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1683 1684
    :rtype: LayerOutput
    """
1685 1686 1687 1688 1689 1690
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1691
    if agg_level == AggregateLevel.TO_SEQUENCE:
1692 1693
        assert stride == -1

Z
zhangjinchao01 已提交
1694 1695 1696 1697 1698
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1699
        stride=stride,
Q
qijun 已提交
1700 1701 1702 1703 1704 1705
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1706 1707 1708 1709


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1712
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
              stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1718 1719 1720
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1721
    of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: aggregation level
1730
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1731
    :type name: basestring
R
ranqiu 已提交
1732
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1733
    :type input: LayerOutput
L
Luo Tao 已提交
1734
    :param stride: The step size between successive pooling regions.
1735
    :type stride: Int
Z
zhangjinchao01 已提交
1736 1737
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1739 1740
    :rtype: LayerOutput
    """
1741 1742 1743 1744 1745 1746 1747

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1748
    if agg_level == AggregateLevel.TO_SEQUENCE:
1749 1750
        assert stride == -1

Z
zhangjinchao01 已提交
1751 1752 1753 1754 1755
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1756
        stride=stride,
Q
qijun 已提交
1757 1758 1759 1760 1761 1762
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1763 1764 1765


class ExpandLevel(object):
1766 1767 1768 1769 1770
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1771 1772
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1773 1774
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1775 1776
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1777 1778
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1779 1780
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1781 1782
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1783

1784

Z
zhangjinchao01 已提交
1785 1786
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1787 1788
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1789 1790
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1791
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1803
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1804

R
ranqiu 已提交
1805
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1806 1807 1808
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1809
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1810
    :type name: basestring
R
ranqiu 已提交
1811 1812 1813
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1814
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1815 1816 1817 1818
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1819
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1829 1830 1831 1832 1833 1834
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1835 1836


X
xuwei06 已提交
1837
@wrap_name_default()
X
xuwei06 已提交
1838
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1839
@layer_support()
X
xuwei06 已提交
1840 1841 1842
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1843
                 act=None,
X
xuwei06 已提交
1844 1845
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1846
    """
X
xuwei06 已提交
1847
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1848

X
xuwei06 已提交
1849
    If as_row_vector:
X
xuwei06 已提交
1850
    .. math::
X
xuwei06 已提交
1851 1852 1853 1854 1855
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1856 1857 1858 1859 1860

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1861
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1862

R
ranqiu 已提交
1863
    :param input: The input of this layer.
X
xuwei06 已提交
1864 1865 1866
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1867
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1868 1869 1870 1871 1872 1873
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1874
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1875
    :type act: BaseActivation
X
xuwei06 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1886
        active_type=act.name,
X
xuwei06 已提交
1887
        num_filters=num_repeats,
X
xuwei06 已提交
1888
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1889
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1890 1891 1892 1893 1894
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1895
        activation=act,
Q
qijun 已提交
1896 1897
        parents=[input])

X
xuwei06 已提交
1898

1899 1900 1901
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1902
@layer_support(ERROR_CLIPPING, DROPOUT)
1903 1904 1905 1906 1907 1908 1909 1910
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1911
    the dimension of each instance is M, and the input reshape_size is N, then the
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1922
    :param input: The input of this layer.
1923 1924 1925
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1926
    :param name: The name of this layer. It is optional.
1927
    :type name: basestring
R
ranqiu 已提交
1928
    :param act: Activation type. IdentityActivation is the default.
1929 1930 1931
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1932 1933 1934
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1935
    :type bias_attr: ParameterAttribute | None | bool | Any
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1974 1975
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1976 1977
    :param weight: Weight layer.
    :type weight: LayerOutput
1978
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1979 1980 1981
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1982
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1983 1984
    :rtype: LayerOutput
    """
1985
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1986
    assert len(input) == 2
1987 1988 1989 1990 1991 1992 1993
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1994 1995 1996 1997
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1998 1999 2000 2001 2002 2003
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2004 2005


L
liaogang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2022
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2023

L
liaogang 已提交
2024
    :param   input:        A input layer.
L
liaogang 已提交
2025
    :type    input:        LayerOutput.
L
liaogang 已提交
2026
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2027
    :type    out_size_x:   int | None
L
liaogang 已提交
2028
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2029
    :type    out_size_y:   int | None
L
liaogang 已提交
2030
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2031
    :type    name:         None | basestring
L
liaogang 已提交
2032
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2033 2034 2035 2036 2037 2038 2039
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2040
    assert input.num_filters is not None
L
liaogang 已提交
2041
    num_channels = input.num_filters
Q
qijun 已提交
2042 2043 2044 2045 2046 2047 2048
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2049
                channels=num_channels)),
Q
qijun 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2059

Z
zhangjinchao01 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2079
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2080 2081 2082
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2083
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2084 2085 2086
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2087
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2088 2089
    :rtype: LayerOutput
    """
2090 2091 2092
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2093 2094 2095
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2096
        inputs=[weight.name, input.name],
Q
qijun 已提交
2097 2098 2099
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2100 2101 2102 2103 2104 2105


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2106
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2107 2108

    .. math::
2109
       y  = w x
Z
zhangjinchao01 已提交
2110

2111 2112 2113 2114 2115
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2116 2117 2118 2119 2120 2121 2122

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2123
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2124 2125 2126
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2127
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2128 2129 2130
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2132 2133
    :rtype: LayerOutput
    """
2134 2135 2136
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2137 2138 2139 2140
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2141 2142 2143
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2144 2145 2146 2147 2148 2149


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2150
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2163
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2164
    :type input: LayerOutput
2165
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2166 2167 2168
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2169
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2170 2171 2172 2173 2174 2175
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2176 2177 2178
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2179 2180


2181 2182
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2183
def rotate_layer(input, height, width, name=None, layer_attr=None):
2184
    """
H
Haonan 已提交
2185 2186
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2187 2188

    .. math::
H
Haonan 已提交
2189
       y(j,i,:) = x(M-i-1,j,:)
2190

H
Haonan 已提交
2191
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2192 2193 2194 2195 2196 2197

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2198 2199
                          height=100,
                          width=100)
2200

R
ranqiu 已提交
2201
    :param input: The input of this layer.
2202 2203 2204
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2205
    :param name: The name of this layer. It is optional.
2206 2207 2208 2209 2210 2211 2212
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2213 2214 2215
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2216
        width=width,
H
Haonan 已提交
2217 2218 2219 2220 2221 2222 2223 2224
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2225 2226


Z
zhangjinchao01 已提交
2227 2228
@wrap_name_default()
@layer_support()
2229
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2230 2231 2232 2233
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2234
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2235 2236 2237 2238 2239
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2240

2241 2242
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2243

L
Luo Tao 已提交
2244 2245 2246 2247 2248 2249
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2250
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2262
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2263 2264
    :rtype: LayerOutput
    """
2265
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2266 2267 2268 2269 2270 2271
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2272
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2273
    else:
2274 2275
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2276 2277 2278 2279 2280 2281
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2282
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2283
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2284

2285

Z
zhangjinchao01 已提交
2286 2287
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2288
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2289
@layer_support()
Q
qijun 已提交
2290 2291
def hsigmoid(input,
             label,
2292
             num_classes=None,
Q
qijun 已提交
2293 2294 2295 2296
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2308
                        label=data_layer)
Z
zhangjinchao01 已提交
2309

R
ranqiu 已提交
2310 2311
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2312 2313 2314
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2315
    :type num_classes: int | None
2316
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2317
    :type name: basestring
R
ranqiu 已提交
2318 2319 2320
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2321
    :type bias_attr: ParameterAttribute | None | bool | Any
2322
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2323
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2324 2325
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2326
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2327 2328 2329 2330
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2331 2332 2333 2334 2335 2336 2337 2338 2339
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2340 2341 2342
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2343 2344 2345 2346 2347
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2348 2349
    ipts_for_layer = []
    parents = []
2350
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2351
        assert isinstance(each_input, LayerOutput)
2352
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2353 2354 2355 2356
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2357
    l = Layer(
Z
zhangjinchao01 已提交
2358 2359 2360 2361 2362
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2363 2364 2365
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2366

2367

Z
zhangjinchao01 已提交
2368 2369 2370 2371 2372
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2382
                   dilation=1,
Q
qijun 已提交
2383 2384 2385 2386 2387 2388 2389
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2390
                   dilation_y=None,
2391 2392
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2393
    """
2394
    Convolution layer for image. Paddle can support both square and non-square
2395
    input currently.
Z
zhangjinchao01 已提交
2396 2397 2398 2399

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2400

2401
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2402
    and non-square input currently.
2403

X
xuwei06 已提交
2404
    The details of convolution transpose layer,
2405 2406 2407
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2408 2409 2410 2411
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2412 2413 2414
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2415
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2416 2417
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2418

L
Luo Tao 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2429
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2430
    :type name: basestring
R
ranqiu 已提交
2431
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2432
    :type input: LayerOutput
2433 2434
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2435
    :type filter_size: int | tuple | list
C
caoying03 已提交
2436 2437 2438
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2439
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2440
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2441
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2442 2443 2444
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2445 2446
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2447
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2448 2449
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2450 2451
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2452
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2453 2454
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2455 2456
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2457
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2458 2459
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2460 2461 2462
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2463
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2473 2474
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2475
    :param layer_type: specify the layer_type, default is None. If trans=True,
2476 2477
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2478
                       "cudnn_conv"
2479
    :type layer_type: String
D
dangqingqing 已提交
2480
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2481 2482 2483 2484 2485
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2486

Z
zhangjinchao01 已提交
2487
    if filter_size_y is None:
2488 2489 2490 2491 2492 2493
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2494
    if stride_y is None:
2495 2496 2497 2498 2499 2500
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2501
    if padding_y is None:
2502 2503 2504 2505 2506 2507
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2508 2509 2510 2511 2512 2513 2514
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2515 2516
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2517
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2518 2519 2520 2521
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2522

2523
    if layer_type:
W
wanghaoshuang 已提交
2524 2525
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2526
        if trans:
2527
            assert layer_type in ["exconvt", "cudnn_convt"]
2528 2529 2530 2531 2532
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2533

X
xuwei06 已提交
2534
    l = Layer(
Z
zhangjinchao01 已提交
2535
        name=name,
Q
qijun 已提交
2536 2537 2538 2539 2540
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2541
                dilation=dilation,
Q
qijun 已提交
2542 2543 2544 2545 2546
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2547
                dilation_y=dilation_y,
Q
qijun 已提交
2548 2549
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2550 2551 2552 2553
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2554
        type=lt,
Q
qijun 已提交
2555 2556 2557 2558 2559 2560 2561 2562
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2563 2564 2565 2566


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2577 2578
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2579 2580 2581 2582 2583 2584 2585
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2614
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2615
    :type padding: int
2616
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2617
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2618 2619
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2620
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2621
    :type input: LayerOutput
2622
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2623
    :type pool_size: int
2624
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2625
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2626 2627
    :param num_channels: number of input channel.
    :type num_channels: int
2628
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2629 2630
                      MaxPooling.
    :type pool_type: BasePoolingType
2631
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2632
    :type stride: int
2633
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2634
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2635 2636
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2637 2638 2639 2640
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2641 2642
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2653 2654 2655 2656
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2657
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2658
        if (
Y
Yu Yang 已提交
2659
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2660
        else pool_type.name
2661 2662 2663 2664
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2665
    l = Layer(
Z
zhangjinchao01 已提交
2666 2667
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2680
                    padding_y=padding_y))
Q
qijun 已提交
2681
        ],
2682
        ceil_mode=ceil_mode,
Q
qijun 已提交
2683 2684 2685 2686 2687 2688 2689
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2690 2691


C
chengduoZH 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2744
    :type padding: int | tuple | list
C
chengduoZH 已提交
2745 2746
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2747
    :param input: The input of this layer.
C
chengduoZH 已提交
2748 2749
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2750
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2751 2752 2753 2754 2755 2756
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2757
    :type stride: int | tuple | list
C
chengduoZH 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2832 2833
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2834 2835 2836 2837 2838 2839
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2840 2841 2842 2843 2844
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2845 2846 2847 2848
    The example usage is:

    ..  code-block:: python

2849 2850 2851
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2852 2853
                        pool_type=MaxPooling())

2854
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2855
    :type name: basestring
R
ranqiu 已提交
2856
    :param input: The input of this layer.
Q
qijun 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2882
    l = Layer(
Q
qijun 已提交
2883 2884
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2885 2886 2887 2888 2889
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2890
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2902 2903 2904 2905
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2906
    l = Layer(
Q
qijun 已提交
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2926 2927 2928 2929


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2930 2931 2932 2933 2934 2935
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2936
                      layer_attr=None):
Z
zhangjinchao01 已提交
2937
    """
2938
    Response normalization across feature maps.
D
dangqingqing 已提交
2939 2940
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2941

L
Luo Tao 已提交
2942 2943 2944
    The example usage is:

    ..  code-block:: python
2945

L
Luo Tao 已提交
2946 2947
        norm = img_cmrnorm_layer(input=net, size=5)

2948
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2949 2950
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2951
    :type input: LayerOutput
2952
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2953
    :type size: int
D
dangqingqing 已提交
2954
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2955
    :type scale: float
D
dangqingqing 已提交
2956
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2957 2958 2959 2960 2961
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2962
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2963 2964 2965
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2966
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2967 2968 2969


@wrap_bias_attr_default()
2970 2971
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2972 2973
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2974
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2975 2976 2977
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2978
                     img3D=False,
Q
qijun 已提交
2979 2980 2981 2982
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2983 2984
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2985 2986
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3005 3006 3007
    The example usage is:

    ..  code-block:: python
3008

L
Luo Tao 已提交
3009 3010
        norm = batch_norm_layer(input=net, act=ReluActivation())

3011
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3012 3013 3014 3015
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3026
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3027
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3028
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3038
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3050
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3051 3052 3053 3054 3055
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3056 3057
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3058
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3068
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3069
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3070
    l = Layer(
Z
zhangjinchao01 已提交
3071
        name=name,
C
chengduoZH 已提交
3072
        img3D=img3D,
Q
qijun 已提交
3073 3074
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3075 3076 3077 3078 3079 3080
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3081
        mean_var_names=mean_var_names,
Q
qijun 已提交
3082
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3083

Q
qijun 已提交
3084 3085 3086 3087 3088 3089 3090
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3112
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3113
    :type input: LayerOutput
3114
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3115 3116 3117
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3118
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3119 3120 3121 3122 3123 3124
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3125 3126 3127
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3128 3129


G
guosheng 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3148
    :param input: The input of this layer.
G
guosheng 已提交
3149
    :type input: LayerOutput
3150
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3166 3167 3168
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3169
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3170
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3193 3194 3195
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3196 3197

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3198 3199
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3200 3201
    Please refer to dropout_layer for details.

3202
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3203 3204 3205
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3206 3207
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3208
    :type act: BaseActivation
R
ranqiu 已提交
3209 3210 3211
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3212
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3213 3214
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3215
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3216 3217 3218 3219 3220 3221
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3222
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3223 3224 3225 3226 3227 3228 3229
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3230
    l = Layer(
Q
qijun 已提交
3231 3232 3233
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3234 3235
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3236
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3237

Q
qijun 已提交
3238 3239 3240 3241 3242 3243 3244
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3245 3246 3247 3248


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3249
@layer_support(DROPOUT, ERROR_CLIPPING)
3250
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3251 3252 3253 3254
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3255 3256 3257 3258 3259 3260
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3261
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3262 3263
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3264 3265
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3266 3267 3268
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3269
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3270 3271 3272 3273 3274 3275 3276 3277
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3278
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3279 3280

    def __is_type__(o, tp):
3281
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3303 3304
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3305

Q
qijun 已提交
3306 3307
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3308

3309 3310
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3311

3312
    layer = Layer(
Q
qijun 已提交
3313 3314
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3315 3316
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3317
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3318
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3319

3320
    sz = layer.config.size
Z
zhangjinchao01 已提交
3321

Q
qijun 已提交
3322 3323 3324 3325 3326 3327 3328 3329
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3330 3331
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3332
@wrap_bias_attr_default(has_bias=False)
3333
@layer_support(DROPOUT, ERROR_CLIPPING)
3334 3335 3336 3337
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3338

3339
    Inputs:
X
xuwei06 已提交
3340
      - a = [a1, a2, ..., am]
3341
      - b = [b1, b2, ..., bn]
3342

X
xuwei06 已提交
3343 3344 3345 3346
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3347 3348 3349 3350 3351 3352 3353

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3354
    :param name: The name of this layer. It is optional.
3355 3356 3357 3358 3359
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3360
    :param act: Activation type. IdentityActivation is the default.
3361 3362 3363
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3364 3365 3366
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3367
    :type bias_attr: ParameterAttribute | None | bool | Any
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3389
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3390 3391
def memory(name,
           size,
3392
           memory_name=None,
Q
qijun 已提交
3393 3394 3395 3396
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3417 3418 3419 3420 3421 3422 3423 3424 3425
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3426

3427 3428 3429 3430 3431 3432 3433
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3434 3435 3436
    :type name: basestring
    :param size: size of memory.
    :type size: int
3437 3438 3439
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3440
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3441 3442
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3443
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3444
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3445
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3446 3447 3448 3449
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3450
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3461 3462
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3463

3464 3465 3466 3467 3468 3469 3470 3471
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3472 3473

    lout = LayerOutput(
3474
        name=memory_name,
Q
qijun 已提交
3475 3476 3477
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3478 3479 3480 3481
    return lout


@wrap_bias_attr_default()
3482 3483
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3484 3485 3486
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3487 3488
def lstm_step_layer(input,
                    state,
3489
                    size=None,
Q
qijun 已提交
3490 3491 3492 3493 3494 3495
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3496
    """
3497 3498
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3499 3500 3501

    ..  math::

3502
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3503

3504
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3505

3506
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3507

3508
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3509

L
luotao02 已提交
3510
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3511 3512


L
luotao02 已提交
3513
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3514
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3515
    input vectors.
Z
zhangjinchao01 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3526 3527
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3528 3529
    :code:`get_output_layer` to extract this output.

3530
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3531
    :type name: basestring
3532 3533
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3534 3535 3536 3537 3538 3539
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3540
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3541
    :type act: BaseActivation
R
ranqiu 已提交
3542
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3543
    :type gate_act: BaseActivation
R
ranqiu 已提交
3544
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3545
    :type state_act: BaseActivation
R
ranqiu 已提交
3546 3547 3548
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3549
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3550 3551
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3552
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3553 3554
    :rtype: LayerOutput
    """
3555 3556 3557

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3558 3559 3560 3561 3562 3563 3564
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3565
        size=state.size,
Q
qijun 已提交
3566 3567
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3568

Q
qijun 已提交
3569 3570 3571 3572 3573 3574 3575
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3576 3577 3578


@wrap_bias_attr_default()
W
wangyang59 已提交
3579
@wrap_param_attr_default()
Q
qijun 已提交
3580
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3581 3582 3583
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3584 3585 3586 3587 3588 3589 3590
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3591
                   param_attr=None,
Q
qijun 已提交
3592
                   layer_attr=None):
Z
zhangjinchao01 已提交
3593 3594 3595 3596 3597 3598 3599
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3600
    :type act: BaseActivation
3601
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3602 3603
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3604 3605 3606
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3607
    :type bias_attr: ParameterAttribute | None | bool | Any
3608 3609
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3610
    :param layer_attr:
D
dangqingqing 已提交
3611
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3612 3613 3614 3615 3616 3617 3618 3619
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3620 3621 3622 3623
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3624
        # backward model compatibility.
3625
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3626 3627 3628 3629
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3630
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3631
    return LayerOutput(
Q
qijun 已提交
3632 3633
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3634
        parents=[input, output_mem],
Q
qijun 已提交
3635 3636
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3637 3638


Y
Yu Yang 已提交
3639 3640 3641 3642
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3643
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3661
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3662
    :param act:
R
ranqiu 已提交
3663 3664 3665
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3666 3667 3668
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3669
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3670 3671 3672
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3673
    :rtype: LayerOutput
Y
Yu Yang 已提交
3674 3675 3676 3677 3678 3679
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3680
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3681 3682 3683 3684
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3685

Y
Yu Yang 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3723 3724 3725 3726
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3727 3728 3729 3730
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3731

3732
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3733 3734 3735 3736 3737 3738 3739
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3740
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3741 3742 3743 3744 3745 3746 3747
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3748 3749 3750 3751 3752 3753 3754
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3755

Q
qijun 已提交
3756 3757 3758 3759 3760
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3761 3762 3763 3764 3765 3766 3767


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3768 3769 3770 3771 3772 3773 3774
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3775
    """
3776 3777
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3794
    :param input: The input of this layer.
3795
    :type input: LayerOutput
R
ranqiu 已提交
3796
    :param act: Activation type. TanhActivation is the default.
3797
    :type act: BaseActivation
R
ranqiu 已提交
3798 3799 3800
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3801
    :type bias_attr: ParameterAttribute | None | bool | Any
3802 3803
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3804
    :param name: The name of this layer. It is optional.
3805 3806 3807
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3808
    :return: LayerOutput object.
3809
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3810
    """
Q
qijun 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3826 3827 3828 3829 3830 3831


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3832 3833
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3834
    """
3835

Z
zhangjinchao01 已提交
3836 3837 3838
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3839
        assert input.size is not None
Z
zhangjinchao01 已提交
3840
        if size is not None:
3841
            assert input.size == size
Z
zhangjinchao01 已提交
3842 3843


3844
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3845
    """
3846
    DEPRECATED.
Z
zhangjinchao01 已提交
3847 3848 3849 3850 3851 3852 3853 3854
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3855
    return input
Z
zhangjinchao01 已提交
3856 3857 3858


@wrap_name_default("recurrent_group")
3859
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3860
    """
C
caoying03 已提交
3861 3862 3863 3864 3865
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3908
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3909

3910 3911
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3912
    :type reverse: bool
3913

3914 3915
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3916 3917 3918 3919 3920 3921 3922

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3923
    :type targetInlink: LayerOutput | SubsequenceInput
3924

D
dangqingqing 已提交
3925
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3926 3927 3928 3929
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3930
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3931
        input = [input]
3932
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3933 3934

    def is_in_links(x):
3935
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3936 3937 3938 3939

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3940
        name=name,
3941 3942
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3943 3944
    in_args = []
    for each_input in input:
3945
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3946
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3947
            mem = memory(
3948
                name=None,
Q
qijun 已提交
3949 3950
                size=each_input.input.size,
                boot_layer=each_input.input)
3951
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3952
            in_args.append(mem)
3953 3954
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3955

Z
zhangjinchao01 已提交
3956 3957 3958 3959 3960
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3961 3962 3963 3964 3965 3966
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3967 3968 3969

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3970
    for layer_out in layer_outs:
3971 3972
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3973 3974
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3975 3976 3977 3978 3979
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3980

Z
zhangjinchao01 已提交
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4009 4010

    def before_real_step(self):
Q
qijun 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4020 4021 4022
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4023
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4041
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4042
    :type input: LayerOutput
4043
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4044 4045 4046
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4048 4049 4050 4051
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4062

4063

H
Haonan 已提交
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4076
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4100

Z
zhangjinchao01 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4117
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4118
    :type name: basestring
R
ranqiu 已提交
4119
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4120 4121 4122 4123 4124
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4125
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4126 4127
    :rtype: LayerOutput
    """
Q
qijun 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4139 4140 4141


@wrap_name_default()
Q
qijun 已提交
4142 4143 4144 4145 4146 4147 4148
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4149
                num_results_per_sample=None):
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4161
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4162 4163 4164 4165
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4166 4167 4168 4169 4170
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4171 4172
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4173 4174
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4175 4176
                               bos_id=0,
                               eos_id=1,
4177
                               beam_size=5)
4178 4179 4180 4181 4182 4183 4184 4185 4186

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4187
                 step, and it is applied to sequences with arbitrary length by
4188 4189 4190 4191 4192
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4193 4194
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4195
                  In beam_search, none of the input's type should be LayerOutput.
4196
    :type input: list
4197 4198 4199
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4200
                   symbol is essential, since it is used to initialize the RNN
4201 4202 4203 4204 4205 4206 4207 4208
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4209 4210
    :param max_length: Max generated sequence length.
    :type max_length: int
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4221 4222
    :return: The generated word index.
    :rtype: LayerOutput
4223 4224
    """

Z
zhangjinchao01 已提交
4225 4226 4227 4228 4229
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4230
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4231 4232 4233 4234 4235 4236
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4237 4238 4239
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4240
        if isinstance(each_input, BaseGeneratedInput):
4241 4242
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4243
            generated_input_index = i
4244

Z
zhangjinchao01 已提交
4245 4246 4247
        else:
            real_input.append(each_input)

4248
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4249 4250 4251 4252 4253 4254 4255 4256

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4257 4258 4259 4260 4261 4262
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4263 4264 4265 4266 4267 4268

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4269
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4270 4271
        return predict

4272 4273
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4274

Q
qijun 已提交
4275

4276 4277
def __cost_input__(input, label, weight=None):
    """
4278
    inputs and parents for cost layers.
4279
    """
C
caoying03 已提交
4280 4281 4282 4283 4284 4285
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4286
    if weight is not None:
4287
        assert weight.size == 1
4288 4289 4290
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4291

Z
zhangjinchao01 已提交
4292 4293

@wrap_name_default()
L
luotao1 已提交
4294
@layer_support()
4295 4296 4297 4298 4299 4300
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4301
    """
4302
    sum of square error cost:
L
Luo Tao 已提交
4303 4304 4305

    ..  math::

4306
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4307

4308
    :param name: The name of this layer. It is optional.
4309
    :type name: basestring
Z
zhangjinchao01 已提交
4310
    :param input: Network prediction.
4311
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4312
    :param label: Data label.
4313 4314 4315 4316
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4317 4318
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4319 4320
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4321
    :return: LayerOutput object.
4322
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4323
    """
4324 4325
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4326 4327 4328 4329
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4330
        coeff=coeff,
Q
qijun 已提交
4331
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4332
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4333 4334


4335
regression_cost = square_error_cost
L
Luo Tao 已提交
4336 4337


Z
zhangjinchao01 已提交
4338
@wrap_name_default("cost")
4339
@layer_support()
Q
qijun 已提交
4340 4341 4342 4343
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4344
                        evaluator=classification_error_evaluator,
4345 4346
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4347 4348 4349
    """
    classification cost Layer.

4350
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4351 4352 4353 4354 4355
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4356 4357 4358
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4359
    :param evaluator: Evaluator method.
4360 4361
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4362 4363
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4364
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4365 4366 4367 4368 4369
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4370 4371 4372

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4373 4374 4375 4376
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4377
        coeff=coeff,
Q
qijun 已提交
4378
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4389
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4390

4391
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4392 4393 4394 4395 4396
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4397
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4398

4399

Q
qijun 已提交
4400 4401 4402 4403 4404 4405 4406 4407 4408
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4409 4410
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4421 4422
       op = conv_operator(img=input1,
                          filter=input2,
4423
                          filter_size=3,
Z
zhangjinchao01 已提交
4424 4425 4426
                          num_filters=64,
                          num_channels=64)

4427 4428 4429 4430
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4431 4432
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4433 4434 4435
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4436
    :type filter_size_y: int
4437 4438
    :param num_filters: channel of output data.
    :type num_filters: int
4439 4440
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4441
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4442
    :type stride: int
Z
zhangjinchao01 已提交
4443
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4444
    :type stride_y: int
Z
zhangjinchao01 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4458

4459 4460
    if num_channels is None:
        num_channels = img.num_filters
4461 4462

    assert isinstance(filter, LayerOutput)
4463
    assert filter.size is not None
4464

4465 4466 4467
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4479

4480
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4481 4482
    return op

Q
qijun 已提交
4483

4484
@wrap_param_attr_default()
Q
qijun 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4495 4496
                    param_attr=None,
                    trans=False):
4497 4498 4499 4500 4501 4502 4503 4504 4505
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4506
       proj = conv_projection(input=input1,
4507 4508 4509 4510
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4511
    :param input: The input of this layer.
4512 4513 4514 4515 4516 4517 4518 4519 4520
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4521 4522
    :param num_channels: channel of input data.
    :type num_channels: int
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4535
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4536
    :type trans: bool
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4567
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4568 4569 4570 4571 4572
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4573 4574 4575
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4588 4589 4590 4591

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4592

D
dangqingqing 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4610

D
dangqingqing 已提交
4611
    For example,
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4634 4635

    The simply usage is:
D
dangqingqing 已提交
4636 4637 4638 4639 4640 4641 4642 4643

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4644
    :param input: The input of this layer.
D
dangqingqing 已提交
4645 4646
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4647
    :type pad_c: list | None
D
dangqingqing 已提交
4648
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4649
    :type pad_h: list | None
D
dangqingqing 已提交
4650
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4651
    :type pad_w: list | None
D
dangqingqing 已提交
4652 4653
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4654
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4697
@wrap_name_default()
L
luotao1 已提交
4698 4699
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4711 4712 4713 4714
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4715 4716 4717 4718 4719

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4720
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4721

4722
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4723
    :type name: basestring
4724 4725
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4726
    :param b: input layer b.
4727
    :type b: LayerOutput
L
luotao1 已提交
4728 4729
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4730
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4731 4732
    :rtype: LayerOutput
    """
4733 4734
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4735 4736 4737
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4738
        inputs=[a.name, b.name],
Q
qijun 已提交
4739
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4740

Q
qijun 已提交
4741 4742
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4743 4744 4745 4746 4747


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4748
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4749
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4750 4751 4752 4753 4754 4755 4756 4757
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4758 4759 4760 4761 4762
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4763
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4764 4765

    In this formular:
4766 4767
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4768 4769
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4770
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4771 4772 4773 4774 4775

    The simple usage is:

    .. code-block:: python

4776
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4777

4778
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4779
    :type name: basestring
4780 4781 4782 4783
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4784
    :param size: the layer dimension.
L
luotao02 已提交
4785
    :type size: int.
R
ranqiu 已提交
4786
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4787 4788
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4789
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4790 4791 4792
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4793
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4794
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4795
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4796
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4797 4798
    :rtype: LayerOutput
    """
4799
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4800 4801 4802 4803 4804 4805
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4806 4807 4808 4809
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4810 4811 4812 4813 4814 4815


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4816
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4817 4818
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4819
                       select=None,
Q
qijun 已提交
4820 4821
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4822 4823 4824
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4825 4826 4827
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4838
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4839

4840
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4841
    :type name: basestring
R
ranqiu 已提交
4842 4843
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4844 4845
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4846
                   If is None, acts exactly like fc_layer.
4847
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4848 4849
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4850
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4851 4852 4853
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4854 4855 4856
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4857
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4858
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4859
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4860
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4861 4862 4863 4864
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4865
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4866 4867
        param_attr = [param_attr]
    else:
4868
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4869 4870
            assert len(input) == len(param_attr)
        else:
4871
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4872
                logger.fatal(
W
wangmeng28 已提交
4873 4874 4875 4876 4877
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4878 4879
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4880 4881 4882 4883
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4884
    Layer(
Q
qijun 已提交
4885 4886 4887
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4888 4889 4890
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4891
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4892 4893 4894 4895
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4896 4897 4898 4899 4900 4901 4902
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4903 4904 4905


@wrap_name_default()
L
luotao1 已提交
4906 4907
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4918
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4919
    :type input: LayerOutput
4920
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4921
    :type name: basestring
L
luotao1 已提交
4922
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4923
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4924
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4925 4926
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4927
    l = Layer(
Z
zhangjinchao01 已提交
4928 4929 4930
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4931 4932 4933
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4934 4935 4936


@wrap_name_default()
L
luotao1 已提交
4937
@layer_support()
Q
qijun 已提交
4938 4939 4940 4941
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4942
                          layer_attr=None):
Z
zhangjinchao01 已提交
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4956
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4957
    :type input: LayerOutput
4958
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4959 4960 4961 4962 4963
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4964
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4965
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4966
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4967 4968 4969 4970 4971 4972 4973 4974
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4975 4976 4977
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4978 4979 4980


@wrap_name_default()
L
luotao1 已提交
4981
@layer_support()
Q
qijun 已提交
4982
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4983
    """
4984 4985 4986 4987
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4988 4989 4990

    .. math::

4991
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4992

4993 4994 4995 4996 4997
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4998

4999
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5000 5001

    In this formular:
5002 5003 5004 5005 5006 5007
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5008 5009 5010 5011 5012

    The simple usage is:

    .. code-block:: python

5013
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5014 5015
                                       size=elem_dim)

5016 5017 5018 5019
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5020 5021
    :param size: the dimension of this layer.
    :type size: int
5022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5023
    :type name: basestring
L
luotao1 已提交
5024
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5025
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5026
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5027 5028
    :rtype: LayerOutput
    """
5029 5030 5031 5032
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5033
            size = vectors.size / weights.size
5034 5035
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5036 5037
    Layer(
        name=name,
5038
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5039
        size=size,
5040
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5041 5042 5043
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5044

5045

5046
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5047

5048

Z
zhangjinchao01 已提交
5049
@wrap_name_default()
L
luotao1 已提交
5050
@layer_support()
Z
zhangjinchao01 已提交
5051 5052 5053 5054 5055 5056 5057
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5058
                       num_channels=None,
L
luotao1 已提交
5059 5060
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5061 5062
    """
    Expand feature map to minibatch matrix.
5063
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5064
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5075
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5076 5077
    convolution neural network, and before recurrent neural network.

5078 5079 5080 5081
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5082
       block_expand = block_expand_layer(input=layer,
5083
                                         num_channels=128,
5084 5085 5086 5087 5088
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5089
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5090
    :type input: LayerOutput
5091
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5092
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5105
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5106
    :type name: None | basestring.
L
luotao1 已提交
5107
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5108
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5109
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5110 5111
    :rtype: LayerOutput
    """
5112 5113 5114
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5132 5133


5134 5135
@wrap_name_default()
@layer_support()
5136
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5137 5138 5139 5140 5141
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5142
    So groups should be larger than 1, and the num of channels should be able
5143 5144
    to devided by groups.

X
xuwei06 已提交
5145 5146 5147 5148 5149 5150 5151 5152
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5153
    Please refer to Paper:
5154 5155 5156 5157
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5158

5159 5160 5161 5162 5163 5164 5165 5166
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5167
    :param input: The input of this layer.
5168 5169 5170
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5171
    :type num_channels: int | None
5172 5173
    :param groups: The group number of input layer.
    :type groups: int
5174
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5175
    :type name: None | basestring.
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5196 5197


Z
zhangjinchao01 已提交
5198
@wrap_name_default()
L
luotao1 已提交
5199
@layer_support()
Q
qijun 已提交
5200 5201 5202 5203 5204
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5205
              layer_attr=None):
Z
zhangjinchao01 已提交
5206 5207 5208 5209 5210
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5211 5212
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5213 5214
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5215 5216 5217 5218 5219 5220 5221 5222

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5223
    The example usage is:
Z
zhangjinchao01 已提交
5224 5225 5226 5227 5228 5229 5230 5231

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5232
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5233 5234 5235
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5236
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5237
    :type size: int
5238
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5239
    :type name: basestring | None
Z
zhangjinchao01 已提交
5240 5241
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5242
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5243
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5244
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5245 5246 5247 5248
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5249 5250 5251 5252 5253
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5254
    Layer(
5255 5256 5257 5258
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5259
        inputs=[input.name, label.name],
Q
qijun 已提交
5260
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5261 5262
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5263

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5275
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5276
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5277 5278 5279 5280 5281 5282 5283
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5284 5285 5286
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5287
    icml2006_GravesFGS06.pdf>`_.
5288 5289 5290

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5291 5292 5293
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5294 5295
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5296
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5297
          'linear' activation is expected instead in the 'input' layer.
5298

C
caoying03 已提交
5299
    The example usage is:
5300 5301 5302 5303 5304 5305 5306 5307 5308

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5309
    :param input: The input of this layer.
5310 5311 5312 5313 5314
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5315
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5316
    :type name: basestring | None
5317 5318 5319 5320 5321
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5322
    :type layer_attr: ExtraLayerAttribute | None
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5345
@wrap_name_default()
5346
@wrap_param_attr_default()
L
luotao1 已提交
5347
@layer_support()
Q
qijun 已提交
5348 5349 5350 5351 5352 5353
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5354
              coeff=1.0,
L
luotao1 已提交
5355
              layer_attr=None):
Z
zhangjinchao01 已提交
5356 5357 5358 5359
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5360
    The example usage is:
Z
zhangjinchao01 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5371
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5372 5373 5374 5375 5376 5377 5378
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5379
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5380
    :type name: None | basestring
5381 5382
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5383
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5384
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5385
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5386 5387 5388 5389 5390
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5391 5392 5393 5394 5395 5396
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5397

Q
qijun 已提交
5398
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5399 5400 5401 5402
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5403 5404 5405 5406
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5407
        coeff=coeff,
Q
qijun 已提交
5408
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5409 5410 5411
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5412 5413 5414 5415
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5416

5417

Z
zhangjinchao01 已提交
5418
@wrap_name_default()
5419
@wrap_param_attr_default()
L
luotao1 已提交
5420
@layer_support()
Q
qijun 已提交
5421 5422 5423 5424 5425
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5426
                       layer_attr=None):
Z
zhangjinchao01 已提交
5427 5428 5429 5430 5431 5432 5433
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5434
    The example usage is:
L
Luo Tao 已提交
5435 5436 5437 5438 5439 5440

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5441 5442 5443 5444 5445 5446 5447 5448
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5449
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5450
    :type name: None | basestring
L
luotao1 已提交
5451
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5452
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5453
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5454 5455 5456 5457 5458 5459
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5460
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5461 5462 5463 5464
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5465 5466 5467 5468
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5469
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5470 5471 5472
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5473 5474 5475 5476
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5477

Q
qijun 已提交
5478

Y
Yu Yang 已提交
5479
@wrap_act_default(act=SigmoidActivation())
5480
@wrap_bias_attr_default(has_bias=True)
5481
@wrap_param_attr_default()
5482 5483
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5484 5485
def nce_layer(input,
              label,
C
caoying03 已提交
5486
              num_classes=None,
Y
Yu Yang 已提交
5487
              act=None,
5488
              param_attr=None,
Q
qijun 已提交
5489 5490 5491 5492 5493 5494
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5495 5496 5497 5498 5499 5500 5501 5502 5503
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5504 5505
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5506 5507
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5508
    :param name: The name of this layer. It is optional.
5509
    :type name: basestring
R
ranqiu 已提交
5510
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5511
    :type input: LayerOutput | list | tuple | collections.Sequence
5512 5513 5514 5515 5516
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5517
    :type num_classes: int
R
ranqiu 已提交
5518
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5519
    :type act: BaseActivation
5520 5521
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5522
    :param num_neg_samples: number of negative samples. Default is 10.
5523
    :type num_neg_samples: int
5524 5525 5526
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5527
    :type neg_distribution: list | tuple | collections.Sequence | None
R
ranqiu 已提交
5528 5529 5530
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
5531
    :type bias_attr: ParameterAttribute | None | bool | Any
5532 5533 5534 5535 5536 5537 5538
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5539 5540 5541 5542 5543 5544 5545 5546
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5547
    assert isinstance(input, collections.Sequence)
5548

5549 5550
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5551 5552
    if num_classes is None:
        num_classes = label.size
5553 5554 5555
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5556
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5557 5558
    if not isinstance(act, BaseActivation):
        raise TypeError()
5559

5560 5561
    ipts_for_layer = []
    parents = []
5562
    for each_input, attr in zip(input, param_attr):
5563
        assert isinstance(each_input, LayerOutput)
5564
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5575
    l = Layer(
5576 5577 5578 5579
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5580
        active_type=act.name,
5581 5582 5583
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5584 5585
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5586 5587 5588 5589 5590
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5591

5592

Z
zhangjinchao01 已提交
5593 5594 5595
"""
following are cost Layers.
"""
5596 5597


Z
zhangjinchao01 已提交
5598
@wrap_name_default()
L
luotao1 已提交
5599
@layer_support()
Q
qijun 已提交
5600 5601 5602 5603 5604 5605 5606
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5607
    """
5608
    A cost Layer for learning to rank using gradient descent. Details can refer
5609 5610
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5611 5612 5613 5614 5615
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5616
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5617

L
luotao02 已提交
5618
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5619

L
luotao02 已提交
5620
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5621 5622 5623 5624 5625 5626 5627 5628

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5629
    The example usage is:
Z
zhangjinchao01 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5646
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5647
    :type name: None | basestring
Z
zhangjinchao01 已提交
5648 5649
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5650 5651
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5652
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5665 5666 5667 5668 5669 5670
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5671

X
xuwei06 已提交
5672
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5673

5674

Z
zhangjinchao01 已提交
5675
@wrap_name_default()
L
luotao1 已提交
5676
@layer_support()
Q
qijun 已提交
5677 5678 5679 5680 5681 5682
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5683 5684 5685
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5686
    The example usage is:
Z
zhangjinchao01 已提交
5687 5688 5689 5690 5691 5692 5693 5694

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5695
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5696 5697 5698 5699
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5700
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5701 5702 5703 5704 5705 5706
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5707 5708 5709
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5710
    :type max_sort_size: int
R
ranqiu 已提交
5711
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5712
    :type name: None | basestring
L
luotao1 已提交
5713 5714
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5715
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5716 5717
    :rtype: LayerOutput
    """
5718 5719 5720
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5721 5722 5723 5724 5725 5726 5727
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5728

Q
qijun 已提交
5729 5730
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5731

5732

Z
zhangjinchao01 已提交
5733
@wrap_name_default()
L
luotao1 已提交
5734
@layer_support()
5735 5736 5737 5738 5739 5740
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5741 5742 5743
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5744 5745
    The example usage is:

Z
zhangjinchao01 已提交
5746 5747
    .. code-block:: python

X
xuwei06 已提交
5748
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5749
                            label=label_layer)
Z
zhangjinchao01 已提交
5750 5751 5752 5753

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5754
    :type input: LayerOutput
R
ranqiu 已提交
5755
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5756 5757 5758 5759
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5760 5761 5762 5763
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5764 5765
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5766
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5767
    :return: LayerOutput object.
R
ranqiu 已提交
5768
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5769 5770
    """

5771
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5772 5773 5774
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5775
        inputs=ipts,
Q
qijun 已提交
5776 5777
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5778
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5779

5780

Z
zhangjinchao01 已提交
5781
@wrap_name_default()
L
luotao1 已提交
5782
@layer_support()
Q
qijun 已提交
5783 5784 5785 5786
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5787 5788
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5789 5790
    """
    A loss layer for multi class entropy with selfnorm.
5791
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5792

C
caoying03 已提交
5793 5794
    The example usage is:

Z
zhangjinchao01 已提交
5795 5796
    .. code-block:: python

X
xuwei06 已提交
5797
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5798
                                          label=label_layer)
Z
zhangjinchao01 已提交
5799 5800

    :param input: The first input layer.
R
ranqiu 已提交
5801
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5802
    :param label: The input label.
R
ranqiu 已提交
5803
    :type input: LayerOutput
R
ranqiu 已提交
5804
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5805 5806 5807 5808
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5809
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5810 5811 5812
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5813
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5814
    :return: LayerOutput object.
R
ranqiu 已提交
5815
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5816
    """
Q
qijun 已提交
5817 5818 5819 5820 5821 5822 5823
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5824

Q
qijun 已提交
5825 5826 5827 5828 5829
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5830

5831

X
xuwei06 已提交
5832 5833 5834 5835
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5836
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5837

C
caoying03 已提交
5838 5839
    The example usage is:

X
xuwei06 已提交
5840 5841
    .. code-block:: python

L
Luo Tao 已提交
5842
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5843

R
ranqiu 已提交
5844
    :param input: The input of this layer.
R
ranqiu 已提交
5845
    :type input: LayerOutput
R
ranqiu 已提交
5846
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5847 5848 5849
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5850 5851 5852 5853
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5854
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5855 5856 5857 5858 5859
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5860

Q
qijun 已提交
5861
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5862 5863


Z
zhangjinchao01 已提交
5864
@wrap_name_default()
L
luotao1 已提交
5865
@layer_support()
L
Luo Tao 已提交
5866 5867 5868 5869 5870 5871
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5872
    """
5873 5874 5875
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5876 5877 5878 5879 5880
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5881

C
caoying03 已提交
5882 5883
    The example usage is:

Z
zhangjinchao01 已提交
5884 5885
    .. code-block:: python

L
Luo Tao 已提交
5886 5887 5888
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
5889
    :type input: LayerOutput
L
Luo Tao 已提交
5890
    :param label: The input label.
R
ranqiu 已提交
5891
    :type input: LayerOutput
R
ranqiu 已提交
5892
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5893
    :type name: basestring
L
Luo Tao 已提交
5894
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5895 5896 5897 5898 5899 5900
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5917
@wrap_name_default()
L
luotao1 已提交
5918
@layer_support()
5919 5920 5921 5922 5923
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5924
    """
5925 5926 5927
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5928 5929 5930
    loss is defined as:

    .. math:
5931
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5932
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5933

C
caoying03 已提交
5934 5935
    The example usage is:

Z
zhangjinchao01 已提交
5936 5937
    .. code-block:: python

5938
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5939 5940

    :param input: The first input layer.
R
ranqiu 已提交
5941
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5942
    :param label: The input label.
R
ranqiu 已提交
5943
    :type input: LayerOutput
R
ranqiu 已提交
5944
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5945 5946 5947 5948 5949 5950
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5951
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5952
    :return: LayerOutput object.
R
ranqiu 已提交
5953
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5954
    """
5955 5956 5957
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5958 5959
    Layer(
        name=name,
5960
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5961 5962 5963
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5964 5965
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5966

5967

Z
zhangjinchao01 已提交
5968
@wrap_name_default()
L
luotao1 已提交
5969
@layer_support()
Q
qijun 已提交
5970 5971 5972 5973
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5974
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5975 5976 5977
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5978 5979
    The example usage is:

Z
zhangjinchao01 已提交
5980 5981
    .. code-block:: python

X
xuwei06 已提交
5982
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5983
                                               label=label_layer)
Z
zhangjinchao01 已提交
5984 5985 5986 5987 5988

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5989
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5990 5991 5992
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
5993
    :type coeff: float
R
ranqiu 已提交
5994 5995
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5996
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5997
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5998 5999 6000
    :rtype: LayerOutput
    """

6001 6002
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6003 6004 6005 6006
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6019 6020


C
caoying03 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6043 6044
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6045
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6046
    """
C
caoying03 已提交
6047 6048 6049
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6050

C
caoying03 已提交
6051 6052 6053 6054 6055
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6056

C
caoying03 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6075
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6096
    :param input: Input beams for this layer.
C
caoying03 已提交
6097
    :type input: BeamInput
R
ranqiu 已提交
6098
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6125 6126 6127
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6128 6129
@wrap_name_default()
@layer_support()
6130
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6131 6132
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6133
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6143
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6144

R
ranqiu 已提交
6145 6146 6147
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6148

C
caoying03 已提交
6149 6150
    The example usage is:

D
dangqingqing 已提交
6151 6152
    .. code-block:: python

6153 6154
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6155 6156 6157 6158 6159

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6160
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6161
    :type name: basestring
R
ranqiu 已提交
6162 6163
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
6164
    :type coeff: float
R
ranqiu 已提交
6165 6166
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6179
        coeff=coeff,
D
dangqingqing 已提交
6180 6181 6182
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6183 6184 6185 6186 6187


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6188 6189 6190
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6191
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6192 6193
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6194 6195 6196 6197 6198 6199 6200 6201

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6202 6203
    The example usage is:

W
wwhu 已提交
6204 6205 6206 6207 6208 6209
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6210
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6211
    :type name: basestring
R
ranqiu 已提交
6212 6213
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6237 6238


6239 6240 6241 6242
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6243 6244 6245 6246 6247 6248
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6249
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6250
    :type name: basestring
R
ranqiu 已提交
6251
    :param input: The input of this layer.
R
ranqiu 已提交
6252 6253 6254 6255 6256
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6257 6258 6259 6260 6261 6262 6263
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6264 6265


D
dangqingqing 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6279
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6280 6281 6282 6283 6284 6285 6286
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6287
    efficient manner to improve unidirectional RNNs.
6288

R
ranqiu 已提交
6289
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6290 6291 6292 6293
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6294

D
dangqingqing 已提交
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6310
    :param input: The input of this layer.
D
dangqingqing 已提交
6311 6312 6313 6314
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6315
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6316
    :type act: BaseActivation
R
ranqiu 已提交
6317 6318
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6319
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6320 6321
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6322
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6338 6339


6340 6341 6342 6343 6344 6345 6346 6347 6348
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6349
    The Parametric Relu activation that actives outputs with a learnable weight.
6350 6351 6352 6353 6354 6355 6356 6357 6358

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6359 6360 6361 6362 6363 6364
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6365
    :param name: The name of this layer. It is optional.
6366
    :type name: basestring
R
ranqiu 已提交
6367
    :param input: The input of this layer.
6368
    :type input: LayerOutput
R
ranqiu 已提交
6369
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6370 6371

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6372 6373
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6374 6375

    :type partial_sum: int
6376
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6377 6378 6379
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6380
    :type layer_attr: ExtraLayerAttribute | None
6381 6382 6383 6384
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6385
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6386
    assert isinstance(param_attr, ParameterAttribute)
6387 6388 6389

    l = Layer(
        name=name,
C
caoying03 已提交
6390
        type=LayerType.PRELU,
C
caoying03 已提交
6391
        inputs=Input(input.name, **param_attr.attr),
6392 6393 6394 6395 6396 6397 6398
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6399 6400


6401
@wrap_name_default()
C
caoying03 已提交
6402
@layer_support(ERROR_CLIPPING, DROPOUT)
6403 6404 6405 6406 6407 6408 6409
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6410 6411
                     gate_bias_attr=True,
                     inproj_attr=None,
6412 6413 6414 6415 6416 6417 6418
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6419
    product between :match:`X'` and :math:`\sigma` is finally returned.
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6433
    :param input: The input of this layer.
6434
    :type input: LayerOutput
R
ranqiu 已提交
6435
    :param size: The dimension of this layer's output.
6436
    :type size: int
R
ranqiu 已提交
6437
    :param act: Activation type of the projection. LinearActivation is the default.
6438
    :type act: BaseActivation
6439
    :param name: The name of this layer. It is optional.
6440
    :type name: basestring
R
ranqiu 已提交
6441 6442
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6443
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6444 6445 6446
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
R
ranqiu 已提交
6447 6448 6449
    :param gate_bias_attr: The bias attribute of the gate. If the parameter is set to False or
                           an object whose type is not ParameterAttribute, no bias is defined.
                           If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6450 6451 6452
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6453
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6454 6455 6456
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
R
ranqiu 已提交
6457 6458 6459
    :param inproj_bias_attr: The bias attribute of the projection. If the parameter is set to False
                             or an object whose type is not ParameterAttribute, no bias is defined.
                             If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6460 6461 6462
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6463
    :type layer_attr: ExtraLayerAttribute | None
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6476
        layer_attr=inproj_attr,
6477 6478 6479 6480 6481 6482 6483 6484 6485
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6486
        param_attr=gate_param_attr,
6487 6488 6489 6490 6491
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6492 6493


6494
@layer_support()
6495
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6496 6497
def switch_order_layer(input,
                       name=None,
6498
                       reshape_axis=None,
W
wanghaoshuang 已提交
6499 6500
                       act=None,
                       layer_attr=None):
6501
    """
6502
    This layer switch dimension order of image input.
6503 6504
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6505 6506 6507 6508

    The example usage is:

    .. code-block:: python
6509 6510
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6511
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6512

R
ranqiu 已提交
6513
    :param input: The input of this layer.
6514
    :type input: LayerOutput
6515
    :param name: The name of this layer. It is optional.
6516
    :type name: basestring
R
ranqiu 已提交
6517 6518
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6519 6520 6521
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6522
    assert isinstance(input, LayerOutput)
6523 6524 6525 6526 6527
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6528 6529
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6530
        inputs=input.name,
6531 6532
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6533
        active_type=act.name,
6534 6535 6536
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6537
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6538
        activation=act,
6539 6540
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6541 6542


6543 6544
@wrap_name_default()
@layer_support()
6545
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6546
    """
R
ranqiu 已提交
6547 6548 6549
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6550

6551 6552 6553
    The example usage is:

    .. code-block:: python
W
whs 已提交
6554
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6555

R
ranqiu 已提交
6556 6557
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6558 6559
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6560
    :type offset: Sequence
R
ranqiu 已提交
6561
    :param axis: The start axis to be cropped. For image input layer:
6562 6563 6564 6565
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6566 6567
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6568
    :type shape: Sequence | None
6569
    :param name: The name of this layer. It is optional.
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6591 6592


C
caoying03 已提交
6593 6594
@wrap_name_default()
@layer_support()
6595
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6596
    """
6597
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6598
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6599

C
caoying03 已提交
6600 6601 6602
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6603 6604 6605 6606

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6607

R
ranqiu 已提交
6608
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6609

C
caoying03 已提交
6610

R
ranqiu 已提交
6611
    :param input: The input of this layer. It is a nested sequence.
6612
    :type input: LayerOutput
R
ranqiu 已提交
6613
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6614
    :type input: LayerOutput
6615
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6616 6617 6618 6619
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6620

6621 6622 6623 6624 6625 6626 6627
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6628
    l = Layer(
6629 6630
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6631 6632 6633 6634 6635 6636 6637
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6638 6639


G
guosheng 已提交
6640
@wrap_name_default("clip")
6641
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6642 6643 6644 6645 6646 6647 6648 6649 6650
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6651
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6652

6653
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6654
    :type name: basestring
R
ranqiu 已提交
6655
    :param input: The input of this layer.
G
guosheng 已提交
6656
    :type input: LayerOutput.
6657
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6658
    :type min: float
6659
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6660
    :type max: float
6661 6662
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6663 6664 6665 6666 6667
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6668 6669
        min=min,
        max=max)
G
guosheng 已提交
6670 6671
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6672 6673


6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6698
    :param name: The name of this layer. It is optional.
6699
    :type name: basestring
R
ranqiu 已提交
6700
    :param input: The input of this layer, which should be a sequence.
6701
    :type input: LayerOutput
R
ranqiu 已提交
6702
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6703
    :type starts: LayerOutput | None
R
ranqiu 已提交
6704
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6705
    :type ends: LayerOutput | None
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6737 6738


6739 6740
@wrap_name_default()
@layer_support()
6741
def kmax_seq_score_layer(input, name=None, beam_size=1):
6742
    """
R
ranqiu 已提交
6743
    This layer accepts one input which is scores over a sequence or a nested
6744 6745 6746 6747
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6748
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6749 6750


6751
    :param name: The name of this layer. It is optional.
6752
    :type name: basestring
R
ranqiu 已提交
6753 6754
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6755
    :type input: LayerOutput
R
ranqiu 已提交
6756 6757
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6758 6759 6760
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6761
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6762
                                            "accepts only one input.")
6763
    assert input.size == 1, (
6764
        "input of kmax_seq_score_layer is a score "
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6775 6776


6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6803
        conv = img_conv3d_layer(input=data, filter_size=1,
6804 6805 6806 6807 6808
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6809
    :param name: The name of this layer. It is optional.
6810
    :type name: basestring
R
ranqiu 已提交
6811
    :param input: The input of this layer.
6812
    :type input: LayerOutput
R
ranqiu 已提交
6813 6814
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6815
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6816 6817
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6818
    :param act: Activation type. ReluActivation is the default.
6819
    :type act: BaseActivation
R
ranqiu 已提交
6820
    :param groups: The number of the filter groups.
6821
    :type groups: int
R
ranqiu 已提交
6822 6823
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6824
    :type stride: int | tuple | list
R
ranqiu 已提交
6825 6826
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6827
    :type padding: int | tuple | list
R
ranqiu 已提交
6828 6829 6830
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6831
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6832 6833 6834
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6835
    :type num_channels: int
R
ranqiu 已提交
6836 6837
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6838
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6839
    :param shared_biases: Whether biases will be shared between filters or not.
6840
    :type shared_biases: bool
R
ranqiu 已提交
6841 6842
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6843
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6844
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6845
    :type trans: bool
R
ranqiu 已提交
6846 6847 6848 6849
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6850 6851 6852 6853 6854 6855 6856
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6857 6858 6859 6860 6861 6862
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6863

C
chengduoZH 已提交
6864 6865 6866 6867 6868 6869
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6870

C
chengduoZH 已提交
6871 6872 6873 6874 6875 6876
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6923 6924


G
guosheng 已提交
6925 6926 6927 6928 6929
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6930
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
6931
    the input matrix. For each element, the layer first re-scales it and then
6932 6933
    adds a bias to it.

X
xuwei06 已提交
6934
    This layer is very like the SlopeInterceptLayer, except the scale and
6935 6936
    bias are trainable.

G
guosheng 已提交
6937 6938 6939 6940 6941 6942 6943 6944
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6945
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6946
    :type name: basestring
R
ranqiu 已提交
6947 6948
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
6949 6950
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
6951
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6952 6953 6954
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6955
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6966 6967 6968 6969 6970 6971 6972 6973 6974


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6975
    :param input: The input of this layer.
6976 6977 6978
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6979
    :param size: The resized output dimension of this layer.
6980 6981 6982 6983 6984 6985
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7005 7006
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7007
    :type offsets: LayerOutput
R
ranqiu 已提交
7008
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7009
    :type sizes: LayerOutput
R
ranqiu 已提交
7010
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7011
    :type act: BaseActivation.
R
ranqiu 已提交
7012 7013 7014
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)