layers.py 237.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
125
    'roi_pool_layer',
Q
qijun 已提交
126
    'spp_layer',
D
dangqingqing 已提交
127
    'pad_layer',
L
Luo Tao 已提交
128
    'eos_layer',
129
    'smooth_l1_cost',
130
    'layer_support',
W
wwhu 已提交
131
    'multiplex_layer',
D
dangqingqing 已提交
132
    'row_conv_layer',
133
    'dropout_layer',
134
    'prelu_layer',
135
    'switch_order_layer',
136
    'gated_unit_layer',
137
    'crop_layer',
138
    'sub_nested_seq_layer',
139
    'clip_layer',
140
    'slice_projection',
141
    'seq_slice_layer',
142
    'kmax_seq_score_layer',
C
chengduoZH 已提交
143
    'img_pool3d_layer',
G
guosheng 已提交
144
    'scale_shift_layer',
C
chengduoZH 已提交
145
    'img_conv3d_layer',
146
    'resize_layer',
Y
yangyaming 已提交
147
    'sub_seq_layer',
Y
yangyaming 已提交
148
    'scale_sub_region_layer',
Q
qijun 已提交
149
]
Z
zhangjinchao01 已提交
150 151 152 153 154 155 156


class LayerType(object):
    """
    Layer type enumerations.
    """

157 158 159 160 161 162 163 164
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
165
    POOLING_AVG = 'average'
166
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
167
    COST = 'cost'
168 169
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
170
    HSIGMOID = 'hsigmoid'
171 172 173 174 175
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
176
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
177
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
178
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
179 180 181
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
182
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
183 184 185 186
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
187
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
195
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
196 197 198
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
199
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
200
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
201
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
213
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
214
    BLOCK_EXPAND = "blockexpand"
215
    MAXOUT = "maxout"
Q
qijun 已提交
216
    SPP_LAYER = "spp"
D
dangqingqing 已提交
217
    PAD_LAYER = "pad"
W
wwhu 已提交
218
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
219
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
220 221 222

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
223 224
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
225
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
226 227 228 229 230

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
231
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
232

233 234 235
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

236 237
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
238
    HUBER_REGRESSION = 'huber_regression'
239
    HUBER_CLASSIFICATION = 'huber_classification'
240 241
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
242
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
243 244 245 246 247 248
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
249
    SWITCH_ORDER_LAYER = 'switch_order'
250
    CROP_LAYER = 'crop'
C
caoying03 已提交
251
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
252
    CLIP_LAYER = 'clip'
253
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
254

255
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
256
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
257

258
    RESIZE = 'resize'
Y
yangyaming 已提交
259
    SUB_SEQ_LAYER = 'subseq'
260

Y
yangyaming 已提交
261
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
283
    """
L
Luo Tao 已提交
284
    PaddlePaddle supports three sequence types:
285 286 287

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
288 289
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
290

L
Luo Tao 已提交
291
    Accordingly, AggregateLevel supports two modes:
292

L
Luo Tao 已提交
293
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
294
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
295 296
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
298 299 300
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
301 302
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
303 304 305
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
328
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
329 330
    """

Q
qijun 已提交
331 332 333 334 335 336 337 338 339
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
340
                 reverse=None):
Z
zhangjinchao01 已提交
341 342
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
343
        assert size is not None
Z
zhangjinchao01 已提交
344 345
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
346
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
347
        self.layer_type = layer_type
348 349
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
350 351 352 353 354 355 356 357
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
358
        self.reverse = reverse
Z
zhangjinchao01 已提交
359

360 361 362 363 364 365 366 367
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

368 369 370 371
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

372 373 374 375 376 377 378 379
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
380 381 382

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
383
DEVICE = 'device'
Z
zhangjinchao01 已提交
384 385 386


def layer_support(*attrs):
387
    attrs_list = list(attrs)
388
    attrs_list.append(DEVICE)
Q
qijun 已提交
389

Z
zhangjinchao01 已提交
390 391 392
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
393
            for attr in attrs_list:
Z
zhangjinchao01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
410 411 412 413 414
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
445
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
446 447 448 449 450 451 452 453
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
454 455
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
456 457 458 459
    proj.origin = input
    return proj


460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
481
    :param input: The input of this layer.
482 483 484 485 486 487 488 489
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
490 491
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
492 493 494 495
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
526
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
527 528 529 530 531 532 533 534
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
535 536
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
537 538 539 540
    proj.origin = input
    return proj


541
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
571
    :param input: The input of this layer.
572
    :type input: LayerOutput
Z
zhangjinchao01 已提交
573 574
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
575
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
576 577 578 579 580 581
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
582 583
        if size is None:
            size = input.size - offset
Q
qijun 已提交
584
        proj = IdentityOffsetProjection(
585
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
586 587 588 589
        proj.origin = input
    return proj


590 591
def slice_projection(input, slices):
    """
592 593
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
594 595

    .. math::
596
       output = [input.slices()]
597 598 599 600 601 602 603 604 605

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
606
    :param input: The input of this layer.
607 608 609 610
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
611
    :type slices: pair of int
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
644
    :param input: The input of this layer.
X
xuwei06 已提交
645 646 647 648 649 650
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
651
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
652 653 654 655
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
656
@wrap_param_attr_default()
657
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
658
    """
659
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
673
    :param input: The input of this layer.
674 675 676 677 678 679
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
680 681
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
682
    proj.origin = input
683
    return proj
Z
zhangjinchao01 已提交
684

685 686

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
687 688
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
689

Z
zhangjinchao01 已提交
690
    .. math::
L
Luo Tao 已提交
691
       out.row[i] += scale * (a.row[i] .* b.row[i])
692

Z
zhangjinchao01 已提交
693 694
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
695

Z
zhangjinchao01 已提交
696
    The example usage is:
697

Z
zhangjinchao01 已提交
698
    .. code-block:: python
699

L
Luo Tao 已提交
700
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
701

702 703 704 705
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
706 707
    :param scale: config scalar, default value is one.
    :type scale: float
708 709
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
710
    """
711 712 713
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
714
    a = kwargs.get('x', a)  # For Backward capacity.
715 716 717 718 719 720
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
721
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
722
    op.origin = [a, b]
723
    return op
Z
zhangjinchao01 已提交
724

725

Z
zhangjinchao01 已提交
726
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
727 728 729
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
744
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
754
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
755 756 757 758 759 760 761 762 763 764 765
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
766 767 768 769 770 771
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
785
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
786 787 788 789 790 791
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
792
        :param act: Activation type.
Z
zhangjinchao01 已提交
793
        :type act: BaseActivation
R
ranqiu 已提交
794 795 796
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
797
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
798 799 800
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
801 802 803 804 805 806 807
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
808 809 810 811 812
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

813
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
814 815 816 817 818 819 820 821
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
822
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
823
            self.inputs.append(other)
824 825 826 827
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
828 829 830 831 832 833 834 835
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

836
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
837 838
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
839
        assert len(self.inputs) != 0
840
        ml = MixedLayer(
Z
zhangjinchao01 已提交
841 842 843 844 845
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
846
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
847 848 849
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
850
        self.finalized = True
Z
zhangjinchao01 已提交
851 852 853 854 855 856


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
857 858 859 860 861
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
889
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
890
                  then this function will just return layer's name.
R
ranqiu 已提交
891
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
892
    :type act: BaseActivation
R
ranqiu 已提交
893 894 895
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
896
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
897 898 899 900 901 902 903 904 905
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
906 907 908 909 910 911
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
912
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
913 914 915 916 917 918 919 920
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
921 922
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
923 924 925 926 927 928 929
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
930
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
931

R
ranqiu 已提交
932
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
933 934 935
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
936
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
937
    :type height: int | None
L
Luo Tao 已提交
938
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
939
    :type width: int | None
Z
zhangjinchao01 已提交
940 941
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
943 944
    :rtype: LayerOutput
    """
Q
qijun 已提交
945 946 947 948
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
949
        depth=depth,
L
Luo Tao 已提交
950 951
        height=height,
        width=width,
Q
qijun 已提交
952
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
953

C
chengduoZH 已提交
954 955
    if depth is None:
        depth = 1
956 957
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
958 959
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
960
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
961 962

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
963 964 965 966


@wrap_name_default("embedding")
@wrap_param_attr_default()
967
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
968 969 970 971
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
973
    :type name: basestring
R
ranqiu 已提交
974
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
975 976 977 978 979
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
980
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
981
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
982
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
983
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
984 985
    :rtype: LayerOutput
    """
Q
qijun 已提交
986 987 988 989 990 991
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
992 993 994 995 996 997 998 999 1000
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1001 1002 1003 1004 1005 1006 1007
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1020
    which is equal to:
Z
zhangjinchao01 已提交
1021 1022 1023 1024 1025 1026

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1027
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1028
    :type name: basestring
R
ranqiu 已提交
1029 1030
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1031 1032
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1033
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1034 1035 1036
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1037 1038 1039
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1040
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1041
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1042
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1044 1045 1046 1047
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1048
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1049 1050
        param_attr = [param_attr]
    else:
1051
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1052 1053
            assert len(input) == len(param_attr)
        else:
1054
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1055
                logger.fatal(
W
wangmeng28 已提交
1056 1057 1058 1059 1060
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1061 1062
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1063
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1064 1065

    Layer(
Q
qijun 已提交
1066 1067 1068
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1069 1070 1071 1072 1073
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1074 1075 1076
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1077

1078

1079
@wrap_name_default("print")
1080
def printer_layer(input, format=None, name=None):
1081 1082
    """
    Print the output value of input layers. This layer is useful for debugging.
1083

1084
    :param name: The name of this layer. It is optional.
1085
    :type name: basestring
R
ranqiu 已提交
1086 1087
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1088
    :return: LayerOutput
1089
    """
1090 1091 1092 1093 1094
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1095 1096 1097

    Layer(
        name=name,
1098
        format=format,
1099
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1100
        inputs=[l.name for l in input], )
1101
    # this layer don't return anything, can not be input of other layer.
1102

X
xuwei06 已提交
1103 1104 1105 1106 1107 1108 1109
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1110

Y
yuan 已提交
1111
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1112
def priorbox_layer(input,
G
gaoyuan 已提交
1113
                   image,
G
gaoyuan 已提交
1114 1115 1116 1117 1118
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1119 1120 1121
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1122
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1123
    :type name: basestring
R
ranqiu 已提交
1124
    :param input: The input of this layer.
Y
yuan 已提交
1125
    :type input: LayerOutput
G
gaoyuan 已提交
1126 1127
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1139
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1140 1141 1142
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1143
        inputs=[input.name, image.name],
Y
yuan 已提交
1144 1145 1146 1147 1148 1149
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1150 1151
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1152
        parents=[input, image],
G
gaoyuan 已提交
1153 1154 1155
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1171
    :param name: The name of this layer. It is optional.
1172
    :type name: basestring
Y
yangyaming 已提交
1173 1174
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1175
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1176
    :type input_conf: LayerOutput | List of LayerOutput
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1198
    input_loc_num = len(input_loc)
1199 1200 1201 1202 1203 1204

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1205
    input_conf_num = len(input_conf)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1243 1244
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1245

1246
    :param name: The name of this layer. It is optional.
1247
    :type name: basestring
Y
yangyaming 已提交
1248 1249
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1250
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1251
    :type input_conf: LayerOutput | List of LayerOutput.
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1273
    input_loc_num = len(input_loc)
1274 1275 1276 1277 1278 1279

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280 1281
    input_conf_num = len(input_conf)

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1310 1311 1312 1313 1314 1315
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1316
                   num_channels=None,
G
guosheng 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1334 1335
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1336 1337
    :return: LayerOutput
    """
G
guosheng 已提交
1338 1339 1340 1341
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1342 1343 1344 1345 1346 1347 1348
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
        spatial_scale=spatial_scale)
G
guosheng 已提交
1349 1350
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1351 1352


1353 1354
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1355 1356 1357 1358 1359
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1360

1361
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1362
    :type name: basestring
R
ranqiu 已提交
1363
    :param input: The input of this layer.
G
gaoyuan 已提交
1364 1365 1366 1367 1368
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1369
    assert input.num_filters is not None
G
gaoyuan 已提交
1370 1371
    Layer(
        name=name,
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1385 1386
    return LayerOutput(
        name,
1387
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1388 1389 1390 1391 1392
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1393 1394 1395 1396
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1397 1398 1399 1400
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1401
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1402
                  stride=-1,
Z
zhangjinchao01 已提交
1403 1404 1405 1406
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1407 1408
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1409 1410 1411
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1412
    operation. Note that for sequence with sub-sequence, the default value
1413 1414
    of stride is -1.

Z
zhangjinchao01 已提交
1415 1416 1417 1418 1419 1420
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1421
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1422

L
Luo Tao 已提交
1423 1424
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1425
    :type agg_level: AggregateLevel
1426
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1427
    :type name: basestring
R
ranqiu 已提交
1428
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1429 1430 1431
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1432
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1433
    :param stride: The step size between successive pooling regions.
1434
    :type stride: Int
R
ranqiu 已提交
1435 1436 1437
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1438
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1439
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1440
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1441
    :return: LayerOutput object.
Y
Yu Yang 已提交
1442
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1443 1444
    """
    extra_dict = dict()
1445
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1446 1447
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1448 1449 1450 1451
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1452 1453
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1454 1455 1456
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1457 1458 1459 1460 1461 1462
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1463
        stride=stride,
Q
qijun 已提交
1464
        **extra_dict)
Z
zhangjinchao01 已提交
1465

Q
qijun 已提交
1466 1467
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1468

Q
qijun 已提交
1469

Z
zhangjinchao01 已提交
1470 1471
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1472
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1473 1474
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1475
@layer_support()
Q
qijun 已提交
1476 1477
def lstmemory(input,
              name=None,
1478
              size=None,
Q
qijun 已提交
1479 1480 1481 1482 1483 1484
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1485 1486 1487 1488 1489 1490 1491 1492
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1493
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1494

L
luotao02 已提交
1495
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1496

L
luotao02 已提交
1497
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1498

L
luotao02 已提交
1499
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1500

L
luotao02 已提交
1501
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1502 1503


C
caoying03 已提交
1504
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1505
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1506 1507 1508 1509
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1510

C
caoying03 已提交
1511
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1512 1513
    to config a simple plain lstm layer.

C
caoying03 已提交
1514 1515 1516 1517
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1518 1519 1520 1521 1522

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1523 1524
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1525
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1526 1527 1528
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1529
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1530 1531 1532 1533 1534
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1535 1536 1537
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1538
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1539
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1540
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1541
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1542
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1543
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1544 1545 1546 1547 1548 1549
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1550
    assert input.size is not None and input.size % 4 == 0
1551

1552 1553 1554 1555 1556
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1557 1558 1559
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1560

Q
qijun 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1571

Q
qijun 已提交
1572 1573 1574 1575 1576
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1577

Z
zhangjinchao01 已提交
1578 1579 1580

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1581
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1582 1583
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1584
@layer_support()
Q
qijun 已提交
1585
def grumemory(input,
1586
              size=None,
Q
qijun 已提交
1587 1588 1589 1590 1591 1592
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1614 1615
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1616 1617 1618 1619 1620

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1621 1622 1623
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1624 1625 1626 1627 1628

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1629
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1630
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1631 1632 1633
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1634

C
caoying03 已提交
1635 1636 1637
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1638 1639 1640 1641 1642 1643 1644 1645

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1646 1647
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1648
    :type input: LayerOutput.
1649 1650
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1651
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1652
    :type reverse: bool
R
ranqiu 已提交
1653
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1654 1655 1656 1657 1658 1659
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1660 1661 1662
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1663
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1664
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1665
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1666
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1667
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1668
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1669 1670 1671 1672
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1673 1674 1675 1676 1677 1678
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1679 1680 1681
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1682

Q
qijun 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1692

Q
qijun 已提交
1693 1694 1695 1696 1697
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1698

Z
zhangjinchao01 已提交
1699 1700 1701

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1702 1703
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1704
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1705
             stride=-1,
Z
zhangjinchao01 已提交
1706 1707 1708 1709
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1710 1711 1712
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1713
    of stride is -1.
1714

L
Luo Tao 已提交
1715 1716 1717 1718 1719 1720
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1721
    :param agg_level: Aggregated level
1722
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1723
    :type name: basestring
R
ranqiu 已提交
1724
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1725
    :type input: LayerOutput
L
Luo Tao 已提交
1726
    :param stride: The step size between successive pooling regions.
1727
    :type stride: Int
Z
zhangjinchao01 已提交
1728 1729
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1730
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1731 1732
    :rtype: LayerOutput
    """
1733 1734 1735 1736 1737 1738
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1739
    if agg_level == AggregateLevel.TO_SEQUENCE:
1740 1741
        assert stride == -1

Z
zhangjinchao01 已提交
1742 1743 1744 1745 1746
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1747
        stride=stride,
Q
qijun 已提交
1748 1749 1750 1751 1752 1753
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1754 1755 1756 1757


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1758 1759
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1760
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1761
              stride=-1,
Z
zhangjinchao01 已提交
1762 1763 1764 1765
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1766 1767 1768
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1769
    of stride is -1.
1770

L
Luo Tao 已提交
1771 1772 1773 1774 1775 1776
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1777
    :param agg_level: aggregation level
1778
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1779
    :type name: basestring
R
ranqiu 已提交
1780
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1781
    :type input: LayerOutput
L
Luo Tao 已提交
1782
    :param stride: The step size between successive pooling regions.
1783
    :type stride: Int
Z
zhangjinchao01 已提交
1784 1785
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1786
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1787 1788
    :rtype: LayerOutput
    """
1789 1790 1791 1792 1793 1794 1795

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1796
    if agg_level == AggregateLevel.TO_SEQUENCE:
1797 1798
        assert stride == -1

Z
zhangjinchao01 已提交
1799 1800 1801 1802 1803
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1804
        stride=stride,
Q
qijun 已提交
1805 1806 1807 1808 1809 1810
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1811 1812 1813


class ExpandLevel(object):
1814 1815 1816 1817 1818
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1819 1820
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1821 1822
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1823 1824
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1825 1826
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1827 1828
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1829 1830
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1831

1832

Z
zhangjinchao01 已提交
1833 1834
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1835 1836
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1837 1838
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1839
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1851
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1852

R
ranqiu 已提交
1853
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1854 1855 1856
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1857
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1858
    :type name: basestring
R
ranqiu 已提交
1859 1860 1861
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1862
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1863 1864 1865 1866
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1867
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1877 1878 1879 1880 1881 1882
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1883 1884


X
xuwei06 已提交
1885
@wrap_name_default()
X
xuwei06 已提交
1886
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1887
@layer_support()
X
xuwei06 已提交
1888 1889 1890
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1891
                 act=None,
X
xuwei06 已提交
1892 1893
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1894
    """
X
xuwei06 已提交
1895
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1896

X
xuwei06 已提交
1897
    If as_row_vector:
X
xuwei06 已提交
1898
    .. math::
X
xuwei06 已提交
1899 1900 1901 1902 1903
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1904 1905 1906 1907 1908

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1909
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1910

R
ranqiu 已提交
1911
    :param input: The input of this layer.
X
xuwei06 已提交
1912 1913 1914
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1915
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1916 1917 1918 1919 1920 1921
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1922
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1923
    :type act: BaseActivation
X
xuwei06 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1934
        active_type=act.name,
X
xuwei06 已提交
1935
        num_filters=num_repeats,
X
xuwei06 已提交
1936
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1937
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1938 1939 1940 1941 1942
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1943
        activation=act,
Q
qijun 已提交
1944 1945
        parents=[input])

X
xuwei06 已提交
1946

1947 1948 1949
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1950
@layer_support(ERROR_CLIPPING, DROPOUT)
1951 1952 1953 1954 1955 1956 1957 1958
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1959
    the dimension of each instance is M, and the input reshape_size is N, then the
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1970
    :param input: The input of this layer.
1971 1972 1973
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1974
    :param name: The name of this layer. It is optional.
1975
    :type name: basestring
R
ranqiu 已提交
1976
    :param act: Activation type. IdentityActivation is the default.
1977 1978 1979
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1980 1981 1982
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1983
    :type bias_attr: ParameterAttribute | None | bool | Any
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2022 2023
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2024 2025
    :param weight: Weight layer.
    :type weight: LayerOutput
2026
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2027 2028 2029
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2030
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2031 2032
    :rtype: LayerOutput
    """
2033
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2034
    assert len(input) == 2
2035 2036 2037 2038 2039 2040 2041
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2042 2043 2044 2045
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2046 2047 2048 2049 2050 2051
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2052 2053


L
liaogang 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2070
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2071

L
liaogang 已提交
2072
    :param   input:        A input layer.
L
liaogang 已提交
2073
    :type    input:        LayerOutput.
L
liaogang 已提交
2074
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2075
    :type    out_size_x:   int | None
L
liaogang 已提交
2076
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2077
    :type    out_size_y:   int | None
L
liaogang 已提交
2078
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2079
    :type    name:         None | basestring
L
liaogang 已提交
2080
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2081 2082 2083 2084 2085 2086 2087
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2088
    assert input.num_filters is not None
L
liaogang 已提交
2089
    num_channels = input.num_filters
Q
qijun 已提交
2090 2091 2092 2093 2094 2095 2096
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2097
                channels=num_channels)),
Q
qijun 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2107

Z
zhangjinchao01 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2127
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2128 2129 2130
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2131
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2132 2133 2134
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2135
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2136 2137
    :rtype: LayerOutput
    """
2138 2139 2140
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2141 2142 2143
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2144
        inputs=[weight.name, input.name],
Q
qijun 已提交
2145 2146 2147
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2148 2149 2150 2151 2152 2153


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2154
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2155 2156

    .. math::
2157
       y  = w x
Z
zhangjinchao01 已提交
2158

2159 2160 2161 2162 2163
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2164 2165 2166 2167 2168 2169 2170

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2171
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2172 2173 2174
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2175
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2176 2177 2178
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2179
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2180 2181
    :rtype: LayerOutput
    """
2182 2183 2184
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2185 2186 2187 2188
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2189 2190 2191
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2192 2193 2194 2195 2196 2197


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2198
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2211
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2212
    :type input: LayerOutput
2213
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2214 2215 2216
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2217
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2218 2219 2220 2221 2222 2223
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2224 2225 2226
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2227 2228


2229 2230
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2231
def rotate_layer(input, height, width, name=None, layer_attr=None):
2232
    """
H
Haonan 已提交
2233 2234
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2235 2236

    .. math::
H
Haonan 已提交
2237
       y(j,i,:) = x(M-i-1,j,:)
2238

H
Haonan 已提交
2239
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2240 2241 2242 2243 2244 2245

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2246 2247
                          height=100,
                          width=100)
2248

R
ranqiu 已提交
2249
    :param input: The input of this layer.
2250 2251 2252
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2253
    :param name: The name of this layer. It is optional.
2254 2255 2256 2257 2258 2259 2260
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2261 2262 2263
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2264
        width=width,
H
Haonan 已提交
2265 2266 2267 2268 2269 2270 2271 2272
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2273 2274


Z
zhangjinchao01 已提交
2275 2276
@wrap_name_default()
@layer_support()
2277
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2278 2279 2280 2281
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2282
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2283 2284 2285 2286 2287
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2288

2289 2290
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2291

L
Luo Tao 已提交
2292 2293 2294 2295 2296 2297
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2298
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2310
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2311 2312
    :rtype: LayerOutput
    """
2313
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2314 2315 2316 2317 2318 2319
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2320
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2321
    else:
2322 2323
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2324 2325 2326 2327 2328 2329
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2330
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2331
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2332

2333

Z
zhangjinchao01 已提交
2334 2335
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2336
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2337
@layer_support()
Q
qijun 已提交
2338 2339
def hsigmoid(input,
             label,
2340
             num_classes=None,
Q
qijun 已提交
2341 2342 2343 2344
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2356
                        label=data_layer)
Z
zhangjinchao01 已提交
2357

R
ranqiu 已提交
2358 2359
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2360 2361 2362
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2363
    :type num_classes: int | None
2364
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2365
    :type name: basestring
R
ranqiu 已提交
2366 2367 2368
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2369
    :type bias_attr: ParameterAttribute | None | bool | Any
2370
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2371
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2372 2373
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2374
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2375 2376 2377 2378
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2379 2380 2381 2382 2383 2384 2385 2386 2387
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2388 2389 2390
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2391 2392 2393 2394 2395
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2396 2397
    ipts_for_layer = []
    parents = []
2398
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2399
        assert isinstance(each_input, LayerOutput)
2400
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2401 2402 2403 2404
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2405
    l = Layer(
Z
zhangjinchao01 已提交
2406 2407 2408 2409 2410
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2411 2412 2413
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2414

2415

Z
zhangjinchao01 已提交
2416 2417 2418 2419 2420
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2430
                   dilation=1,
Q
qijun 已提交
2431 2432 2433 2434 2435 2436 2437
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2438
                   dilation_y=None,
2439 2440
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2441
    """
2442
    Convolution layer for image. Paddle can support both square and non-square
2443
    input currently.
Z
zhangjinchao01 已提交
2444 2445 2446 2447

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2448

2449
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2450
    and non-square input currently.
2451

X
xuwei06 已提交
2452
    The details of convolution transpose layer,
2453 2454 2455
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2456 2457 2458 2459
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2460 2461 2462
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2463
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2464 2465
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2466

L
Luo Tao 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2477
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2478
    :type name: basestring
R
ranqiu 已提交
2479
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2480
    :type input: LayerOutput
2481 2482
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2483
    :type filter_size: int | tuple | list
C
caoying03 已提交
2484 2485 2486
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2487
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2488
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2489
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2490 2491 2492
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2493 2494
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2495
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2496 2497
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2498 2499
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2500
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2501 2502
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2503 2504
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2505
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2506 2507
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
R
ranqiu 已提交
2508 2509 2510
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2511
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2521 2522
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2523
    :param layer_type: specify the layer_type, default is None. If trans=True,
2524 2525
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2526
                       "cudnn_conv"
2527
    :type layer_type: String
D
dangqingqing 已提交
2528
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2529 2530 2531 2532 2533
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2534

Z
zhangjinchao01 已提交
2535
    if filter_size_y is None:
2536 2537 2538 2539 2540 2541
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2542
    if stride_y is None:
2543 2544 2545 2546 2547 2548
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2549
    if padding_y is None:
2550 2551 2552 2553 2554 2555
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2556 2557 2558 2559 2560 2561 2562
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2563 2564
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2565
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2566 2567 2568 2569
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2570

2571
    if layer_type:
W
wanghaoshuang 已提交
2572 2573
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2574
        if trans:
2575
            assert layer_type in ["exconvt", "cudnn_convt"]
2576 2577 2578 2579 2580
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2581

X
xuwei06 已提交
2582
    l = Layer(
Z
zhangjinchao01 已提交
2583
        name=name,
Q
qijun 已提交
2584 2585 2586 2587 2588
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2589
                dilation=dilation,
Q
qijun 已提交
2590 2591 2592 2593 2594
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2595
                dilation_y=dilation_y,
Q
qijun 已提交
2596 2597
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2598 2599 2600 2601
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2602
        type=lt,
Q
qijun 已提交
2603 2604 2605 2606 2607 2608 2609 2610
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2611 2612 2613 2614


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2625 2626
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2627 2628 2629 2630 2631 2632 2633
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2662
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2663
    :type padding: int
2664
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2665
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2666 2667
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2668
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2669
    :type input: LayerOutput
2670
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2671
    :type pool_size: int
2672
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2673
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2674 2675
    :param num_channels: number of input channel.
    :type num_channels: int
2676
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2677 2678
                      MaxPooling.
    :type pool_type: BasePoolingType
2679
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2680
    :type stride: int
2681
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2682
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2683 2684
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2685 2686 2687 2688
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2689 2690
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2701 2702 2703 2704
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2705
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2706
        if (
Y
Yu Yang 已提交
2707
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2708
        else pool_type.name
2709 2710 2711 2712
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2713
    l = Layer(
Z
zhangjinchao01 已提交
2714 2715
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2728
                    padding_y=padding_y))
Q
qijun 已提交
2729
        ],
2730
        ceil_mode=ceil_mode,
Q
qijun 已提交
2731 2732 2733 2734 2735 2736 2737
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2738 2739


C
chengduoZH 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2792
    :type padding: int | tuple | list
C
chengduoZH 已提交
2793 2794
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2795
    :param input: The input of this layer.
C
chengduoZH 已提交
2796 2797
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2798
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2799 2800 2801 2802 2803 2804
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2805
    :type stride: int | tuple | list
C
chengduoZH 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2880 2881
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2882 2883 2884 2885 2886 2887
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2888 2889 2890 2891 2892
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2893 2894 2895 2896
    The example usage is:

    ..  code-block:: python

2897 2898 2899
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2900 2901
                        pool_type=MaxPooling())

2902
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2903
    :type name: basestring
R
ranqiu 已提交
2904
    :param input: The input of this layer.
Q
qijun 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2930
    l = Layer(
Q
qijun 已提交
2931 2932
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2933 2934 2935 2936 2937
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2938
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2950 2951 2952 2953
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2954
    l = Layer(
Q
qijun 已提交
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2974 2975 2976 2977


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2978 2979 2980 2981 2982 2983
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2984
                      layer_attr=None):
Z
zhangjinchao01 已提交
2985
    """
2986
    Response normalization across feature maps.
D
dangqingqing 已提交
2987 2988
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2989

L
Luo Tao 已提交
2990 2991 2992
    The example usage is:

    ..  code-block:: python
2993

L
Luo Tao 已提交
2994 2995
        norm = img_cmrnorm_layer(input=net, size=5)

2996
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2997 2998
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2999
    :type input: LayerOutput
3000
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3001
    :type size: int
D
dangqingqing 已提交
3002
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3003
    :type scale: float
D
dangqingqing 已提交
3004
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3005 3006 3007 3008 3009
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3010
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3011 3012 3013
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3014
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3015 3016 3017


@wrap_bias_attr_default()
3018 3019
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3020 3021
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3022
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3023 3024 3025
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3026
                     img3D=False,
Q
qijun 已提交
3027 3028 3029 3030
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3031 3032
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3033 3034
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3053 3054 3055
    The example usage is:

    ..  code-block:: python
3056

L
Luo Tao 已提交
3057 3058
        norm = batch_norm_layer(input=net, act=ReluActivation())

3059
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3060 3061 3062 3063
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
                            enable use_mkldnn. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU,
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
                            Otherwise, select batch norm type based on the
                            specified type. If you use cudnn_batch_norm,
Z
zhangjinchao01 已提交
3074
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3075
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3076
                           or "mkldnn_batch_norm"
Z
zhangjinchao01 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3086
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3098
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3099 3100 3101 3102 3103
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3104 3105
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3106
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3116
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3117
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3118
    l = Layer(
Z
zhangjinchao01 已提交
3119
        name=name,
C
chengduoZH 已提交
3120
        img3D=img3D,
Q
qijun 已提交
3121 3122
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3123 3124 3125 3126 3127 3128
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3129
        mean_var_names=mean_var_names,
Q
qijun 已提交
3130
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3131

Q
qijun 已提交
3132 3133 3134 3135 3136 3137 3138
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3160
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3161
    :type input: LayerOutput
3162
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3163 3164 3165
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3166
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3167 3168 3169 3170 3171 3172
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3173 3174 3175
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3176 3177


G
guosheng 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3196
    :param input: The input of this layer.
G
guosheng 已提交
3197
    :type input: LayerOutput
3198
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3214 3215 3216
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3217
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3218
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3241 3242 3243
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3244 3245

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3246 3247
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3248 3249
    Please refer to dropout_layer for details.

3250
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3251 3252 3253
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3254 3255
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3256
    :type act: BaseActivation
R
ranqiu 已提交
3257 3258 3259
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3260
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3261 3262
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3263
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3264 3265 3266 3267 3268 3269
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3270
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3271 3272 3273 3274 3275 3276 3277
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3278
    l = Layer(
Q
qijun 已提交
3279 3280 3281
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3282 3283
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3284
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3285

Q
qijun 已提交
3286 3287 3288 3289 3290 3291 3292
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3293 3294 3295 3296


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3297
@layer_support(DROPOUT, ERROR_CLIPPING)
3298
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3299 3300 3301 3302
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3303 3304 3305 3306 3307 3308
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3309
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3310 3311
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3312 3313
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3314 3315 3316
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3317
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3318 3319 3320 3321 3322 3323 3324 3325
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3326
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3327 3328

    def __is_type__(o, tp):
3329
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3351 3352
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3353

Q
qijun 已提交
3354 3355
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3356

3357 3358
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3359

3360
    layer = Layer(
Q
qijun 已提交
3361 3362
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3363 3364
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3365
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3366
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3367

3368
    sz = layer.config.size
Z
zhangjinchao01 已提交
3369

Q
qijun 已提交
3370 3371 3372 3373 3374 3375 3376 3377
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3378 3379
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3380
@wrap_bias_attr_default(has_bias=False)
3381
@layer_support(DROPOUT, ERROR_CLIPPING)
3382 3383 3384 3385
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3386

3387
    Inputs:
X
xuwei06 已提交
3388
      - a = [a1, a2, ..., am]
3389
      - b = [b1, b2, ..., bn]
3390

X
xuwei06 已提交
3391 3392 3393 3394
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3395 3396 3397 3398 3399 3400 3401

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3402
    :param name: The name of this layer. It is optional.
3403 3404 3405 3406 3407
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3408
    :param act: Activation type. IdentityActivation is the default.
3409 3410 3411
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3412 3413 3414
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3415
    :type bias_attr: ParameterAttribute | None | bool | Any
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3437
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3438 3439
def memory(name,
           size,
3440
           memory_name=None,
Q
qijun 已提交
3441 3442 3443 3444
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3465 3466 3467 3468 3469 3470 3471 3472 3473
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3474

3475 3476 3477 3478 3479 3480 3481
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3482 3483 3484
    :type name: basestring
    :param size: size of memory.
    :type size: int
3485 3486 3487
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3488
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3489 3490
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3491
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3492
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3493
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3494 3495 3496 3497
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3498
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3509 3510
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3511

3512 3513 3514 3515 3516 3517 3518 3519
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3520 3521

    lout = LayerOutput(
3522
        name=memory_name,
Q
qijun 已提交
3523 3524 3525
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3526 3527 3528 3529
    return lout


@wrap_bias_attr_default()
3530 3531
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3532 3533 3534
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3535 3536
def lstm_step_layer(input,
                    state,
3537
                    size=None,
Q
qijun 已提交
3538 3539 3540 3541 3542 3543
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3544
    """
3545 3546
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3547 3548 3549

    ..  math::

3550
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3551

3552
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3553

3554
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3555

3556
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3557

L
luotao02 已提交
3558
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3559 3560


L
luotao02 已提交
3561
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3562
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3563
    input vectors.
Z
zhangjinchao01 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3574 3575
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3576 3577
    :code:`get_output_layer` to extract this output.

3578
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3579
    :type name: basestring
3580 3581
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3582 3583 3584 3585 3586 3587
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3588
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3589
    :type act: BaseActivation
R
ranqiu 已提交
3590
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3591
    :type gate_act: BaseActivation
R
ranqiu 已提交
3592
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3593
    :type state_act: BaseActivation
R
ranqiu 已提交
3594 3595 3596
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3597
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3598 3599
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3600
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3601 3602
    :rtype: LayerOutput
    """
3603 3604 3605

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3606 3607 3608 3609 3610 3611 3612
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3613
        size=state.size,
Q
qijun 已提交
3614 3615
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3616

Q
qijun 已提交
3617 3618 3619 3620 3621 3622 3623
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3624 3625 3626


@wrap_bias_attr_default()
W
wangyang59 已提交
3627
@wrap_param_attr_default()
Q
qijun 已提交
3628
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3629 3630 3631
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3632 3633 3634 3635 3636 3637 3638
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3639
                   param_attr=None,
Q
qijun 已提交
3640
                   layer_attr=None):
Z
zhangjinchao01 已提交
3641 3642 3643 3644 3645 3646 3647
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3648
    :type act: BaseActivation
3649
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3650 3651
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3652 3653 3654
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3655
    :type bias_attr: ParameterAttribute | None | bool | Any
3656 3657
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3658
    :param layer_attr:
D
dangqingqing 已提交
3659
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3660 3661 3662 3663 3664 3665 3666 3667
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3668 3669 3670 3671
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3672
        # backward model compatibility.
3673
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3674 3675 3676 3677
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3678
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3679
    return LayerOutput(
Q
qijun 已提交
3680 3681
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3682
        parents=[input, output_mem],
Q
qijun 已提交
3683 3684
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3685 3686


Y
Yu Yang 已提交
3687 3688 3689 3690
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3691
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3709
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3710
    :param act:
R
ranqiu 已提交
3711 3712 3713
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
R
ranqiu 已提交
3714 3715 3716
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3717
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3718 3719 3720
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3721
    :rtype: LayerOutput
Y
Yu Yang 已提交
3722 3723 3724 3725 3726 3727
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3728
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3729 3730 3731 3732
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3733

Y
Yu Yang 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3771 3772 3773 3774
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3775 3776 3777 3778
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3779

3780
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3781 3782 3783 3784 3785 3786 3787
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3788
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3789 3790 3791 3792 3793 3794 3795
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3796 3797 3798 3799 3800 3801 3802
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3803

Q
qijun 已提交
3804 3805 3806 3807 3808
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3809 3810 3811 3812 3813 3814 3815


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3816 3817 3818 3819 3820 3821 3822
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3823
    """
3824 3825
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3826

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3842
    :param input: The input of this layer.
3843
    :type input: LayerOutput
R
ranqiu 已提交
3844
    :param act: Activation type. TanhActivation is the default.
3845
    :type act: BaseActivation
R
ranqiu 已提交
3846 3847 3848
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3849
    :type bias_attr: ParameterAttribute | None | bool | Any
3850 3851
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3852
    :param name: The name of this layer. It is optional.
3853 3854 3855
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3856
    :return: LayerOutput object.
3857
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3858
    """
Q
qijun 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3874 3875 3876 3877 3878 3879


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3880 3881
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3882
    """
3883

Z
zhangjinchao01 已提交
3884 3885 3886
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3887
        assert input.size is not None
Z
zhangjinchao01 已提交
3888
        if size is not None:
3889
            assert input.size == size
Z
zhangjinchao01 已提交
3890 3891


3892
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3893
    """
3894
    DEPRECATED.
Z
zhangjinchao01 已提交
3895 3896 3897 3898 3899 3900 3901 3902
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3903
    return input
Z
zhangjinchao01 已提交
3904 3905 3906


@wrap_name_default("recurrent_group")
3907
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3908
    """
C
caoying03 已提交
3909 3910 3911 3912 3913
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3956
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3957

3958 3959
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3960
    :type reverse: bool
3961

3962 3963
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3964 3965 3966 3967 3968 3969 3970

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3971
    :type targetInlink: LayerOutput | SubsequenceInput
3972

D
dangqingqing 已提交
3973
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3974 3975 3976 3977
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3978
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3979
        input = [input]
3980
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3981 3982

    def is_in_links(x):
3983
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3984 3985 3986 3987

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3988
        name=name,
3989 3990
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3991 3992
    in_args = []
    for each_input in input:
3993
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3994
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3995
            mem = memory(
3996
                name=None,
Q
qijun 已提交
3997 3998
                size=each_input.input.size,
                boot_layer=each_input.input)
3999
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4000
            in_args.append(mem)
4001 4002
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4003

Z
zhangjinchao01 已提交
4004 4005 4006 4007 4008
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4009 4010 4011 4012 4013 4014
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4015 4016 4017

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4018
    for layer_out in layer_outs:
4019 4020
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4021 4022
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4023 4024 4025 4026 4027
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4028

Z
zhangjinchao01 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4057 4058

    def before_real_step(self):
Q
qijun 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4068 4069 4070
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4071
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4089
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4090
    :type input: LayerOutput
4091
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4092 4093 4094
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4095
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4096 4097 4098 4099
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4110

4111

H
Haonan 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4124
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4148

Z
zhangjinchao01 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4165
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4166
    :type name: basestring
R
ranqiu 已提交
4167
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4168 4169 4170 4171 4172
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4173
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4174 4175
    :rtype: LayerOutput
    """
Q
qijun 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4187 4188 4189


@wrap_name_default()
Q
qijun 已提交
4190 4191 4192 4193 4194 4195 4196
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4197
                num_results_per_sample=None):
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4209
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4210 4211 4212 4213
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4214 4215 4216 4217 4218
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4219 4220
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4221 4222
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4223 4224
                               bos_id=0,
                               eos_id=1,
4225
                               beam_size=5)
4226 4227 4228 4229 4230 4231 4232 4233 4234

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4235
                 step, and it is applied to sequences with arbitrary length by
4236 4237 4238 4239 4240
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4241 4242
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4243
                  In beam_search, none of the input's type should be LayerOutput.
4244
    :type input: list
4245 4246 4247
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4248
                   symbol is essential, since it is used to initialize the RNN
4249 4250 4251 4252 4253 4254 4255 4256
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4257 4258
    :param max_length: Max generated sequence length.
    :type max_length: int
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4269 4270
    :return: The generated word index.
    :rtype: LayerOutput
4271 4272
    """

Z
zhangjinchao01 已提交
4273 4274 4275 4276 4277
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4278
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4279 4280 4281 4282 4283 4284
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4285 4286 4287
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4288
        if isinstance(each_input, BaseGeneratedInput):
4289 4290
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4291
            generated_input_index = i
4292

Z
zhangjinchao01 已提交
4293 4294 4295
        else:
            real_input.append(each_input)

4296
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4297 4298 4299 4300 4301 4302 4303 4304

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4305 4306 4307 4308 4309 4310
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4311 4312 4313 4314 4315 4316

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4317
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4318 4319
        return predict

4320 4321
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4322

Q
qijun 已提交
4323

4324 4325
def __cost_input__(input, label, weight=None):
    """
4326
    inputs and parents for cost layers.
4327
    """
C
caoying03 已提交
4328 4329 4330 4331 4332 4333
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4334
    if weight is not None:
4335
        assert weight.size == 1
4336 4337 4338
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4339

Z
zhangjinchao01 已提交
4340 4341

@wrap_name_default()
L
luotao1 已提交
4342
@layer_support()
4343 4344 4345 4346 4347 4348
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4349
    """
4350
    sum of square error cost:
L
Luo Tao 已提交
4351 4352 4353

    ..  math::

4354
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4355

4356
    :param name: The name of this layer. It is optional.
4357
    :type name: basestring
Z
zhangjinchao01 已提交
4358
    :param input: Network prediction.
4359
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4360
    :param label: Data label.
4361 4362 4363 4364
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4365 4366
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4367 4368
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4369
    :return: LayerOutput object.
4370
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4371
    """
4372 4373
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4374 4375 4376 4377
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4378
        coeff=coeff,
Q
qijun 已提交
4379
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4380
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4381 4382


4383
regression_cost = square_error_cost
L
Luo Tao 已提交
4384 4385


Z
zhangjinchao01 已提交
4386
@wrap_name_default("cost")
4387
@layer_support()
Q
qijun 已提交
4388 4389 4390 4391
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4392
                        evaluator=classification_error_evaluator,
4393 4394
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4395 4396 4397
    """
    classification cost Layer.

4398
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4399 4400 4401 4402 4403
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4404 4405 4406
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4407
    :param evaluator: Evaluator method.
4408 4409
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4410 4411
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4412
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4413 4414 4415 4416 4417
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4418 4419 4420

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4421 4422 4423 4424
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4425
        coeff=coeff,
Q
qijun 已提交
4426
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4437
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4438

4439
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4440 4441 4442 4443 4444
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4445
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4446

4447

Q
qijun 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4457 4458
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4469 4470
       op = conv_operator(img=input1,
                          filter=input2,
4471
                          filter_size=3,
Z
zhangjinchao01 已提交
4472 4473 4474
                          num_filters=64,
                          num_channels=64)

4475 4476 4477 4478
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4479 4480
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4481 4482 4483
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4484
    :type filter_size_y: int
4485 4486
    :param num_filters: channel of output data.
    :type num_filters: int
4487 4488
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4489
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4490
    :type stride: int
Z
zhangjinchao01 已提交
4491
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4492
    :type stride_y: int
Z
zhangjinchao01 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4506

4507 4508
    if num_channels is None:
        num_channels = img.num_filters
4509 4510

    assert isinstance(filter, LayerOutput)
4511
    assert filter.size is not None
4512

4513 4514 4515
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4527

4528
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4529 4530
    return op

Q
qijun 已提交
4531

4532
@wrap_param_attr_default()
Q
qijun 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4543 4544
                    param_attr=None,
                    trans=False):
4545 4546 4547 4548 4549 4550 4551 4552 4553
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4554
       proj = conv_projection(input=input1,
4555 4556 4557 4558
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4559
    :param input: The input of this layer.
4560 4561 4562 4563 4564 4565 4566 4567 4568
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4569 4570
    :param num_channels: channel of input data.
    :type num_channels: int
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4583
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4584
    :type trans: bool
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4615
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4616 4617 4618 4619 4620
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4621 4622 4623
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4636 4637 4638 4639

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4640

D
dangqingqing 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4658

D
dangqingqing 已提交
4659
    For example,
4660

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4682 4683

    The simply usage is:
D
dangqingqing 已提交
4684 4685 4686 4687 4688 4689 4690 4691

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4692
    :param input: The input of this layer.
D
dangqingqing 已提交
4693 4694
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4695
    :type pad_c: list | None
D
dangqingqing 已提交
4696
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4697
    :type pad_h: list | None
D
dangqingqing 已提交
4698
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4699
    :type pad_w: list | None
D
dangqingqing 已提交
4700 4701
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4702
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4745
@wrap_name_default()
L
luotao1 已提交
4746 4747
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4759 4760 4761 4762
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4763 4764 4765 4766 4767

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4768
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4769

4770
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4771
    :type name: basestring
4772 4773
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4774
    :param b: input layer b.
4775
    :type b: LayerOutput
L
luotao1 已提交
4776 4777
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4778
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4779 4780
    :rtype: LayerOutput
    """
4781 4782
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4783 4784 4785
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4786
        inputs=[a.name, b.name],
Q
qijun 已提交
4787
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4788

Q
qijun 已提交
4789 4790
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4791 4792 4793 4794 4795


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4796
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4797
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4798 4799 4800 4801 4802 4803 4804 4805
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4806 4807 4808 4809 4810
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4811
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4812 4813

    In this formular:
4814 4815
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4816 4817
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4818
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4819 4820 4821 4822 4823

    The simple usage is:

    .. code-block:: python

4824
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4825

4826
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4827
    :type name: basestring
4828 4829 4830 4831
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4832
    :param size: the layer dimension.
L
luotao02 已提交
4833
    :type size: int.
R
ranqiu 已提交
4834
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4835 4836
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4837
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4838 4839 4840
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4841
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4842
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4843
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4844
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4845 4846
    :rtype: LayerOutput
    """
4847
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4848 4849 4850 4851 4852 4853
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4854 4855 4856 4857
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4858 4859 4860 4861 4862 4863


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4864
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4865 4866
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4867
                       select=None,
Q
qijun 已提交
4868 4869
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4870 4871 4872
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4873 4874 4875
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4886
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4887

4888
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4889
    :type name: basestring
R
ranqiu 已提交
4890 4891
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4892 4893
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4894
                   If is None, acts exactly like fc_layer.
4895
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4896 4897
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4898
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4899 4900 4901
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4902 4903 4904
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
4905
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4906
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4907
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4908
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4909 4910 4911 4912
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4913
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4914 4915
        param_attr = [param_attr]
    else:
4916
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4917 4918
            assert len(input) == len(param_attr)
        else:
4919
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
4920
                logger.fatal(
W
wangmeng28 已提交
4921 4922 4923 4924 4925
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
4926 4927
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4928 4929 4930 4931
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4932
    Layer(
Q
qijun 已提交
4933 4934 4935
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4936 4937 4938
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4939
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4940 4941 4942 4943
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4944 4945 4946 4947 4948 4949 4950
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4951 4952 4953


@wrap_name_default()
L
luotao1 已提交
4954 4955
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4966
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4967
    :type input: LayerOutput
4968
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4969
    :type name: basestring
L
luotao1 已提交
4970
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4971
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4972
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4973 4974
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4975
    l = Layer(
Z
zhangjinchao01 已提交
4976 4977 4978
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4979 4980 4981
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4982 4983 4984


@wrap_name_default()
L
luotao1 已提交
4985
@layer_support()
Q
qijun 已提交
4986 4987 4988 4989
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4990
                          layer_attr=None):
Z
zhangjinchao01 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5004
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5005
    :type input: LayerOutput
5006
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5007 5008 5009 5010 5011
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
5012
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5013
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5014
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5015 5016 5017 5018 5019 5020 5021 5022
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5023 5024 5025
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5026 5027 5028


@wrap_name_default()
L
luotao1 已提交
5029
@layer_support()
Q
qijun 已提交
5030
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5031
    """
5032 5033 5034 5035
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5036 5037 5038

    .. math::

5039
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5040

5041 5042 5043 5044 5045
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5046

5047
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5048 5049

    In this formular:
5050 5051 5052 5053 5054 5055
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5056 5057 5058 5059 5060

    The simple usage is:

    .. code-block:: python

5061
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5062 5063
                                       size=elem_dim)

5064 5065 5066 5067
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5068 5069
    :param size: the dimension of this layer.
    :type size: int
5070
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5071
    :type name: basestring
L
luotao1 已提交
5072
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5073
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5074
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5075 5076
    :rtype: LayerOutput
    """
5077 5078 5079 5080
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5081
            size = vectors.size / weights.size
5082 5083
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5084 5085
    Layer(
        name=name,
5086
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5087
        size=size,
5088
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5089 5090 5091
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5092

5093

5094
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5095

5096

Z
zhangjinchao01 已提交
5097
@wrap_name_default()
L
luotao1 已提交
5098
@layer_support()
Z
zhangjinchao01 已提交
5099 5100 5101 5102 5103 5104 5105
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5106
                       num_channels=None,
L
luotao1 已提交
5107 5108
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5109 5110
    """
    Expand feature map to minibatch matrix.
5111
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5112
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5123
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5124 5125
    convolution neural network, and before recurrent neural network.

5126 5127 5128 5129
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5130
       block_expand = block_expand_layer(input=layer,
5131
                                         num_channels=128,
5132 5133 5134 5135 5136
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5137
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5138
    :type input: LayerOutput
5139
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5140
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5153
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5154
    :type name: None | basestring.
L
luotao1 已提交
5155
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5156
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5157
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5158 5159
    :rtype: LayerOutput
    """
5160 5161 5162
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5180 5181


5182 5183
@wrap_name_default()
@layer_support()
5184
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5185 5186 5187 5188 5189
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5190
    So groups should be larger than 1, and the num of channels should be able
5191 5192
    to devided by groups.

X
xuwei06 已提交
5193 5194 5195 5196 5197 5198 5199 5200
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5201
    Please refer to Paper:
5202 5203 5204 5205
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5206

5207 5208 5209 5210 5211 5212 5213 5214
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5215
    :param input: The input of this layer.
5216 5217 5218
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5219
    :type num_channels: int | None
5220 5221
    :param groups: The group number of input layer.
    :type groups: int
5222
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5223
    :type name: None | basestring.
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5244 5245


Z
zhangjinchao01 已提交
5246
@wrap_name_default()
L
luotao1 已提交
5247
@layer_support()
Q
qijun 已提交
5248 5249 5250 5251 5252
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5253
              layer_attr=None):
Z
zhangjinchao01 已提交
5254 5255 5256 5257 5258
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5259 5260
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5261 5262
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5263 5264 5265 5266 5267 5268 5269 5270

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5271
    The example usage is:
Z
zhangjinchao01 已提交
5272 5273 5274 5275 5276 5277 5278 5279

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5280
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5281 5282 5283
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5284
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5285
    :type size: int
5286
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5287
    :type name: basestring | None
Z
zhangjinchao01 已提交
5288 5289
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5290
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5291
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5292
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5293 5294 5295 5296
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5297 5298 5299 5300 5301
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5302
    Layer(
5303 5304 5305 5306
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5307
        inputs=[input.name, label.name],
Q
qijun 已提交
5308
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5309 5310
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5311

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5323
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5324
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5325 5326 5327 5328 5329 5330 5331
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5332 5333 5334
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5335
    icml2006_GravesFGS06.pdf>`_.
5336 5337 5338

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5339 5340 5341
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5342 5343
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5344
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5345
          'linear' activation is expected instead in the 'input' layer.
5346

C
caoying03 已提交
5347
    The example usage is:
5348 5349 5350 5351 5352 5353 5354 5355 5356

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5357
    :param input: The input of this layer.
5358 5359 5360 5361 5362
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5363
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5364
    :type name: basestring | None
5365 5366 5367 5368 5369
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5370
    :type layer_attr: ExtraLayerAttribute | None
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5393
@wrap_name_default()
5394
@wrap_param_attr_default()
L
luotao1 已提交
5395
@layer_support()
Q
qijun 已提交
5396 5397 5398 5399 5400 5401
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5402
              coeff=1.0,
L
luotao1 已提交
5403
              layer_attr=None):
Z
zhangjinchao01 已提交
5404 5405 5406 5407
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5408
    The example usage is:
Z
zhangjinchao01 已提交
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5419
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5420 5421 5422 5423 5424 5425 5426
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5427
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5428
    :type name: None | basestring
5429 5430
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5431
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5432
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5433
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5434 5435 5436 5437 5438
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5439 5440 5441 5442 5443 5444
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5445

Q
qijun 已提交
5446
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5447 5448 5449 5450
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5451 5452 5453 5454
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5455
        coeff=coeff,
Q
qijun 已提交
5456
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5457 5458 5459
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5460 5461 5462 5463
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5464

5465

Z
zhangjinchao01 已提交
5466
@wrap_name_default()
5467
@wrap_param_attr_default()
L
luotao1 已提交
5468
@layer_support()
Q
qijun 已提交
5469 5470 5471 5472 5473
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5474
                       layer_attr=None):
Z
zhangjinchao01 已提交
5475 5476 5477 5478 5479 5480 5481
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5482
    The example usage is:
L
Luo Tao 已提交
5483 5484 5485 5486 5487 5488

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5489 5490 5491 5492 5493 5494 5495 5496
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5497
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5498
    :type name: None | basestring
L
luotao1 已提交
5499
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5500
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5501
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5502 5503 5504 5505 5506 5507
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5508
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5509 5510 5511 5512
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5513 5514 5515 5516
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5517
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5518 5519 5520
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5521 5522 5523 5524
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5525

Q
qijun 已提交
5526

C
caoying03 已提交
5527 5528 5529 5530 5531
"""
Following are cost Layers.
"""


5532
@wrap_bias_attr_default(has_bias=True)
5533
@wrap_param_attr_default()
5534 5535
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5536 5537
def nce_layer(input,
              label,
C
caoying03 已提交
5538
              num_classes=None,
5539
              param_attr=None,
Q
qijun 已提交
5540 5541 5542 5543 5544 5545
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5546
    """
C
caoying03 已提交
5547 5548 5549 5550 5551 5552
    Noise-contrastive estimation. This layer implements the method in the
    following paper:

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5553 5554 5555 5556 5557

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5558 5559
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5560 5561
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5562
    :param name: The name of this layer. It is optional.
5563
    :type name: basestring
C
caoying03 已提交
5564 5565
    :param input: The input layers. It should be a LayerOutput or a list/tuple
                  of LayerOutput.
R
ranqiu 已提交
5566
    :type input: LayerOutput | list | tuple | collections.Sequence
C
caoying03 已提交
5567
    :param label: The ground truth.
5568
    :type label: LayerOutput
C
caoying03 已提交
5569 5570
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. The default value is None.
5571
    :type weight: LayerOutput
C
caoying03 已提交
5572
    :param num_classes: The class number.
5573
    :type num_classes: int
C
caoying03 已提交
5574 5575 5576 5577
    :param param_attr: The parameter attributes.
    :type param_attr: ParameterAttribute|list
    :param num_neg_samples: The number of sampled negative labels. The default
                            value is 10.
5578
    :type num_neg_samples: int
C
caoying03 已提交
5579 5580 5581 5582 5583 5584 5585
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
                             uniform distribution will be used. A user defined
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5586
    :type neg_distribution: list | tuple | collections.Sequence | None
C
caoying03 已提交
5587 5588 5589 5590
    :param bias_attr: The attribute for bias. If this parameter is set False or
                      any object whose type is not ParameterAttribute, no bias
                      is added. If this parameter is set True, the bias is
                      initialized to zero.
R
ranqiu 已提交
5591
    :type bias_attr: ParameterAttribute | None | bool | Any
5592 5593
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
C
caoying03 已提交
5594
    :return: The LayerOutput object.
5595 5596 5597 5598
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5599 5600 5601 5602 5603 5604 5605 5606
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5607
    assert isinstance(input, collections.Sequence)
5608

5609 5610
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5611 5612
    if num_classes is None:
        num_classes = label.size
5613 5614 5615
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5616
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5617

5618 5619
    ipts_for_layer = []
    parents = []
5620
    for each_input, attr in zip(input, param_attr):
5621
        assert isinstance(each_input, LayerOutput)
5622
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5633
    l = Layer(
5634 5635 5636 5637
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5638
        active_type=SigmoidActivation().name,
5639 5640 5641
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5642 5643
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5644 5645 5646 5647
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5648
        activation=SigmoidActivation())
5649 5650


Z
zhangjinchao01 已提交
5651
@wrap_name_default()
L
luotao1 已提交
5652
@layer_support()
Q
qijun 已提交
5653 5654 5655 5656 5657 5658 5659
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5660
    """
5661
    A cost Layer for learning to rank using gradient descent. Details can refer
5662 5663
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5664 5665 5666 5667 5668
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5669
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5670

L
luotao02 已提交
5671
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5672

L
luotao02 已提交
5673
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5674 5675 5676 5677 5678 5679 5680 5681

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5682
    The example usage is:
Z
zhangjinchao01 已提交
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5699
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5700
    :type name: None | basestring
Z
zhangjinchao01 已提交
5701 5702
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5703 5704
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5705
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5718 5719 5720 5721 5722 5723
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5724

X
xuwei06 已提交
5725
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5726

5727

Z
zhangjinchao01 已提交
5728
@wrap_name_default()
L
luotao1 已提交
5729
@layer_support()
Q
qijun 已提交
5730 5731 5732 5733 5734 5735
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5736 5737 5738
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5739
    The example usage is:
Z
zhangjinchao01 已提交
5740 5741 5742 5743 5744 5745 5746 5747

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5748
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5749 5750 5751 5752
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5753
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5754 5755 5756 5757 5758 5759
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5760 5761 5762
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5763
    :type max_sort_size: int
R
ranqiu 已提交
5764
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5765
    :type name: None | basestring
L
luotao1 已提交
5766 5767
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5768
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5769 5770
    :rtype: LayerOutput
    """
5771 5772 5773
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5774 5775 5776 5777 5778 5779 5780
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5781

Q
qijun 已提交
5782 5783
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5784

5785

Z
zhangjinchao01 已提交
5786
@wrap_name_default()
L
luotao1 已提交
5787
@layer_support()
5788 5789 5790 5791 5792 5793
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5794 5795 5796
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5797 5798
    The example usage is:

Z
zhangjinchao01 已提交
5799 5800
    .. code-block:: python

X
xuwei06 已提交
5801
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5802
                            label=label_layer)
Z
zhangjinchao01 已提交
5803 5804 5805 5806

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
5807
    :type input: LayerOutput
R
ranqiu 已提交
5808
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5809 5810 5811 5812
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
5813 5814 5815 5816
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
R
ranqiu 已提交
5817 5818
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5819
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5820
    :return: LayerOutput object.
R
ranqiu 已提交
5821
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5822 5823
    """

5824
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5825 5826 5827
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5828
        inputs=ipts,
Q
qijun 已提交
5829 5830
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5831
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5832

5833

Z
zhangjinchao01 已提交
5834
@wrap_name_default()
L
luotao1 已提交
5835
@layer_support()
Q
qijun 已提交
5836 5837 5838 5839
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5840 5841
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5842 5843
    """
    A loss layer for multi class entropy with selfnorm.
5844
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5845

C
caoying03 已提交
5846 5847
    The example usage is:

Z
zhangjinchao01 已提交
5848 5849
    .. code-block:: python

X
xuwei06 已提交
5850
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5851
                                          label=label_layer)
Z
zhangjinchao01 已提交
5852 5853

    :param input: The first input layer.
R
ranqiu 已提交
5854
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5855
    :param label: The input label.
R
ranqiu 已提交
5856
    :type input: LayerOutput
R
ranqiu 已提交
5857
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5858 5859 5860 5861
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
Z
zhangjinchao01 已提交
5862
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
5863 5864 5865
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5866
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5867
    :return: LayerOutput object.
R
ranqiu 已提交
5868
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
5869
    """
Q
qijun 已提交
5870 5871 5872 5873 5874 5875 5876
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5877

Q
qijun 已提交
5878 5879 5880 5881 5882
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5883

5884

X
xuwei06 已提交
5885 5886 5887 5888
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
5889
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
5890

C
caoying03 已提交
5891 5892
    The example usage is:

X
xuwei06 已提交
5893 5894
    .. code-block:: python

L
Luo Tao 已提交
5895
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5896

R
ranqiu 已提交
5897
    :param input: The input of this layer.
R
ranqiu 已提交
5898
    :type input: LayerOutput
R
ranqiu 已提交
5899
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5900 5901 5902
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
5903 5904 5905 5906
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5907
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5908 5909 5910 5911 5912
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5913

Q
qijun 已提交
5914
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5915 5916


Z
zhangjinchao01 已提交
5917
@wrap_name_default()
L
luotao1 已提交
5918
@layer_support()
L
Luo Tao 已提交
5919 5920 5921 5922 5923 5924
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5925
    """
5926 5927 5928
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5929 5930 5931 5932 5933
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5934

C
caoying03 已提交
5935 5936
    The example usage is:

Z
zhangjinchao01 已提交
5937 5938
    .. code-block:: python

L
Luo Tao 已提交
5939
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5940 5941

    :param input: The first input layer.
R
ranqiu 已提交
5942
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5943
    :param label: The input label.
R
ranqiu 已提交
5944
    :type input: LayerOutput
R
ranqiu 已提交
5945
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5946
    :type name: basestring
L
Luo Tao 已提交
5947
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
5948 5949 5950 5951 5952 5953
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5954
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5955
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5956 5957
    :rtype: LayerOutput.
    """
5958
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5970
@wrap_name_default()
L
luotao1 已提交
5971
@layer_support()
5972 5973 5974 5975 5976
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5977
    """
5978 5979 5980
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5981 5982 5983
    loss is defined as:

    .. math:
5984
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5985
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5986

C
caoying03 已提交
5987 5988
    The example usage is:

Z
zhangjinchao01 已提交
5989 5990
    .. code-block:: python

5991
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5992 5993

    :param input: The first input layer.
R
ranqiu 已提交
5994
    :type input: LayerOutput
Z
zhangjinchao01 已提交
5995
    :param label: The input label.
R
ranqiu 已提交
5996
    :type input: LayerOutput
R
ranqiu 已提交
5997
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5998 5999 6000 6001 6002 6003
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6004
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6005
    :return: LayerOutput object.
R
ranqiu 已提交
6006
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6007
    """
6008 6009 6010
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6011 6012
    Layer(
        name=name,
6013
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6014 6015 6016
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6017 6018
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6019

6020

Z
zhangjinchao01 已提交
6021
@wrap_name_default()
L
luotao1 已提交
6022
@layer_support()
Q
qijun 已提交
6023 6024 6025 6026
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6027
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6028 6029 6030
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6031 6032
    The example usage is:

Z
zhangjinchao01 已提交
6033 6034
    .. code-block:: python

X
xuwei06 已提交
6035
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6036
                                               label=label_layer)
Z
zhangjinchao01 已提交
6037 6038 6039 6040 6041

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6042
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6043 6044 6045
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
Z
zhangjinchao01 已提交
6046
    :type coeff: float
R
ranqiu 已提交
6047 6048
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6049
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6051 6052 6053
    :rtype: LayerOutput
    """

6054 6055
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6056 6057 6058 6059
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6072 6073


C
caoying03 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6096 6097
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6098
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6099
    """
C
caoying03 已提交
6100 6101 6102
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6103

C
caoying03 已提交
6104 6105 6106 6107 6108
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6109

C
caoying03 已提交
6110 6111 6112 6113 6114
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6115

C
caoying03 已提交
6116 6117 6118
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6119

C
caoying03 已提交
6120 6121 6122 6123
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6124

C
caoying03 已提交
6125 6126 6127
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6128
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6129 6130
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6131

D
dangqingqing 已提交
6132

C
caoying03 已提交
6133 6134
    The example usage is:

D
dangqingqing 已提交
6135 6136
    .. code-block:: python

C
caoying03 已提交
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6149
    :param input: Input beams for this layer.
C
caoying03 已提交
6150
    :type input: BeamInput
R
ranqiu 已提交
6151
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6178 6179 6180
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6181 6182
@wrap_name_default()
@layer_support()
6183
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6184 6185
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6186
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6196
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6197

R
ranqiu 已提交
6198 6199 6200
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6201

C
caoying03 已提交
6202 6203
    The example usage is:

D
dangqingqing 已提交
6204 6205
    .. code-block:: python

6206 6207
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6208 6209 6210 6211 6212

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6213
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6214
    :type name: basestring
R
ranqiu 已提交
6215 6216
    :param coeff: The weight of the gradient in the back propagation.
                  1.0 is the default.
6217
    :type coeff: float
R
ranqiu 已提交
6218 6219
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6232
        coeff=coeff,
D
dangqingqing 已提交
6233 6234 6235
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6236 6237 6238 6239 6240


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6241 6242 6243
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6244
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6245 6246
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6247 6248 6249 6250 6251 6252 6253 6254

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6255 6256
    The example usage is:

W
wwhu 已提交
6257 6258 6259 6260 6261 6262
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6263
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6264
    :type name: basestring
R
ranqiu 已提交
6265 6266
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6290 6291


6292 6293 6294 6295
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6296 6297 6298 6299 6300 6301
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6302
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6303
    :type name: basestring
R
ranqiu 已提交
6304
    :param input: The input of this layer.
R
ranqiu 已提交
6305 6306 6307 6308 6309
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6310 6311 6312 6313 6314 6315 6316
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6317 6318


D
dangqingqing 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6332
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6333 6334 6335 6336 6337 6338 6339
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6340
    efficient manner to improve unidirectional RNNs.
6341

R
ranqiu 已提交
6342
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6343 6344 6345 6346
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6347

D
dangqingqing 已提交
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6363
    :param input: The input of this layer.
D
dangqingqing 已提交
6364 6365 6366 6367
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6368
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6369
    :type act: BaseActivation
R
ranqiu 已提交
6370 6371
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6372
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6373 6374
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6375
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6391 6392


6393 6394 6395 6396 6397 6398 6399 6400 6401
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6402
    The Parametric Relu activation that actives outputs with a learnable weight.
6403 6404 6405 6406 6407 6408 6409 6410 6411

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6412 6413 6414 6415 6416 6417
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6418
    :param name: The name of this layer. It is optional.
6419
    :type name: basestring
R
ranqiu 已提交
6420
    :param input: The input of this layer.
6421
    :type input: LayerOutput
R
ranqiu 已提交
6422
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6423 6424

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6425 6426
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6427 6428

    :type partial_sum: int
6429
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6430 6431 6432
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6433
    :type layer_attr: ExtraLayerAttribute | None
6434 6435 6436 6437
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6438
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6439
    assert isinstance(param_attr, ParameterAttribute)
6440 6441 6442

    l = Layer(
        name=name,
C
caoying03 已提交
6443
        type=LayerType.PRELU,
C
caoying03 已提交
6444
        inputs=Input(input.name, **param_attr.attr),
6445 6446 6447 6448 6449 6450 6451
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6452 6453


6454
@wrap_name_default()
C
caoying03 已提交
6455
@layer_support(ERROR_CLIPPING, DROPOUT)
6456 6457 6458 6459 6460 6461 6462
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6463 6464
                     gate_bias_attr=True,
                     inproj_attr=None,
6465 6466 6467 6468 6469 6470 6471
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6472
    product between :match:`X'` and :math:`\sigma` is finally returned.
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6486
    :param input: The input of this layer.
6487
    :type input: LayerOutput
R
ranqiu 已提交
6488
    :param size: The dimension of this layer's output.
6489
    :type size: int
R
ranqiu 已提交
6490
    :param act: Activation type of the projection. LinearActivation is the default.
6491
    :type act: BaseActivation
6492
    :param name: The name of this layer. It is optional.
6493
    :type name: basestring
R
ranqiu 已提交
6494 6495
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6496
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6497 6498 6499
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
R
ranqiu 已提交
6500 6501 6502
    :param gate_bias_attr: The bias attribute of the gate. If the parameter is set to False or
                           an object whose type is not ParameterAttribute, no bias is defined.
                           If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6503 6504 6505
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6506
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6507 6508 6509
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
R
ranqiu 已提交
6510 6511 6512
    :param inproj_bias_attr: The bias attribute of the projection. If the parameter is set to False
                             or an object whose type is not ParameterAttribute, no bias is defined.
                             If the parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6513 6514 6515
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6516
    :type layer_attr: ExtraLayerAttribute | None
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6529
        layer_attr=inproj_attr,
6530 6531 6532 6533 6534 6535 6536 6537 6538
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6539
        param_attr=gate_param_attr,
6540 6541 6542 6543 6544
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6545 6546


6547
@layer_support()
6548
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6549 6550
def switch_order_layer(input,
                       name=None,
6551
                       reshape_axis=None,
W
wanghaoshuang 已提交
6552 6553
                       act=None,
                       layer_attr=None):
6554
    """
6555
    This layer switch dimension order of image input.
6556 6557
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6558 6559 6560 6561

    The example usage is:

    .. code-block:: python
6562 6563
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6564
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6565

R
ranqiu 已提交
6566
    :param input: The input of this layer.
6567
    :type input: LayerOutput
6568
    :param name: The name of this layer. It is optional.
6569
    :type name: basestring
R
ranqiu 已提交
6570 6571
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6572 6573 6574
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6575
    assert isinstance(input, LayerOutput)
6576 6577 6578 6579 6580
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6581 6582
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6583
        inputs=input.name,
6584 6585
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6586
        active_type=act.name,
6587 6588 6589
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6590
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6591
        activation=act,
6592 6593
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6594 6595


6596 6597
@wrap_name_default()
@layer_support()
6598
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6599
    """
R
ranqiu 已提交
6600 6601 6602
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6603

6604 6605 6606
    The example usage is:

    .. code-block:: python
W
whs 已提交
6607
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6608

R
ranqiu 已提交
6609 6610
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6611 6612
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6613
    :type offset: Sequence
R
ranqiu 已提交
6614
    :param axis: The start axis to be cropped. For image input layer:
6615 6616 6617 6618
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6619 6620
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6621
    :type shape: Sequence | None
6622
    :param name: The name of this layer. It is optional.
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6644 6645


C
caoying03 已提交
6646 6647
@wrap_name_default()
@layer_support()
6648
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6649
    """
6650
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6651
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6652

C
caoying03 已提交
6653 6654 6655
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6656 6657 6658 6659

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6660

R
ranqiu 已提交
6661
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6662

C
caoying03 已提交
6663

R
ranqiu 已提交
6664
    :param input: The input of this layer. It is a nested sequence.
6665
    :type input: LayerOutput
R
ranqiu 已提交
6666
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6667
    :type input: LayerOutput
6668
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6669 6670 6671 6672
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6673

6674 6675 6676 6677 6678 6679 6680
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6681
    l = Layer(
6682 6683
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6684 6685 6686 6687 6688 6689 6690
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6691 6692


G
guosheng 已提交
6693
@wrap_name_default("clip")
6694
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6704
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6705

6706
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6707
    :type name: basestring
R
ranqiu 已提交
6708
    :param input: The input of this layer.
G
guosheng 已提交
6709
    :type input: LayerOutput.
6710
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6711
    :type min: float
6712
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6713
    :type max: float
6714 6715
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6716 6717 6718 6719 6720
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6721 6722
        min=min,
        max=max)
G
guosheng 已提交
6723 6724
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6725 6726


6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6751
    :param name: The name of this layer. It is optional.
6752
    :type name: basestring
R
ranqiu 已提交
6753
    :param input: The input of this layer, which should be a sequence.
6754
    :type input: LayerOutput
R
ranqiu 已提交
6755
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6756
    :type starts: LayerOutput | None
R
ranqiu 已提交
6757
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6758
    :type ends: LayerOutput | None
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6790 6791


6792 6793
@wrap_name_default()
@layer_support()
6794
def kmax_seq_score_layer(input, name=None, beam_size=1):
6795
    """
R
ranqiu 已提交
6796
    This layer accepts one input which is scores over a sequence or a nested
6797 6798 6799 6800
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6801
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6802 6803


6804
    :param name: The name of this layer. It is optional.
6805
    :type name: basestring
R
ranqiu 已提交
6806 6807
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
6808
    :type input: LayerOutput
R
ranqiu 已提交
6809 6810
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
6811 6812 6813
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6814
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6815
                                            "accepts only one input.")
6816
    assert input.size == 1, (
6817
        "input of kmax_seq_score_layer is a score "
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6828 6829


6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6856
        conv = img_conv3d_layer(input=data, filter_size=1,
6857 6858 6859 6860 6861
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6862
    :param name: The name of this layer. It is optional.
6863
    :type name: basestring
R
ranqiu 已提交
6864
    :param input: The input of this layer.
6865
    :type input: LayerOutput
R
ranqiu 已提交
6866 6867
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
6868
    :type filter_size: int | tuple | list
R
ranqiu 已提交
6869 6870
    :param num_filters: The number of filters in each group.
    :type num_filters: int
R
ranqiu 已提交
6871
    :param act: Activation type. ReluActivation is the default.
6872
    :type act: BaseActivation
R
ranqiu 已提交
6873
    :param groups: The number of the filter groups.
6874
    :type groups: int
R
ranqiu 已提交
6875 6876
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
6877
    :type stride: int | tuple | list
R
ranqiu 已提交
6878 6879
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
6880
    :type padding: int | tuple | list
R
ranqiu 已提交
6881 6882 6883
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6884
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
6885 6886 6887
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None,  its actual value will be automatically set to
                         the channels number of the input .
6888
    :type num_channels: int
R
ranqiu 已提交
6889 6890
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
6891
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6892
    :param shared_biases: Whether biases will be shared between filters or not.
6893
    :type shared_biases: bool
R
ranqiu 已提交
6894 6895
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
6896
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
6897
    :param trans: True if it is a convTransLayer, False if it is a convLayer
6898
    :type trans: bool
R
ranqiu 已提交
6899 6900 6901 6902
    :param layer_type: Specify the layer_type. If the parameter is set, it must be "deconv3d"
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
6903 6904 6905 6906 6907 6908 6909
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6910 6911 6912 6913 6914 6915
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6916

C
chengduoZH 已提交
6917 6918 6919 6920 6921 6922
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6923

C
chengduoZH 已提交
6924 6925 6926 6927 6928 6929
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6976 6977


G
guosheng 已提交
6978 6979 6980 6981 6982
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6983
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
6984
    the input matrix. For each element, the layer first re-scales it and then
6985 6986
    adds a bias to it.

X
xuwei06 已提交
6987
    This layer is very like the SlopeInterceptLayer, except the scale and
6988 6989
    bias are trainable.

G
guosheng 已提交
6990 6991 6992 6993 6994 6995 6996 6997
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6998
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6999
    :type name: basestring
R
ranqiu 已提交
7000 7001
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7002 7003
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7004
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7005 7006 7007
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7008
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7019 7020 7021 7022 7023 7024 7025 7026 7027


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7028
    :param input: The input of this layer.
7029 7030 7031
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7032
    :param size: The resized output dimension of this layer.
7033 7034 7035 7036 7037 7038
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7058 7059
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7060
    :type offsets: LayerOutput
R
ranqiu 已提交
7061
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7062
    :type sizes: LayerOutput
R
ranqiu 已提交
7063
    :param act: Activation type, LinearActivation is the default.
Y
yangyaming 已提交
7064
    :type act: BaseActivation.
R
ranqiu 已提交
7065 7066 7067
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7093 7094


Y
yangyaming 已提交
7095 7096
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7097
    """
Y
yangyaming 已提交
7098 7099 7100 7101 7102 7103
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7104 7105 7106

    .. code-block:: python

Y
yangyaming 已提交
7107 7108 7109
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7125 7126
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7127 7128 7129 7130 7131 7132 7133
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7134
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7135 7136 7137 7138 7139
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7140
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7141
        parents=[input, indices],
Y
yangyaming 已提交
7142
        num_filters=input.num_filters,
Y
yangyaming 已提交
7143
        size=input.size)