“629b6c78969179ad79be3eedab429802f60e2375”上不存在“python/git@gitcode.net:Crayonxin2000/Paddle.git”
layers.py 255.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491 492 493 494 495 496
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
578
    :param input: The input of this layer.
579
    :type input: LayerOutput
Z
zhangjinchao01 已提交
580 581
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
582
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
583 584 585 586 587 588
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
589 590
        if size is None:
            size = input.size - offset
Q
qijun 已提交
591
        proj = IdentityOffsetProjection(
592
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
593 594 595 596
        proj.origin = input
    return proj


597 598
def slice_projection(input, slices):
    """
599 600
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
601 602

    .. math::
603
       output = [input.slices()]
604 605 606 607 608 609 610 611 612

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
613
    :param input: The input of this layer.
614 615 616 617
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
618
    :type slices: pair of int
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
651
    :param input: The input of this layer.
X
xuwei06 已提交
652 653 654 655 656 657
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
658
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
659 660 661 662
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
663
@wrap_param_attr_default()
664
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
665
    """
666
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
680
    :param input: The input of this layer.
681 682 683 684 685 686
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
687 688
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
689
    proj.origin = input
690
    return proj
Z
zhangjinchao01 已提交
691

692 693

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
694 695
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
696

Z
zhangjinchao01 已提交
697
    .. math::
L
Luo Tao 已提交
698
       out.row[i] += scale * (a.row[i] .* b.row[i])
699

Z
zhangjinchao01 已提交
700 701
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
702

Z
zhangjinchao01 已提交
703
    The example usage is:
704

Z
zhangjinchao01 已提交
705
    .. code-block:: python
706

L
Luo Tao 已提交
707
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
708

709 710 711 712
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
713 714
    :param scale: config scalar, default value is one.
    :type scale: float
715 716
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
717
    """
718 719 720
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
721
    a = kwargs.get('x', a)  # For Backward capacity.
722 723 724 725 726 727
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
728
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
729
    op.origin = [a, b]
730
    return op
Z
zhangjinchao01 已提交
731

732

Z
zhangjinchao01 已提交
733
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
734 735 736
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
751
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
761
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
773 774 775 776 777 778
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
792
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
793 794 795 796 797 798
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
799
        :param act: Activation type.
Z
zhangjinchao01 已提交
800
        :type act: BaseActivation
R
ranqiu 已提交
801 802 803
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
804
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
805 806 807
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
808 809 810 811 812 813 814
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
815 816 817 818 819
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

820
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
821 822 823 824 825 826 827 828
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
829
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
830
            self.inputs.append(other)
831 832 833 834
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
835 836 837 838 839 840 841 842
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

843
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
844 845
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
846
        assert len(self.inputs) != 0
847
        ml = MixedLayer(
Z
zhangjinchao01 已提交
848 849 850 851 852
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
853
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
854 855 856
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
857
        self.finalized = True
Z
zhangjinchao01 已提交
858 859 860 861 862 863


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
864 865 866 867 868
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
896
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
897
                  then this function will just return layer's name.
898
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
899
    :type act: BaseActivation
R
ranqiu 已提交
900 901 902
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
903
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
904 905 906 907 908 909 910 911 912
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
913 914 915 916 917 918
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
919
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
928 929
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
937
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
938

R
ranqiu 已提交
939
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
940 941 942
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
943
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
944
    :type height: int | None
L
Luo Tao 已提交
945
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
946
    :type width: int | None
Z
zhangjinchao01 已提交
947 948
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
950 951
    :rtype: LayerOutput
    """
Q
qijun 已提交
952 953 954 955
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
956
        depth=depth,
L
Luo Tao 已提交
957 958
        height=height,
        width=width,
Q
qijun 已提交
959
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
960

C
chengduoZH 已提交
961 962
    if depth is None:
        depth = 1
963 964
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
965 966
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
967
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
968 969

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
970 971 972 973


@wrap_name_default("embedding")
@wrap_param_attr_default()
974
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
975 976 977 978
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
980
    :type name: basestring
R
ranqiu 已提交
981
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
982 983 984 985 986
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
987
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
988
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
989
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
990
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
991 992
    :rtype: LayerOutput
    """
Q
qijun 已提交
993 994 995 996 997 998
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1008 1009 1010 1011 1012 1013 1014
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1027
    which is equal to:
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1034
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1035
    :type name: basestring
R
ranqiu 已提交
1036 1037
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1038 1039
    :param size: The layer dimension.
    :type size: int
1040
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1041 1042 1043
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1044 1045 1046
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1047
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1048
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1049
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1051 1052 1053 1054
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1055
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1056 1057
        param_attr = [param_attr]
    else:
1058
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1059 1060
            assert len(input) == len(param_attr)
        else:
1061
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1062
                logger.fatal(
W
wangmeng28 已提交
1063 1064 1065 1066 1067
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1068 1069
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1070
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1071 1072

    Layer(
Q
qijun 已提交
1073 1074 1075
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1076 1077 1078 1079 1080
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1081 1082 1083
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1084

1085

1086
@wrap_name_default("print")
1087
def printer_layer(input, format=None, name=None):
1088 1089
    """
    Print the output value of input layers. This layer is useful for debugging.
1090

1091
    :param name: The name of this layer. It is optional.
1092
    :type name: basestring
R
ranqiu 已提交
1093 1094
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1095
    :return: LayerOutput
1096
    """
1097 1098 1099 1100 1101
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1102 1103 1104

    Layer(
        name=name,
1105
        format=format,
1106
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1107
        inputs=[l.name for l in input], )
1108
    # this layer don't return anything, can not be input of other layer.
1109

X
xuwei06 已提交
1110 1111 1112 1113 1114 1115 1116
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1117

Y
yuan 已提交
1118
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1119
def priorbox_layer(input,
G
gaoyuan 已提交
1120
                   image,
G
gaoyuan 已提交
1121 1122 1123 1124 1125
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1126 1127 1128
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1129
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1130
    :type name: basestring
R
ranqiu 已提交
1131
    :param input: The input of this layer.
Y
yuan 已提交
1132
    :type input: LayerOutput
G
gaoyuan 已提交
1133 1134
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1146
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1147 1148 1149
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        inputs=[input.name, image.name],
Y
yuan 已提交
1151 1152 1153 1154 1155 1156
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1157 1158
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1159
        parents=[input, image],
G
gaoyuan 已提交
1160 1161 1162
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1178
    :param name: The name of this layer. It is optional.
1179
    :type name: basestring
Y
yangyaming 已提交
1180 1181
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1182
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1183
    :type input_conf: LayerOutput | List of LayerOutput
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1205
    input_loc_num = len(input_loc)
1206 1207 1208 1209 1210 1211

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1212
    input_conf_num = len(input_conf)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1250 1251
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1252

1253
    :param name: The name of this layer. It is optional.
1254
    :type name: basestring
Y
yangyaming 已提交
1255 1256
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1257
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1258
    :type input_conf: LayerOutput | List of LayerOutput.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280
    input_loc_num = len(input_loc)
1281 1282 1283 1284 1285 1286

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1287 1288
    input_conf_num = len(input_conf)

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1317 1318 1319 1320 1321 1322
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1323
                   num_channels=None,
G
guosheng 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1341 1342
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1343 1344
    :return: LayerOutput
    """
G
guosheng 已提交
1345 1346 1347 1348
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1349 1350 1351 1352 1353 1354
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1355 1356
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1357 1358
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1359 1360


1361 1362
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1363 1364 1365 1366 1367
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1368

1369
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1370
    :type name: basestring
R
ranqiu 已提交
1371
    :param input: The input of this layer.
G
gaoyuan 已提交
1372 1373 1374 1375 1376
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1377
    assert input.num_filters is not None
G
gaoyuan 已提交
1378 1379
    Layer(
        name=name,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1393 1394
    return LayerOutput(
        name,
1395
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1396 1397 1398 1399 1400
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1401 1402 1403 1404
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1405 1406 1407 1408
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1409
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1410
                  stride=-1,
Z
zhangjinchao01 已提交
1411 1412 1413 1414
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1415 1416
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1417 1418 1419
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1420
    operation. Note that for sequence with sub-sequence, the default value
1421 1422
    of stride is -1.

Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1429
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1430

L
Luo Tao 已提交
1431 1432
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1433
    :type agg_level: AggregateLevel
1434
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1435
    :type name: basestring
R
ranqiu 已提交
1436
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1437 1438 1439
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1440
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1441
    :param stride: The step size between successive pooling regions.
1442
    :type stride: Int
R
ranqiu 已提交
1443 1444 1445
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1446
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1447
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1448
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1449
    :return: LayerOutput object.
Y
Yu Yang 已提交
1450
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1451 1452
    """
    extra_dict = dict()
1453
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1454 1455
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1456 1457 1458 1459
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1460 1461
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1462 1463 1464
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469 1470
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1471
        stride=stride,
Q
qijun 已提交
1472
        **extra_dict)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474 1475
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1476

Q
qijun 已提交
1477

Z
zhangjinchao01 已提交
1478 1479
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1481 1482
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1483
@layer_support()
Q
qijun 已提交
1484 1485
def lstmemory(input,
              name=None,
1486
              size=None,
Q
qijun 已提交
1487 1488 1489 1490 1491 1492
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499 1500
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1501
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1506

L
luotao02 已提交
1507
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1508

L
luotao02 已提交
1509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1510 1511


C
caoying03 已提交
1512
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1513
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1514 1515 1516 1517
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1518

C
caoying03 已提交
1519
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1520 1521
    to config a simple plain lstm layer.

C
caoying03 已提交
1522 1523 1524 1525
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1526 1527 1528 1529 1530

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1531 1532
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1533
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1534 1535 1536
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1537
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1538 1539 1540 1541 1542
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1543 1544 1545
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1546
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1547
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1548
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1549
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1550
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1551
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1552 1553 1554 1555 1556 1557
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1558
    assert input.size is not None and input.size % 4 == 0
1559

1560 1561 1562 1563 1564
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1565 1566 1567
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1568

Q
qijun 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1579

Q
qijun 已提交
1580 1581 1582 1583 1584
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1585

Z
zhangjinchao01 已提交
1586 1587 1588

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1589
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1590 1591
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1592
@layer_support()
Q
qijun 已提交
1593
def grumemory(input,
1594
              size=None,
Q
qijun 已提交
1595 1596 1597 1598 1599 1600
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1622 1623
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1624 1625 1626 1627 1628

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1629 1630 1631
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1632 1633 1634 1635 1636

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1637
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1638
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1639 1640 1641
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1642

C
caoying03 已提交
1643 1644 1645
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1646 1647 1648 1649 1650 1651 1652 1653

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1654 1655
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1656
    :type input: LayerOutput.
1657 1658
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1659
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1660
    :type reverse: bool
R
ranqiu 已提交
1661
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1662 1663 1664 1665 1666 1667
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1668 1669 1670
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1671
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1672
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1673
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1674
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1675
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1677 1678 1679 1680
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1681 1682 1683 1684 1685 1686
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1687 1688 1689
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1690

Q
qijun 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1700

Q
qijun 已提交
1701 1702 1703 1704 1705
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1706

Z
zhangjinchao01 已提交
1707 1708 1709

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1712
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
             stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1718 1719 1720
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1721
    of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: Aggregated level
1730
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1731
    :type name: basestring
R
ranqiu 已提交
1732
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1733
    :type input: LayerOutput
L
Luo Tao 已提交
1734
    :param stride: The step size between successive pooling regions.
1735
    :type stride: Int
Z
zhangjinchao01 已提交
1736 1737
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1739 1740
    :rtype: LayerOutput
    """
1741 1742 1743 1744 1745 1746
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1747
    if agg_level == AggregateLevel.TO_SEQUENCE:
1748 1749
        assert stride == -1

Z
zhangjinchao01 已提交
1750 1751 1752 1753 1754
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1755
        stride=stride,
Q
qijun 已提交
1756 1757 1758 1759 1760 1761
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1762 1763 1764 1765


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1766 1767
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1768
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1769
              stride=-1,
Z
zhangjinchao01 已提交
1770 1771 1772 1773
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1774 1775 1776
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1777
    of stride is -1.
1778

L
Luo Tao 已提交
1779 1780 1781 1782 1783 1784
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1785
    :param agg_level: aggregation level
1786
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1787
    :type name: basestring
R
ranqiu 已提交
1788
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1789
    :type input: LayerOutput
L
Luo Tao 已提交
1790
    :param stride: The step size between successive pooling regions.
1791
    :type stride: Int
Z
zhangjinchao01 已提交
1792 1793
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1794
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1795 1796
    :rtype: LayerOutput
    """
1797 1798 1799 1800 1801 1802 1803

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1804
    if agg_level == AggregateLevel.TO_SEQUENCE:
1805 1806
        assert stride == -1

Z
zhangjinchao01 已提交
1807 1808 1809 1810 1811
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1812
        stride=stride,
Q
qijun 已提交
1813 1814 1815 1816 1817 1818
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1819 1820 1821


class ExpandLevel(object):
1822 1823 1824 1825 1826
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1827 1828
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1829 1830
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1831 1832
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1833 1834
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1835 1836
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1837 1838
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1839

1840

Z
zhangjinchao01 已提交
1841 1842
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1843 1844
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1845 1846
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1847
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1859
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1860

R
ranqiu 已提交
1861
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1862 1863 1864
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1865
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1866
    :type name: basestring
R
ranqiu 已提交
1867 1868 1869
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1870
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1871 1872 1873 1874
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1885 1886 1887 1888 1889 1890
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1891 1892


X
xuwei06 已提交
1893
@wrap_name_default()
X
xuwei06 已提交
1894
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1895
@layer_support()
X
xuwei06 已提交
1896 1897 1898
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1899
                 act=None,
X
xuwei06 已提交
1900 1901
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1902
    """
X
xuwei06 已提交
1903
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1904

X
xuwei06 已提交
1905
    If as_row_vector:
R
ranqiu 已提交
1906

X
xuwei06 已提交
1907
    .. math::
X
xuwei06 已提交
1908
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1909

X
xuwei06 已提交
1910
    If not as_row_vector:
R
ranqiu 已提交
1911

X
xuwei06 已提交
1912 1913 1914
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1915 1916 1917 1918 1919

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1920
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1921

R
ranqiu 已提交
1922
    :param input: The input of this layer.
X
xuwei06 已提交
1923
    :type input: LayerOutput
R
ranqiu 已提交
1924
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1925
    :type num_repeats: int
1926
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1927 1928 1929 1930 1931
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1932
    :type as_row_vector: bool
1933
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1934
    :type act: BaseActivation
R
ranqiu 已提交
1935 1936
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1937 1938 1939 1940 1941 1942 1943 1944
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1945
        active_type=act.name,
X
xuwei06 已提交
1946
        num_filters=num_repeats,
X
xuwei06 已提交
1947
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1948
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1949 1950 1951 1952 1953
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1954
        activation=act,
Q
qijun 已提交
1955 1956
        parents=[input])

X
xuwei06 已提交
1957

1958 1959 1960
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1961
@layer_support(ERROR_CLIPPING, DROPOUT)
1962 1963 1964 1965 1966 1967 1968 1969
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1970
    the dimension of each instance is M, and the input reshape_size is N, then the
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1981
    :param input: The input of this layer.
1982
    :type input: LayerOutput
R
ranqiu 已提交
1983
    :param reshape_size: The dimension of the reshaped sequence.
1984
    :type reshape_size: int
1985
    :param name: The name of this layer. It is optional.
1986
    :type name: basestring
1987
    :param act: Activation type. IdentityActivation is the default activation.
1988
    :type act: BaseActivation
R
ranqiu 已提交
1989 1990
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
1991
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1992 1993 1994
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1995
    :type bias_attr: ParameterAttribute | None | bool | Any
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2014 2015 2016 2017
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2018
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2034 2035
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2036 2037
    :param weight: Weight layer.
    :type weight: LayerOutput
2038
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2039
    :type name: basestring
R
ranqiu 已提交
2040 2041
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2042
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2043
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2044 2045
    :rtype: LayerOutput
    """
2046
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2047
    assert len(input) == 2
2048 2049 2050 2051 2052 2053 2054
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2055 2056 2057 2058
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2059 2060 2061 2062 2063 2064
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2065 2066


L
liaogang 已提交
2067 2068 2069 2070 2071 2072 2073 2074
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2075
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2076 2077 2078 2079 2080 2081 2082

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2083
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2084

R
ranqiu 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2096
    :return: LayerOutput object.
R
ranqiu 已提交
2097
    :rtype: LayerOutput
L
liaogang 已提交
2098 2099 2100 2101
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2102
    assert input.num_filters is not None
L
liaogang 已提交
2103
    num_channels = input.num_filters
Q
qijun 已提交
2104 2105 2106 2107 2108 2109 2110
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2111
                channels=num_channels)),
Q
qijun 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2121

Z
zhangjinchao01 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2132 2133
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2134 2135 2136 2137 2138 2139 2140

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2141
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2142
    :type input: LayerOutput
R
ranqiu 已提交
2143
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2144
    :type weight: LayerOutput
2145
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2146
    :type name: basestring
R
ranqiu 已提交
2147 2148
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2149
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2150
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2151 2152
    :rtype: LayerOutput
    """
2153 2154 2155
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2156 2157 2158
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2159
        inputs=[weight.name, input.name],
Q
qijun 已提交
2160 2161 2162
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2163 2164 2165 2166 2167 2168


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2169
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2170 2171

    .. math::
2172
       y  = w x
Z
zhangjinchao01 已提交
2173

2174 2175 2176 2177 2178
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2179 2180 2181 2182 2183 2184 2185

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2186
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2187
    :type input: LayerOutput
R
ranqiu 已提交
2188
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2189
    :type weight: LayerOutput
2190
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2191
    :type name: basestring
R
ranqiu 已提交
2192 2193
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2194
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2195
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2196 2197
    :rtype: LayerOutput
    """
2198 2199 2200
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2201 2202 2203 2204
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2205 2206 2207
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2208 2209 2210 2211 2212 2213


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2214
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2227
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2228
    :type input: LayerOutput
2229
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2230
    :type name: basestring
R
ranqiu 已提交
2231 2232
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2233
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2234
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2235 2236 2237 2238 2239 2240
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2241 2242 2243
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2244 2245


2246 2247
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2248
def rotate_layer(input, height, width, name=None, layer_attr=None):
2249
    """
H
Haonan 已提交
2250 2251
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2252 2253

    .. math::
H
Haonan 已提交
2254
       y(j,i,:) = x(M-i-1,j,:)
2255

H
Haonan 已提交
2256
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2257 2258 2259 2260 2261 2262

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2263 2264
                          height=100,
                          width=100)
2265

R
ranqiu 已提交
2266
    :param input: The input of this layer.
2267
    :type input: LayerOutput
R
ranqiu 已提交
2268
    :param height: The height of the sample matrix.
2269
    :type height: int
R
ranqiu 已提交
2270 2271
    :param width: The width of the sample matrix.
    :type width: int
2272
    :param name: The name of this layer. It is optional.
2273
    :type name: basestring
R
ranqiu 已提交
2274 2275
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2276 2277 2278 2279 2280
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2281 2282 2283
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2284
        width=width,
H
Haonan 已提交
2285 2286 2287 2288 2289 2290 2291 2292
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2293 2294


Z
zhangjinchao01 已提交
2295 2296
@wrap_name_default()
@layer_support()
2297
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2298 2299 2300 2301
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2302
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2303 2304 2305 2306 2307
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2308

2309 2310
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2311

L
Luo Tao 已提交
2312 2313 2314 2315 2316 2317
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2318
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2319
    :type name: basestring
R
ranqiu 已提交
2320
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2321
    :type a: LayerOutput
R
ranqiu 已提交
2322
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2323
    :type b: LayerOutput
R
ranqiu 已提交
2324
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2325
    :type scale: float
R
ranqiu 已提交
2326
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2327
    :type size: int
R
ranqiu 已提交
2328
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2329
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2330
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2331 2332
    :rtype: LayerOutput
    """
2333
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2334 2335 2336 2337 2338 2339
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2340
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2341
    else:
2342 2343
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2344 2345 2346 2347 2348 2349
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2350
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2351
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2352

2353

C
caoying03 已提交
2354 2355 2356 2357
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2358
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2359
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2390
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2391 2392 2393
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2394
        inputs=[x.name, y.name],
C
caoying03 已提交
2395 2396 2397 2398
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2399 2400
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2401
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2402
@layer_support()
Q
qijun 已提交
2403 2404
def hsigmoid(input,
             label,
2405
             num_classes=None,
Q
qijun 已提交
2406 2407 2408 2409
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2410 2411 2412
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2413 2414 2415 2416

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2417 2418 2419 2420 2421 2422

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2423
                        label=data_layer)
Z
zhangjinchao01 已提交
2424

R
ranqiu 已提交
2425 2426
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2427
    :param label: The input label.
Z
zhangjinchao01 已提交
2428
    :type label: LayerOutput
R
ranqiu 已提交
2429 2430 2431 2432
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2433
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2434
    :type name: basestring
R
ranqiu 已提交
2435 2436 2437
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2438
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2439 2440 2441
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2442
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2443
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2444 2445 2446 2447
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2448 2449 2450 2451 2452 2453 2454 2455 2456
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2457 2458 2459
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2460 2461 2462 2463 2464
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2465 2466
    ipts_for_layer = []
    parents = []
2467
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2468
        assert isinstance(each_input, LayerOutput)
2469
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2470 2471 2472 2473
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2474
    l = Layer(
Z
zhangjinchao01 已提交
2475 2476 2477 2478 2479
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2480 2481 2482
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2483

2484

Z
zhangjinchao01 已提交
2485 2486 2487 2488 2489
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2499
                   dilation=1,
Q
qijun 已提交
2500 2501 2502 2503 2504 2505 2506
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2507
                   dilation_y=None,
2508 2509
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2510
    """
2511
    Convolution layer for image. Paddle can support both square and non-square
2512
    input currently.
Z
zhangjinchao01 已提交
2513 2514 2515 2516

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2517

2518
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2519
    and non-square input currently.
2520

X
xuwei06 已提交
2521
    The details of convolution transpose layer,
2522 2523 2524
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2525 2526 2527 2528
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2529 2530
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2531
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2532 2533 2534
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2535

L
Luo Tao 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2546
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2547
    :type name: basestring
R
ranqiu 已提交
2548
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2549
    :type input: LayerOutput
R
ranqiu 已提交
2550 2551 2552 2553 2554 2555
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2556
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2557 2558 2559
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2560
    :param num_filters: Each filter group's number of filter
2561
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2562
    :type act: BaseActivation
R
ranqiu 已提交
2563
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2564
    :type groups: int
R
ranqiu 已提交
2565 2566 2567 2568 2569
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2570
    :type stride: int | tuple | list
R
ranqiu 已提交
2571
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2572
    :type stride_y: int
R
ranqiu 已提交
2573 2574 2575 2576 2577
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2578
    :type padding: int | tuple | list
R
ranqiu 已提交
2579
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2580
    :type padding_y: int
R
ranqiu 已提交
2581 2582 2583 2584 2585
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2586
    :type dilation: int | tuple | list
R
ranqiu 已提交
2587
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2588
    :type dilation_y: int
R
ranqiu 已提交
2589 2590 2591
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2592
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2593 2594 2595
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2596
    :type num_channels: int
R
ranqiu 已提交
2597 2598
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2599
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2600
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2601
    :type shared_biases: bool
R
ranqiu 已提交
2602 2603
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2604
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2605
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2606
    :type trans: bool
R
ranqiu 已提交
2607 2608 2609 2610 2611
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2612
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2613 2614 2615 2616 2617
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2618

Z
zhangjinchao01 已提交
2619
    if filter_size_y is None:
2620 2621 2622 2623 2624 2625
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2626
    if stride_y is None:
2627 2628 2629 2630 2631 2632
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2633
    if padding_y is None:
2634 2635 2636 2637 2638 2639
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2640 2641 2642 2643 2644 2645 2646
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2647 2648
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2649
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2650 2651 2652 2653
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2654

2655
    if layer_type:
W
wanghaoshuang 已提交
2656
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2657 2658 2659
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2660
        if trans:
2661
            assert layer_type in ["exconvt", "cudnn_convt"]
2662 2663 2664 2665 2666
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2667

X
xuwei06 已提交
2668
    l = Layer(
Z
zhangjinchao01 已提交
2669
        name=name,
Q
qijun 已提交
2670 2671 2672 2673 2674
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2675
                dilation=dilation,
Q
qijun 已提交
2676 2677 2678 2679 2680
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2681
                dilation_y=dilation_y,
Q
qijun 已提交
2682 2683
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2684 2685 2686 2687
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2688
        type=lt,
Q
qijun 已提交
2689 2690 2691 2692 2693 2694 2695 2696
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2697 2698 2699 2700


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2711 2712
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2713 2714 2715
    """
    Image pooling Layer.

R
ranqiu 已提交
2716
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2717 2718 2719

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2748
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2749
    :type padding: int
R
ranqiu 已提交
2750 2751 2752 2753
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2754
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2755
    :type input: LayerOutput
R
ranqiu 已提交
2756
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2757
    :type pool_size: int
R
ranqiu 已提交
2758 2759 2760 2761 2762 2763 2764
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2765
    :type num_channels: int
R
ranqiu 已提交
2766
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2767
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2768
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2769
    :type stride: int
R
ranqiu 已提交
2770 2771 2772 2773 2774
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2775
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2776 2777 2778
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
2779
    :type ceil_mode: bool
D
dangqingqing 已提交
2780 2781
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2792
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2793
                               CudnnMaxPooling], \
X
xzl 已提交
2794
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2795

2796
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2797
        if (
Y
Yu Yang 已提交
2798
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2799
        else pool_type.name
2800 2801 2802 2803
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2804
    l = Layer(
Z
zhangjinchao01 已提交
2805 2806
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2819
                    padding_y=padding_y))
Q
qijun 已提交
2820
        ],
2821
        ceil_mode=ceil_mode,
Q
qijun 已提交
2822 2823 2824 2825 2826 2827 2828
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2829 2830


C
chengduoZH 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2883
    :type padding: int | tuple | list
R
ranqiu 已提交
2884
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2885
    :type name: basestring.
R
ranqiu 已提交
2886
    :param input: The input of this layer.
C
chengduoZH 已提交
2887
    :type input: LayerOutput
R
ranqiu 已提交
2888 2889
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2890
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2891 2892 2893
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2894
    :type num_channels: int
R
ranqiu 已提交
2895
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2896
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2897 2898 2899
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2900
    :type stride: int | tuple | list
R
ranqiu 已提交
2901 2902 2903 2904 2905
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2906
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2907 2908 2909
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2979 2980
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2981 2982 2983 2984 2985 2986
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2987
    """
R
ranqiu 已提交
2988 2989 2990
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
2991 2992
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
        https://arxiv.org/abs/1406.4729`_
Q
qijun 已提交
2993

L
Luo Tao 已提交
2994 2995 2996 2997
    The example usage is:

    ..  code-block:: python

2998 2999 3000
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3001 3002
                        pool_type=MaxPooling())

3003
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3004
    :type name: basestring
R
ranqiu 已提交
3005
    :param input: The input of this layer.
Q
qijun 已提交
3006
    :type input: LayerOutput
R
ranqiu 已提交
3007 3008 3009
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3010
    :type num_channels: int
R
ranqiu 已提交
3011
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3012
    :type scale: BasePoolingType
R
ranqiu 已提交
3013
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3014
    :type pyramid_height: int
R
ranqiu 已提交
3015 3016
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3034
    l = Layer(
Q
qijun 已提交
3035 3036
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3037 3038 3039 3040 3041
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3042
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3054 3055 3056 3057
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3058
    l = Layer(
Q
qijun 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3078 3079 3080 3081


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3082 3083 3084 3085 3086 3087
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3088
                      layer_attr=None):
Z
zhangjinchao01 已提交
3089
    """
3090
    Response normalization across feature maps.
R
ranqiu 已提交
3091 3092

    Reference:
R
ranqiu 已提交
3093 3094
        `ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_
Z
zhangjinchao01 已提交
3095

L
Luo Tao 已提交
3096 3097 3098
    The example usage is:

    ..  code-block:: python
3099

L
Luo Tao 已提交
3100 3101
        norm = img_cmrnorm_layer(input=net, size=5)

3102
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3103
    :type name: basestring
R
ranqiu 已提交
3104
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3105
    :type input: LayerOutput
3106
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3107
    :type size: int
D
dangqingqing 已提交
3108
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3109
    :type scale: float
D
dangqingqing 已提交
3110
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3111
    :type power: float
R
ranqiu 已提交
3112 3113 3114 3115 3116
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3117
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3118
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3119 3120 3121
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3122
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3123 3124 3125


@wrap_bias_attr_default()
3126 3127
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3128 3129
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3130
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3131 3132 3133
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3134
                     img3D=False,
Q
qijun 已提交
3135 3136 3137 3138
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3139
                     batch_norm_type=None,
P
peterzhang2029 已提交
3140
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3141
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3142 3143
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3144
    """
R
ranqiu 已提交
3145
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3159
    Reference:
R
ranqiu 已提交
3160
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3161
        Internal Covariate Shift
R
ranqiu 已提交
3162
        http://arxiv.org/abs/1502.03167`_
Z
zhangjinchao01 已提交
3163

L
Luo Tao 已提交
3164 3165 3166
    The example usage is:

    ..  code-block:: python
3167

L
Luo Tao 已提交
3168 3169
        norm = batch_norm_layer(input=net, act=ReluActivation())

3170
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3171
    :type name: basestring
R
ranqiu 已提交
3172
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3173
    :type input: LayerOutput
3174 3175 3176 3177 3178
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3179 3180
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3181
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3182 3183 3184
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3185
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3186
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3187
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3188
    :type act: BaseActivation
R
ranqiu 已提交
3189 3190 3191
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3192
    :type num_channels: int
R
ranqiu 已提交
3193 3194 3195 3196
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3197
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3198 3199
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3200
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3201 3202
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3203
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3204 3205 3206 3207 3208 3209
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3210
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3211
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3212
    :type epsilon: float.
R
ranqiu 已提交
3213 3214
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3215
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3216 3217
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3218
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3228
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3229
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3230

X
xuwei06 已提交
3231
    l = Layer(
Z
zhangjinchao01 已提交
3232
        name=name,
C
chengduoZH 已提交
3233
        img3D=img3D,
Q
qijun 已提交
3234 3235
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3236 3237 3238 3239
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3240
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3241 3242
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3243
        mean_var_names=mean_var_names,
Q
qijun 已提交
3244
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3245

Q
qijun 已提交
3246 3247 3248 3249 3250 3251 3252
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3274
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3275
    :type input: LayerOutput
3276
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3277
    :type name: basestring
R
ranqiu 已提交
3278 3279 3280
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3281
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3282 3283 3284 3285 3286 3287
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3288 3289 3290
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3291 3292


G
guosheng 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3311
    :param input: The input of this layer.
G
guosheng 已提交
3312
    :type input: LayerOutput
3313
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3314
    :type name: basestring
R
ranqiu 已提交
3315 3316
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3330 3331 3332
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3333
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3334
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3353 3354 3355
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3356

C
caoying03 已提交
3357 3358 3359
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3360

3361
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3362
    :type name: basestring
R
ranqiu 已提交
3363
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3364
                 LayerOutput.
R
ranqiu 已提交
3365
    :type input: LayerOutput | list | tuple
3366
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3367
    :type act: BaseActivation
R
ranqiu 已提交
3368 3369 3370
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3371
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3372 3373
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3374
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3375
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3376 3377 3378 3379 3380 3381
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3382
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3383 3384 3385 3386 3387 3388 3389
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3390
    l = Layer(
Q
qijun 已提交
3391 3392 3393
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3394 3395
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3396
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3397

Q
qijun 已提交
3398 3399 3400 3401 3402 3403 3404
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3405 3406 3407 3408


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3409
@layer_support(DROPOUT, ERROR_CLIPPING)
3410
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3411
    """
R
ranqiu 已提交
3412 3413
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3414

3415 3416 3417 3418 3419 3420
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3421
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3422
    :type name: basestring
R
ranqiu 已提交
3423
    :param input: The input layers or projections
R
ranqiu 已提交
3424
    :type input: list | tuple | collections.Sequence
3425
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3426
    :type act: BaseActivation
R
ranqiu 已提交
3427 3428
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3429
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3430
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3431 3432 3433 3434 3435 3436 3437 3438
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3439
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3440 3441

    def __is_type__(o, tp):
3442
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3464 3465
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3466

Q
qijun 已提交
3467 3468
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3469

3470 3471
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3472

3473
    layer = Layer(
Q
qijun 已提交
3474 3475
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3476 3477
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3478
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3479
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3480

3481
    sz = layer.config.size
Z
zhangjinchao01 已提交
3482

Q
qijun 已提交
3483 3484 3485 3486 3487 3488 3489 3490
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3491 3492
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3493
@wrap_bias_attr_default(has_bias=False)
3494
@layer_support(DROPOUT, ERROR_CLIPPING)
3495 3496 3497
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3498
    Concatenate sequence a and sequence b.
3499

3500
    Inputs:
X
xuwei06 已提交
3501
      - a = [a1, a2, ..., am]
3502
      - b = [b1, b2, ..., bn]
3503

X
xuwei06 已提交
3504 3505 3506 3507
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3508 3509 3510 3511 3512 3513 3514

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3515
    :param name: The name of this layer. It is optional.
3516
    :type name: basestring
R
ranqiu 已提交
3517
    :param a: The first input sequence layer
3518
    :type a: LayerOutput
R
ranqiu 已提交
3519
    :param b: The second input sequence layer
3520
    :type b: LayerOutput
3521
    :param act: Activation type. IdentityActivation is the default activation.
3522
    :type act: BaseActivation
R
ranqiu 已提交
3523 3524
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3525
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3526 3527 3528
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3529
    :type bias_attr: ParameterAttribute | None | bool | Any
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3551
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3552 3553
def memory(name,
           size,
3554
           memory_name=None,
Q
qijun 已提交
3555 3556 3557 3558
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3559 3560
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3561
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3562

R
ranqiu 已提交
3563
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3564

R
ranqiu 已提交
3565 3566
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3567

R
ranqiu 已提交
3568 3569
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3570

R
ranqiu 已提交
3571
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3572

3573 3574 3575 3576 3577
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3578 3579
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3580 3581

    .. code-block:: python
L
Liu Yiqun 已提交
3582

3583 3584 3585 3586
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3587
    :param name: The name of the layer which this memory remembers.
3588 3589
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3590
    :type name: basestring
R
ranqiu 已提交
3591
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3592
    :type size: int
R
ranqiu 已提交
3593
    :param memory_name: The name of the memory. It is ignored when name is provided.
3594
    :type memory_name: basestring
3595
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3596
    :type is_seq: bool
R
ranqiu 已提交
3597 3598
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3599
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3600 3601 3602 3603
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3604
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3605 3606
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3607
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3608 3609
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3610
    :type boot_with_const_id: int
R
ranqiu 已提交
3611
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3622 3623
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3624

3625 3626 3627 3628 3629 3630 3631 3632
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3633 3634

    lout = LayerOutput(
3635
        name=memory_name,
Q
qijun 已提交
3636 3637 3638
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3639 3640 3641 3642
    return lout


@wrap_bias_attr_default()
3643 3644
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3645 3646 3647
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3648 3649
def lstm_step_layer(input,
                    state,
3650
                    size=None,
Q
qijun 已提交
3651 3652 3653 3654 3655 3656
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3657
    """
3658 3659
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3660 3661 3662

    ..  math::

3663
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3664

3665
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3666

3667
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3668

3669
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3670

L
luotao02 已提交
3671
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3672 3673


L
luotao02 已提交
3674
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3675
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3676
    input vectors.
Z
zhangjinchao01 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3687
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3688
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3689 3690
    :code:`get_output_layer` to extract this output.

3691
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3692
    :type name: basestring
R
ranqiu 已提交
3693 3694
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3695
    :type size: int
R
ranqiu 已提交
3696
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3697
    :type input: LayerOutput
3698
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3699
    :type state: LayerOutput
3700
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3701
    :type act: BaseActivation
3702 3703
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3704
    :type gate_act: BaseActivation
3705 3706
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3707
    :type state_act: BaseActivation
R
ranqiu 已提交
3708 3709 3710
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3711
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3712
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3713
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3714
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3715 3716
    :rtype: LayerOutput
    """
3717 3718 3719

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3720 3721 3722 3723 3724 3725 3726
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3727
        size=state.size,
Q
qijun 已提交
3728 3729
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3730

Q
qijun 已提交
3731 3732 3733 3734 3735 3736 3737
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3738 3739 3740


@wrap_bias_attr_default()
W
wangyang59 已提交
3741
@wrap_param_attr_default()
Q
qijun 已提交
3742
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3743 3744 3745
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3746 3747 3748 3749 3750 3751 3752
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3753
                   param_attr=None,
Q
qijun 已提交
3754
                   layer_attr=None):
Z
zhangjinchao01 已提交
3755 3756
    """

R
ranqiu 已提交
3757
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3758
    :type input: LayerOutput
R
ranqiu 已提交
3759 3760 3761 3762 3763 3764
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3765 3766
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3767
    :type act: BaseActivation
3768
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3769
    :type name: basestring
3770 3771
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3772
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3773 3774 3775 3776
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3777
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3778 3779 3780 3781
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3782
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3783 3784 3785 3786 3787 3788 3789 3790
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3791 3792 3793 3794
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3795
        # backward model compatibility.
3796
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3797 3798 3799 3800
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3801
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3802
    return LayerOutput(
Q
qijun 已提交
3803 3804
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3805
        parents=[input, output_mem],
Q
qijun 已提交
3806 3807
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3808 3809


Y
Yu Yang 已提交
3810 3811 3812 3813
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3814
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3826
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3827 3828
    and DROPOUT.

3829
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3830 3831 3832 3833 3834 3835
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3836
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3837
    :type name: basestring
3838 3839
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3840
    :type act: BaseActivation
3841 3842
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3843
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3844 3845 3846 3847
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3848
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3849 3850 3851 3852 3853
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3854
    :rtype: LayerOutput
Y
Yu Yang 已提交
3855 3856 3857 3858 3859 3860
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3861
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3862 3863 3864 3865
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3866

Y
Yu Yang 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3904 3905 3906 3907
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3908 3909 3910 3911
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3912

3913
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3914
    :type name: basestring
R
ranqiu 已提交
3915
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3916 3917
                   multiple outputs.
    :type input: LayerOutput
3918
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3919
    :type arg_name: basestring
R
ranqiu 已提交
3920 3921
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3922
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3923 3924 3925 3926 3927 3928 3929
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3930 3931 3932 3933 3934 3935 3936
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3937

Q
qijun 已提交
3938 3939 3940 3941 3942
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3943 3944 3945 3946 3947 3948 3949


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3950 3951 3952 3953 3954 3955 3956
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3957
    """
3958 3959
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3960

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3976
    :param input: The input of this layer.
3977
    :type input: LayerOutput
3978
    :param act: Activation type. TanhActivation is the default activation.
3979
    :type act: BaseActivation
C
caoying03 已提交
3980
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3981 3982 3983
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3984
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3985 3986
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3987
    :type param_attr: ParameterAttribute
3988
    :param name: The name of this layer. It is optional.
3989
    :type name: basestring
R
ranqiu 已提交
3990 3991
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3992
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3993
    :return: LayerOutput object.
3994
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3995
    """
Q
qijun 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4011 4012 4013 4014 4015


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4016
    and can be a sequence or non-sequence.
4017 4018
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4019
    """
4020

Z
zhangjinchao01 已提交
4021 4022 4023
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4024
        assert input.size is not None
Z
zhangjinchao01 已提交
4025
        if size is not None:
4026
            assert input.size == size
Z
zhangjinchao01 已提交
4027 4028


4029
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4030
    """
4031
    DEPRECATED.
Z
zhangjinchao01 已提交
4032 4033 4034 4035 4036 4037 4038 4039
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4040
    return input
Z
zhangjinchao01 已提交
4041 4042 4043


@wrap_name_default("recurrent_group")
4044
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4045
    """
C
caoying03 已提交
4046 4047 4048
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4049 4050
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4072 4073
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4074

R
ranqiu 已提交
4075 4076 4077
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4078 4079 4080 4081
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4082
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4083 4084 4085 4086 4087 4088 4089
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4090
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4091

R
ranqiu 已提交
4092
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4093

R
ranqiu 已提交
4094
    :param reverse: If reverse is set to True, the recurrent unit will process the
4095
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4096
    :type reverse: bool
4097

4098 4099
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4100 4101 4102 4103 4104 4105 4106

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4107
    :type targetInlink: LayerOutput | SubsequenceInput
4108

D
dangqingqing 已提交
4109
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4110 4111 4112 4113
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4114
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4115
        input = [input]
4116
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4117 4118

    def is_in_links(x):
4119
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4120 4121 4122 4123

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4124
        name=name,
4125 4126
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4127 4128
    in_args = []
    for each_input in input:
4129
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4130
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4131
            mem = memory(
4132
                name=None,
Q
qijun 已提交
4133 4134
                size=each_input.input.size,
                boot_layer=each_input.input)
4135
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4136
            in_args.append(mem)
4137 4138
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4139

Z
zhangjinchao01 已提交
4140 4141 4142 4143 4144
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4145 4146 4147 4148 4149 4150
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4151 4152 4153

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4154
    for layer_out in layer_outs:
4155 4156
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4157 4158
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4159 4160 4161 4162 4163
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4164

Z
zhangjinchao01 已提交
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4193 4194

    def before_real_step(self):
Q
qijun 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4204 4205 4206
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4207
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4225
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4226
    :type input: LayerOutput
4227
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4228
    :type name: basestring
R
ranqiu 已提交
4229 4230
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4231
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4232
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4233 4234 4235 4236
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4247

4248

R
ranqiu 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4263
    :type input1: LayerOutput
R
ranqiu 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4300
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4301
    :type name: basestring
R
ranqiu 已提交
4302
    :param input1: The first input layer.
H
Haonan 已提交
4303
    :type input: LayerOutput
R
ranqiu 已提交
4304
    :param input2: The second input layer.
H
Haonan 已提交
4305
    :type input2: LayerOutput
R
ranqiu 已提交
4306 4307
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4308 4309 4310 4311 4312 4313 4314
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4325

Z
zhangjinchao01 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4342
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4343
    :type name: basestring
R
ranqiu 已提交
4344
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4345
    :type input: LayerOutput
R
ranqiu 已提交
4346
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4347
    :type eos_id: int
R
ranqiu 已提交
4348 4349
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4350
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4351
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4352 4353
    :rtype: LayerOutput
    """
Q
qijun 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4365 4366 4367


@wrap_name_default()
Q
qijun 已提交
4368 4369 4370 4371 4372 4373 4374
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4375
                num_results_per_sample=None):
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4387
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4388 4389 4390 4391
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4392 4393 4394 4395 4396
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4397 4398
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4399 4400
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4401 4402
                               bos_id=0,
                               eos_id=1,
4403
                               beam_size=5)
4404 4405 4406 4407 4408 4409

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4410 4411
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4412
    :type name: basestring
4413
    :param step: A callable function that defines the calculation in a time
4414
                 step, and it is applied to sequences with arbitrary length by
4415 4416 4417 4418 4419
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4420 4421
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4422
                  In beam_search, none of the input's type should be LayerOutput.
4423
    :type input: list
4424 4425 4426
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4427
                   symbol is essential, since it is used to initialize the RNN
4428 4429 4430 4431 4432 4433 4434 4435
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4436 4437
    :param max_length: Max generated sequence length.
    :type max_length: int
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4448 4449
    :return: The generated word index.
    :rtype: LayerOutput
4450 4451
    """

Z
zhangjinchao01 已提交
4452 4453 4454 4455 4456
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4457
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4458 4459 4460 4461 4462 4463
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4464 4465 4466
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4467
        if isinstance(each_input, BaseGeneratedInput):
4468 4469
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4470
            generated_input_index = i
4471

Z
zhangjinchao01 已提交
4472 4473 4474
        else:
            real_input.append(each_input)

4475
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4476 4477 4478 4479 4480 4481 4482 4483

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4484 4485 4486 4487 4488 4489
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4490 4491 4492 4493 4494 4495

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4496
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4497 4498
        return predict

4499 4500
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4501

Q
qijun 已提交
4502

4503 4504
def __cost_input__(input, label, weight=None):
    """
4505
    inputs and parents for cost layers.
4506
    """
C
caoying03 已提交
4507 4508 4509 4510 4511 4512
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4513
    if weight is not None:
4514
        assert weight.size == 1
4515 4516 4517
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4518

Z
zhangjinchao01 已提交
4519 4520

@wrap_name_default()
L
luotao1 已提交
4521
@layer_support()
4522 4523 4524 4525 4526 4527
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4528
    """
4529
    sum of square error cost:
L
Luo Tao 已提交
4530 4531 4532

    ..  math::

4533
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4534

4535
    :param name: The name of this layer. It is optional.
4536
    :type name: basestring
R
ranqiu 已提交
4537
    :param input: The first input layer.
4538
    :type input: LayerOutput
R
ranqiu 已提交
4539
    :param label: The input label.
4540
    :type label: LayerOutput
R
ranqiu 已提交
4541 4542
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4543
    :type weight: LayerOutput
R
ranqiu 已提交
4544
    :param coeff: The weight of the gradient in the back propagation.
4545
                  1.0 is the default value.
4546
    :type coeff: float
R
ranqiu 已提交
4547 4548
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4549
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4550
    :return: LayerOutput object.
4551
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4552
    """
4553 4554
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4555 4556 4557 4558
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4559
        coeff=coeff,
Q
qijun 已提交
4560
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4561
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4562 4563


4564
regression_cost = square_error_cost
L
Luo Tao 已提交
4565 4566


Z
zhangjinchao01 已提交
4567
@wrap_name_default("cost")
4568
@layer_support()
Q
qijun 已提交
4569 4570 4571 4572
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4573
                        evaluator=classification_error_evaluator,
4574 4575
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4576 4577 4578
    """
    classification cost Layer.

4579
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4580
    :type name: basestring
R
ranqiu 已提交
4581
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4582
    :type input: LayerOutput
R
ranqiu 已提交
4583
    :param label: The input label.
Z
zhangjinchao01 已提交
4584
    :type label: LayerOutput
R
ranqiu 已提交
4585 4586
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4587
    :type weight: LayerOutput
R
ranqiu 已提交
4588 4589 4590 4591
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4592
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4593
    :param coeff: The weight of the gradient in the back propagation.
4594
                  1.0 is the default value.
4595
    :type coeff: float
D
dangqingqing 已提交
4596
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4597 4598 4599 4600 4601
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4602 4603 4604

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4605 4606 4607 4608
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4609
        coeff=coeff,
Q
qijun 已提交
4610
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4621
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4622

4623
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4624 4625 4626 4627 4628
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4629
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4630

4631

Q
qijun 已提交
4632 4633 4634 4635 4636 4637 4638 4639 4640
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4641 4642
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4643 4644 4645 4646
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4647
    supports GPU mode.
Z
zhangjinchao01 已提交
4648 4649 4650 4651 4652

    The example usage is:

    .. code-block:: python

4653 4654
       op = conv_operator(img=input1,
                          filter=input2,
4655
                          filter_size=3,
Z
zhangjinchao01 已提交
4656 4657 4658
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4659
    :param img: The input image.
4660
    :type img: LayerOutput
R
ranqiu 已提交
4661
    :param filter: The input filter.
4662
    :type filter: LayerOutput
R
ranqiu 已提交
4663
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4664
    :type filter_size: int
R
ranqiu 已提交
4665 4666 4667
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4668
    :type filter_size_y: int
R
ranqiu 已提交
4669
    :param num_filters: The number of the output channels.
4670
    :type num_filters: int
R
ranqiu 已提交
4671 4672 4673
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4674
    :type num_channels: int
R
ranqiu 已提交
4675
    :param stride: The stride on the x axis.
L
luotao02 已提交
4676
    :type stride: int
R
ranqiu 已提交
4677 4678
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4679
    :type stride_y: int
R
ranqiu 已提交
4680
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4681
    :type padding: int
R
ranqiu 已提交
4682 4683
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4694

4695 4696
    if num_channels is None:
        num_channels = img.num_filters
4697 4698

    assert isinstance(filter, LayerOutput)
4699
    assert filter.size is not None
4700

4701 4702 4703
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4715

4716
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4717 4718
    return op

Q
qijun 已提交
4719

4720
@wrap_param_attr_default()
Q
qijun 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4731 4732
                    param_attr=None,
                    trans=False):
4733
    """
R
ranqiu 已提交
4734 4735 4736
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4737 4738 4739 4740 4741

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4742
       proj = conv_projection(input=input1,
4743 4744 4745 4746
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4747
    :param input: The input of this layer.
4748
    :type input: LayerOutput
R
ranqiu 已提交
4749 4750 4751 4752 4753
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4754
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4755 4756 4757
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4758
    :type filter_size_y: int
R
ranqiu 已提交
4759
    :param num_filters: The number of filters.
4760
    :type num_filters: int
R
ranqiu 已提交
4761
    :param num_channels: The number of the input channels.
4762
    :type num_channels: int
R
ranqiu 已提交
4763 4764 4765 4766 4767 4768 4769
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4770
    :type stride_y: int
R
ranqiu 已提交
4771 4772 4773 4774 4775 4776 4777
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4778 4779 4780
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4781 4782
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4783
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4784
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4785
    :type trans: bool
R
ranqiu 已提交
4786 4787
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4816
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4817 4818 4819 4820 4821
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4822 4823 4824
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4837 4838 4839 4840

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4841

D
dangqingqing 已提交
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4852 4853
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4854

R
ranqiu 已提交
4855 4856 4857 4858
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4859

D
dangqingqing 已提交
4860
    For example,
4861

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4883 4884

    The simply usage is:
D
dangqingqing 已提交
4885 4886 4887 4888 4889 4890 4891 4892

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4893
    :param input: The input of this layer.
D
dangqingqing 已提交
4894
    :type input: LayerOutput
R
ranqiu 已提交
4895
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4896
    :type pad_c: list | None
R
ranqiu 已提交
4897
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4898
    :type pad_h: list | None
R
ranqiu 已提交
4899
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4900
    :type pad_w: list | None
R
ranqiu 已提交
4901 4902
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4903
    :type layer_attr: ExtraLayerAttribute
4904
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4947
@wrap_name_default()
L
luotao1 已提交
4948 4949
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4950
    """
R
ranqiu 已提交
4951
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4952 4953 4954 4955 4956 4957 4958 4959
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4960
    In this formula:
4961 4962 4963 4964
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4965 4966 4967 4968 4969

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4970
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4971

4972
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4973
    :type name: basestring
R
ranqiu 已提交
4974
    :param a: The first input of this layer.
4975
    :type a: LayerOutput
R
ranqiu 已提交
4976
    :param b: The second input of this layer.
4977
    :type b: LayerOutput
R
ranqiu 已提交
4978 4979
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4980
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4982 4983
    :rtype: LayerOutput
    """
4984 4985
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4986 4987 4988
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4989
        inputs=[a.name, b.name],
Q
qijun 已提交
4990
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4991

Q
qijun 已提交
4992 4993
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4994 4995 4996 4997 4998


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4999
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5000
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5001 5002 5003 5004 5005 5006 5007 5008
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5009
    """
R
ranqiu 已提交
5010 5011
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5012 5013

    .. math::
5014
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5015 5016

    In this formular:
5017 5018
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5019 5020
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5021
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5022 5023 5024 5025 5026

    The simple usage is:

    .. code-block:: python

5027
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5028

5029
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5030
    :type name: basestring
R
ranqiu 已提交
5031
    :param a: The first input of this layer.
5032
    :type a: LayerOutput
R
ranqiu 已提交
5033
    :param b: The second input of this layer.
5034
    :type b: LayerOutput
R
ranqiu 已提交
5035 5036
    :param size: The dimension of this layer.
    :type size: int
5037
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5038
    :type act: BaseActivation
R
ranqiu 已提交
5039 5040
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5041
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5042 5043 5044 5045
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5046
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5047 5048
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5049
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5051 5052
    :rtype: LayerOutput
    """
5053
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5054 5055 5056 5057 5058 5059
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5060 5061 5062 5063
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5064 5065 5066 5067 5068 5069


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5070
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5071 5072
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5073
                       select=None,
Q
qijun 已提交
5074 5075
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5076 5077 5078
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5079 5080 5081
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5082 5083
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5084
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5085 5086 5087 5088 5089 5090 5091
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5092
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5093

5094
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5095
    :type name: basestring
R
ranqiu 已提交
5096 5097
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5098 5099 5100 5101
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5102
    :type select: LayerOutput
R
ranqiu 已提交
5103 5104
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5105
    :type size: int
5106
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5107
    :type act: BaseActivation
R
ranqiu 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5118
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5119 5120 5121 5122
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5123
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5124 5125
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5126
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5127
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5128 5129 5130 5131
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5132
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5133 5134
        param_attr = [param_attr]
    else:
5135
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5136 5137
            assert len(input) == len(param_attr)
        else:
5138
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5139
                logger.fatal(
W
wangmeng28 已提交
5140 5141 5142 5143 5144
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5145 5146
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5147 5148 5149 5150
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5151
    Layer(
Q
qijun 已提交
5152 5153 5154
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5155 5156 5157
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5158
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5159 5160 5161 5162
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5163 5164 5165 5166 5167 5168 5169
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5170 5171 5172


@wrap_name_default()
L
luotao1 已提交
5173 5174
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5175
    """
R
ranqiu 已提交
5176
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5177 5178 5179 5180 5181 5182 5183 5184
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5185
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5186
    :type input: LayerOutput
5187
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5188
    :type name: basestring
R
ranqiu 已提交
5189 5190 5191
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5192
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5193 5194
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5195
    l = Layer(
Z
zhangjinchao01 已提交
5196 5197 5198
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5199 5200 5201
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5202 5203 5204


@wrap_name_default()
L
luotao1 已提交
5205
@layer_support()
Q
qijun 已提交
5206 5207 5208 5209
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5210
                          layer_attr=None):
Z
zhangjinchao01 已提交
5211
    """
R
ranqiu 已提交
5212
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5223
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5224
    :type input: LayerOutput
5225
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5226
    :type name: basestring
R
ranqiu 已提交
5227 5228 5229 5230 5231 5232 5233
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5234
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5235 5236 5237 5238 5239 5240 5241 5242
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5243 5244 5245
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5246 5247 5248


@wrap_name_default()
L
luotao1 已提交
5249
@layer_support()
Q
qijun 已提交
5250
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5251
    """
5252 5253 5254 5255
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5256 5257 5258

    .. math::

5259
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5260

5261 5262 5263 5264 5265
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5266

5267
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5268 5269

    In this formular:
5270 5271 5272 5273 5274 5275
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5276 5277 5278 5279 5280

    The simple usage is:

    .. code-block:: python

5281
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5282 5283
                                       size=elem_dim)

5284 5285 5286 5287
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5288
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5289
    :type size: int
5290
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5291
    :type name: basestring
R
ranqiu 已提交
5292 5293 5294
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5295
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5296 5297
    :rtype: LayerOutput
    """
5298 5299 5300 5301
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5302
            size = vectors.size / weights.size
5303 5304
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5305 5306
    Layer(
        name=name,
5307
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5308
        size=size,
5309
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5310 5311 5312
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5313

5314

5315
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5316

5317

Z
zhangjinchao01 已提交
5318
@wrap_name_default()
L
luotao1 已提交
5319
@layer_support()
Z
zhangjinchao01 已提交
5320 5321 5322 5323 5324 5325 5326
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5327
                       num_channels=None,
L
luotao1 已提交
5328 5329
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5330 5331
    """
    Expand feature map to minibatch matrix.
5332
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5333
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5334 5335 5336 5337 5338 5339 5340

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5341
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5342
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5343
    The number of time steps is outputH * outputW and the dimension of each
5344
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5345
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5346

5347 5348 5349 5350
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5351
       block_expand = block_expand_layer(input=layer,
5352
                                         num_channels=128,
5353 5354 5355 5356 5357
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5358
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5359
    :type input: LayerOutput
R
ranqiu 已提交
5360 5361 5362 5363
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5376
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5377 5378 5379 5380
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5381
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5382 5383
    :rtype: LayerOutput
    """
5384 5385 5386
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5404 5405


5406 5407
@wrap_name_default()
@layer_support()
5408
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5409
    """
R
ranqiu 已提交
5410 5411 5412 5413
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5414

5415
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5416 5417 5418
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5419 5420 5421 5422
        `Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf`_
5423

X
xuwei06 已提交
5424 5425 5426 5427 5428 5429 5430 5431
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5432 5433 5434 5435 5436 5437 5438 5439
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5440
    :param input: The input of this layer.
5441
    :type input: LayerOutput
R
ranqiu 已提交
5442 5443 5444 5445
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5446 5447
    :param groups: The group number of input layer.
    :type groups: int
5448
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5449 5450 5451
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5462 5463 5464 5465 5466 5467 5468 5469 5470
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5471 5472


Z
zhangjinchao01 已提交
5473
@wrap_name_default()
L
luotao1 已提交
5474
@layer_support()
Q
qijun 已提交
5475 5476 5477 5478 5479
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5480
              layer_attr=None):
Z
zhangjinchao01 已提交
5481 5482
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5483
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5484 5485
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5486
    Reference:
R
ranqiu 已提交
5487
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5488
        with Recurrent Neural Networks
R
ranqiu 已提交
5489
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5490 5491

    Note:
R
ranqiu 已提交
5492 5493 5494 5495 5496
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5497

C
caoying03 已提交
5498
    The example usage is:
Z
zhangjinchao01 已提交
5499 5500 5501 5502 5503 5504 5505 5506

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5507
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5508
    :type input: LayerOutput
R
ranqiu 已提交
5509
    :param label: The input label.
Z
zhangjinchao01 已提交
5510
    :type label: LayerOutput
R
ranqiu 已提交
5511
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5512
    :type size: int
5513
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5514 5515
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5516
    :type norm_by_times: bool
R
ranqiu 已提交
5517 5518 5519
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5520
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5521 5522 5523 5524
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5525 5526 5527 5528 5529
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5530
    Layer(
5531 5532 5533 5534
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5535
        inputs=[input.name, label.name],
Q
qijun 已提交
5536
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5537 5538
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5539

5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5551
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5552
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5553 5554 5555 5556 5557 5558 5559
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5560
    Reference:
R
ranqiu 已提交
5561
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5562
        with Recurrent Neural Networks
R
ranqiu 已提交
5563
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_
5564 5565

    Note:
R
ranqiu 已提交
5566 5567 5568
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5569
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5570
          should be consistent with those used in your labels.
5571
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5572
          'linear' activation is expected to be used instead in the 'input' layer.
5573

C
caoying03 已提交
5574
    The example usage is:
5575 5576 5577 5578 5579 5580 5581 5582 5583

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5584
    :param input: The input of this layer.
5585
    :type input: LayerOutput
R
ranqiu 已提交
5586
    :param label: The input label.
5587
    :type label: LayerOutput
R
ranqiu 已提交
5588
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5589
    :type size: int
5590
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5591 5592
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5593
    :type blank: int
R
ranqiu 已提交
5594
    :param norm_by_times: Whether to do normalization by times. False is the default.
5595
    :type norm_by_times: bool
R
ranqiu 已提交
5596 5597 5598
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5621
@wrap_name_default()
5622
@wrap_param_attr_default()
L
luotao1 已提交
5623
@layer_support()
Q
qijun 已提交
5624 5625 5626 5627 5628 5629
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5630
              coeff=1.0,
L
luotao1 已提交
5631
              layer_attr=None):
Z
zhangjinchao01 已提交
5632 5633 5634 5635
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5636
    The example usage is:
Z
zhangjinchao01 已提交
5637 5638 5639 5640 5641 5642 5643

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5644
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5645
    :type input: LayerOutput
R
ranqiu 已提交
5646
    :param label: The input label.
5647
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5648 5649
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5650 5651
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5652
    :type weight: LayerOutput
R
ranqiu 已提交
5653 5654
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5655
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5656
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5657 5658
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5659
                  1.0 is the default value.
5660
    :type coeff: float
R
ranqiu 已提交
5661 5662 5663
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5664
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5665 5666 5667 5668 5669
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5670 5671 5672 5673 5674 5675
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5676

Q
qijun 已提交
5677
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5678 5679 5680 5681
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5682 5683 5684 5685
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5686
        coeff=coeff,
Q
qijun 已提交
5687
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5688 5689 5690
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5691 5692 5693 5694
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5695

5696

Z
zhangjinchao01 已提交
5697
@wrap_name_default()
5698
@wrap_param_attr_default()
L
luotao1 已提交
5699
@layer_support()
Q
qijun 已提交
5700 5701 5702 5703 5704
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5705
                       layer_attr=None):
Z
zhangjinchao01 已提交
5706 5707 5708
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5709 5710 5711
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5712

C
caoying03 已提交
5713
    The example usage is:
L
Luo Tao 已提交
5714 5715 5716 5717 5718 5719

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5720 5721
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5722
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5723
    :type size: int
R
ranqiu 已提交
5724 5725 5726 5727
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5728
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5729
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5730 5731 5732 5733
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5734
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5735 5736 5737 5738 5739 5740
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5741
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5742 5743 5744 5745
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5746 5747 5748 5749
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5750
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5751 5752 5753
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5754 5755 5756 5757
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5758

Q
qijun 已提交
5759

C
caoying03 已提交
5760 5761 5762 5763 5764
"""
Following are cost Layers.
"""


5765
@wrap_bias_attr_default(has_bias=True)
5766
@wrap_param_attr_default()
5767 5768
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5769 5770
def nce_layer(input,
              label,
C
caoying03 已提交
5771
              num_classes=None,
5772
              param_attr=None,
Q
qijun 已提交
5773 5774 5775 5776 5777 5778
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5779 5780
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5781 5782

    Reference:
R
ranqiu 已提交
5783 5784
        `A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_
5785 5786 5787 5788 5789

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5790 5791
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5792 5793
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5794
    :param name: The name of this layer. It is optional.
5795
    :type name: basestring
R
ranqiu 已提交
5796
    :param input: The first input of this layer.
R
ranqiu 已提交
5797
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5798
    :param label: The input label.
5799
    :type label: LayerOutput
C
caoying03 已提交
5800
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5801
                   mini-batch. It is optional.
5802
    :type weight: LayerOutput
R
ranqiu 已提交
5803
    :param num_classes: The number of classes.
5804
    :type num_classes: int
5805
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5806
    :type act: BaseActivation
R
ranqiu 已提交
5807 5808
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5809
    :type param_attr: ParameterAttribute
5810 5811
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5812
    :type num_neg_samples: int
C
caoying03 已提交
5813 5814 5815
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5816
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5817 5818 5819
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5820
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5821 5822 5823 5824
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5825
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5826 5827
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5828
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5829
    :return: LayerOutput object.
5830 5831 5832 5833
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5834 5835 5836 5837 5838 5839 5840 5841
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5842
    assert isinstance(input, collections.Sequence)
5843

5844 5845
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5846 5847
    if num_classes is None:
        num_classes = label.size
5848 5849 5850
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5851
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5852

5853 5854
    ipts_for_layer = []
    parents = []
5855
    for each_input, attr in zip(input, param_attr):
5856
        assert isinstance(each_input, LayerOutput)
5857
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5868
    l = Layer(
5869 5870 5871 5872
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5873
        active_type=SigmoidActivation().name,
5874 5875 5876
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5877 5878
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5879 5880 5881 5882
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5883
        activation=SigmoidActivation())
5884 5885


Z
zhangjinchao01 已提交
5886
@wrap_name_default()
L
luotao1 已提交
5887
@layer_support()
Q
qijun 已提交
5888 5889 5890 5891 5892 5893 5894
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5895
    """
R
ranqiu 已提交
5896 5897 5898
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5899 5900
        `Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_
Z
zhangjinchao01 已提交
5901 5902 5903

    .. math::

L
luotao02 已提交
5904
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5905

L
luotao02 已提交
5906
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5907

L
luotao02 已提交
5908
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5909 5910 5911 5912 5913 5914 5915 5916

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5917
    The example usage is:
Z
zhangjinchao01 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5931 5932
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5933
    :type weight: LayerOutput
R
ranqiu 已提交
5934
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5935 5936
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5937
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5938
    :type coeff: float
R
ranqiu 已提交
5939 5940
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5941
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5955 5956 5957 5958 5959 5960
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5961

X
xuwei06 已提交
5962
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5963

5964

Z
zhangjinchao01 已提交
5965
@wrap_name_default()
L
luotao1 已提交
5966
@layer_support()
Q
qijun 已提交
5967 5968 5969 5970 5971 5972
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5973 5974 5975
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5976
    The example usage is:
Z
zhangjinchao01 已提交
5977 5978 5979 5980 5981 5982 5983 5984

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5985 5986
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5987
    :type input: LayerOutput
R
ranqiu 已提交
5988
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5989 5990
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5991
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5992
                     minimum size of the list.
Z
zhangjinchao01 已提交
5993
    :type NDCG_num: int
R
ranqiu 已提交
5994 5995 5996 5997 5998
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5999
    :type max_sort_size: int
R
ranqiu 已提交
6000
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6001 6002 6003
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6004
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6005
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6006 6007
    :rtype: LayerOutput
    """
6008 6009 6010
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6011 6012 6013 6014 6015 6016 6017
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6018

Q
qijun 已提交
6019 6020
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6021

6022

Z
zhangjinchao01 已提交
6023
@wrap_name_default()
L
luotao1 已提交
6024
@layer_support()
6025 6026 6027 6028 6029 6030
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6031 6032 6033
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6034 6035
    The example usage is:

Z
zhangjinchao01 已提交
6036 6037
    .. code-block:: python

X
xuwei06 已提交
6038
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6039
                            label=label_layer)
Z
zhangjinchao01 已提交
6040 6041 6042 6043

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6044
    :type input: LayerOutput
R
ranqiu 已提交
6045
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6046 6047
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6048
                  1.0 is the default value.
R
ranqiu 已提交
6049
    :type coeff: float
R
ranqiu 已提交
6050 6051
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6052
    :type weight: LayerOutout
R
ranqiu 已提交
6053 6054
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6055
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6056
    :return: LayerOutput object.
R
ranqiu 已提交
6057
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6058 6059
    """

6060
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6061 6062 6063
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6064
        inputs=ipts,
Q
qijun 已提交
6065 6066
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6067
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6068

6069

Z
zhangjinchao01 已提交
6070
@wrap_name_default()
L
luotao1 已提交
6071
@layer_support()
Q
qijun 已提交
6072 6073 6074 6075
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6076 6077
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6078 6079
    """
    A loss layer for multi class entropy with selfnorm.
6080
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6081

C
caoying03 已提交
6082 6083
    The example usage is:

Z
zhangjinchao01 已提交
6084 6085
    .. code-block:: python

X
xuwei06 已提交
6086
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6087
                                          label=label_layer)
Z
zhangjinchao01 已提交
6088 6089

    :param input: The first input layer.
R
ranqiu 已提交
6090
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6091
    :param label: The input label.
R
ranqiu 已提交
6092
    :type input: LayerOutput
R
ranqiu 已提交
6093
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6094 6095
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6096
                  1.0 is the default value.
R
ranqiu 已提交
6097
    :type coeff: float
Z
zhangjinchao01 已提交
6098
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6099 6100 6101
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6102
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6103
    :return: LayerOutput object.
R
ranqiu 已提交
6104
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6105
    """
Q
qijun 已提交
6106 6107 6108 6109 6110 6111 6112
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6113

Q
qijun 已提交
6114 6115 6116 6117 6118
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6119

6120

X
xuwei06 已提交
6121 6122 6123 6124
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6125
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6126

C
caoying03 已提交
6127 6128
    The example usage is:

X
xuwei06 已提交
6129 6130
    .. code-block:: python

L
Luo Tao 已提交
6131
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6132

R
ranqiu 已提交
6133
    :param input: The input of this layer.
R
ranqiu 已提交
6134
    :type input: LayerOutput
R
ranqiu 已提交
6135
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6136 6137 6138
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6139 6140 6141 6142
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6143
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6144 6145 6146 6147 6148
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6149

Q
qijun 已提交
6150
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6151 6152


Z
zhangjinchao01 已提交
6153
@wrap_name_default()
L
luotao1 已提交
6154
@layer_support()
L
Luo Tao 已提交
6155 6156 6157 6158 6159 6160
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6161
    """
6162 6163 6164
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6165 6166 6167 6168 6169
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6170

C
caoying03 已提交
6171 6172
    The example usage is:

Z
zhangjinchao01 已提交
6173 6174
    .. code-block:: python

L
Luo Tao 已提交
6175
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6176 6177

    :param input: The first input layer.
R
ranqiu 已提交
6178
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6179
    :param label: The input label.
R
ranqiu 已提交
6180
    :type input: LayerOutput
R
ranqiu 已提交
6181
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6182
    :type name: basestring
L
Luo Tao 已提交
6183
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6184 6185
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6186
                  1.0 is the default value.
R
ranqiu 已提交
6187 6188 6189
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6190
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6191
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6192 6193
    :rtype: LayerOutput.
    """
6194
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6206
@wrap_name_default()
L
luotao1 已提交
6207
@layer_support()
6208 6209 6210 6211 6212
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6213
    """
6214 6215 6216
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6217 6218 6219
    loss is defined as:

    .. math:
6220
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6221
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6222

C
caoying03 已提交
6223 6224
    The example usage is:

Z
zhangjinchao01 已提交
6225 6226
    .. code-block:: python

6227
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6228 6229

    :param input: The first input layer.
R
ranqiu 已提交
6230
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6231
    :param label: The input label.
R
ranqiu 已提交
6232
    :type input: LayerOutput
R
ranqiu 已提交
6233
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6234 6235
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6236
                  1.0 is the default value.
R
ranqiu 已提交
6237 6238 6239
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6240
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6241
    :return: LayerOutput object.
R
ranqiu 已提交
6242
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6243
    """
6244 6245 6246
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6247 6248
    Layer(
        name=name,
6249
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6250 6251 6252
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6253 6254
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6255

6256

Z
zhangjinchao01 已提交
6257
@wrap_name_default()
L
luotao1 已提交
6258
@layer_support()
Q
qijun 已提交
6259 6260 6261 6262
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6263
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6264 6265 6266
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6267 6268
    The example usage is:

Z
zhangjinchao01 已提交
6269 6270
    .. code-block:: python

X
xuwei06 已提交
6271
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6272
                                               label=label_layer)
Z
zhangjinchao01 已提交
6273 6274 6275 6276 6277

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6278
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6279 6280
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6281
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6282
    :type coeff: float
R
ranqiu 已提交
6283 6284
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6285
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6286
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6287 6288 6289
    :rtype: LayerOutput
    """

6290 6291
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6292 6293 6294 6295
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6308 6309


C
caoying03 已提交
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6332 6333
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6334
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6335
    """
C
caoying03 已提交
6336 6337 6338
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6339

C
caoying03 已提交
6340 6341 6342 6343 6344
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6345

C
caoying03 已提交
6346 6347 6348 6349 6350
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6351

C
caoying03 已提交
6352 6353 6354
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6355

C
caoying03 已提交
6356 6357 6358 6359
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6360

C
caoying03 已提交
6361 6362 6363
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6364
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6365 6366
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6367

D
dangqingqing 已提交
6368

C
caoying03 已提交
6369 6370
    The example usage is:

D
dangqingqing 已提交
6371 6372
    .. code-block:: python

C
caoying03 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6385
    :param input: Input beams for this layer.
C
caoying03 已提交
6386
    :type input: BeamInput
R
ranqiu 已提交
6387
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6414 6415 6416
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6417 6418
@wrap_name_default()
@layer_support()
6419
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6420 6421
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6422
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6432
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6433

R
ranqiu 已提交
6434
    Reference:
R
ranqiu 已提交
6435 6436
        `Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf`_
D
dangqingqing 已提交
6437

C
caoying03 已提交
6438 6439
    The example usage is:

D
dangqingqing 已提交
6440 6441
    .. code-block:: python

6442 6443
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6444 6445 6446 6447 6448

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6449
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6450
    :type name: basestring
R
ranqiu 已提交
6451
    :param coeff: The weight of the gradient in the back propagation.
6452
                  1.0 is the default value.
6453
    :type coeff: float
R
ranqiu 已提交
6454 6455
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6468
        coeff=coeff,
D
dangqingqing 已提交
6469 6470 6471
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6472 6473 6474 6475 6476


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6477 6478 6479
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6480
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6481 6482
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6483 6484 6485 6486 6487 6488 6489 6490

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6491 6492
    The example usage is:

W
wwhu 已提交
6493 6494 6495 6496 6497 6498
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6499
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6500
    :type name: basestring
R
ranqiu 已提交
6501 6502
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6526 6527


6528 6529 6530 6531
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6532 6533 6534 6535 6536 6537
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6538
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6539
    :type name: basestring
R
ranqiu 已提交
6540
    :param input: The input of this layer.
R
ranqiu 已提交
6541 6542 6543 6544 6545
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6546 6547 6548 6549 6550 6551 6552
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6553 6554


D
dangqingqing 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6568
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6569 6570 6571 6572 6573 6574 6575
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6576
    efficient manner to improve unidirectional RNNs.
6577

R
ranqiu 已提交
6578
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6579 6580 6581 6582
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6583

D
dangqingqing 已提交
6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6599
    :param input: The input of this layer.
D
dangqingqing 已提交
6600 6601 6602 6603
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6604
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6605
    :type act: BaseActivation
R
ranqiu 已提交
6606 6607
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6608
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6609 6610
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6611
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6627 6628


6629 6630 6631 6632 6633
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6634 6635
                channel_shared=None,
                num_channels=None,
6636 6637 6638
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6639
    The Parametric Relu activation that actives outputs with a learnable weight.
6640 6641

    Reference:
R
ranqiu 已提交
6642 6643
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_
6644 6645 6646 6647 6648

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6649 6650 6651 6652 6653 6654
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6655
    :param name: The name of this layer. It is optional.
6656
    :type name: basestring
R
ranqiu 已提交
6657
    :param input: The input of this layer.
6658
    :type input: LayerOutput
R
ranqiu 已提交
6659
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6660 6661

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6662 6663
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6664 6665

    :type partial_sum: int
6666
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6667

6668 6669
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6670

6671
    :type channel_shared: bool
6672 6673
    :param num_channels: number of input channel.
    :type num_channels: int
6674
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6675 6676 6677
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6678
    :type layer_attr: ExtraLayerAttribute | None
6679 6680 6681 6682
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6683
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6684

6685
    if not param_attr:
X
xzl 已提交
6686
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6687 6688 6689 6690
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6691 6692
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6693 6694 6695 6696
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6697 6698
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6699 6700 6701 6702
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6703 6704 6705

    l = Layer(
        name=name,
C
caoying03 已提交
6706
        type=LayerType.PRELU,
C
caoying03 已提交
6707
        inputs=Input(input.name, **param_attr.attr),
6708 6709 6710 6711 6712 6713
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6714
        num_filters=num_channels,
6715
        size=l.config.size)
6716 6717


6718
@wrap_name_default()
C
caoying03 已提交
6719
@layer_support(ERROR_CLIPPING, DROPOUT)
6720 6721 6722 6723 6724 6725 6726
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6727 6728
                     gate_bias_attr=True,
                     inproj_attr=None,
6729 6730 6731 6732 6733 6734 6735
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6736
    product between :match:`X'` and :math:`\sigma` is finally returned.
6737 6738

    Reference:
R
ranqiu 已提交
6739 6740
        `Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083`_
6741 6742 6743 6744 6745 6746 6747 6748 6749

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6750
    :param input: The input of this layer.
6751
    :type input: LayerOutput
R
ranqiu 已提交
6752
    :param size: The dimension of this layer's output.
6753
    :type size: int
6754 6755
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6756
    :type act: BaseActivation
6757
    :param name: The name of this layer. It is optional.
6758
    :type name: basestring
R
ranqiu 已提交
6759 6760
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6761
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6762 6763 6764
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6765
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6766
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6767
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6768 6769 6770
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6771
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6772 6773 6774
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6775
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6776
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6777
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6778 6779 6780
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6781
    :type layer_attr: ExtraLayerAttribute | None
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6794
        layer_attr=inproj_attr,
6795 6796 6797 6798 6799 6800 6801 6802 6803
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6804
        param_attr=gate_param_attr,
6805 6806 6807 6808 6809
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6810 6811


6812
@layer_support()
6813
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6814 6815
def switch_order_layer(input,
                       name=None,
6816
                       reshape_axis=None,
W
wanghaoshuang 已提交
6817 6818
                       act=None,
                       layer_attr=None):
6819
    """
6820
    This layer switch dimension order of image input.
6821 6822
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6823 6824 6825 6826

    The example usage is:

    .. code-block:: python
6827 6828
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6829
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6830

R
ranqiu 已提交
6831
    :param input: The input of this layer.
6832
    :type input: LayerOutput
6833
    :param name: The name of this layer. It is optional.
6834
    :type name: basestring
R
ranqiu 已提交
6835 6836
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6837 6838 6839
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6840
    assert isinstance(input, LayerOutput)
6841 6842 6843 6844 6845
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6846 6847
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6848
        inputs=input.name,
6849 6850
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6851
        active_type=act.name,
6852 6853 6854
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6855
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6856
        activation=act,
6857 6858
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6859 6860


6861 6862
@wrap_name_default()
@layer_support()
6863
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6864
    """
R
ranqiu 已提交
6865 6866 6867
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6868

6869 6870 6871
    The example usage is:

    .. code-block:: python
W
whs 已提交
6872
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6873

R
ranqiu 已提交
6874 6875
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
6876
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
6877 6878
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6879
    :type offset: Sequence
R
ranqiu 已提交
6880
    :param axis: The start axis to be cropped. For image input layer:
6881 6882 6883 6884
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6885 6886
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6887
    :type shape: Sequence | None
6888
    :param name: The name of this layer. It is optional.
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6910 6911


C
caoying03 已提交
6912 6913
@wrap_name_default()
@layer_support()
6914
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6915
    """
6916
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6917
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6918

C
caoying03 已提交
6919 6920 6921
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6922 6923 6924 6925

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6926

R
ranqiu 已提交
6927
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6928

C
caoying03 已提交
6929

R
ranqiu 已提交
6930
    :param input: The input of this layer. It is a nested sequence.
6931
    :type input: LayerOutput
R
ranqiu 已提交
6932
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6933
    :type input: LayerOutput
6934
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6935 6936 6937 6938
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6939

6940 6941 6942 6943 6944 6945 6946
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6947
    l = Layer(
6948 6949
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6950 6951 6952 6953 6954 6955 6956
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6957 6958


G
guosheng 已提交
6959
@wrap_name_default("clip")
6960
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6961 6962 6963 6964 6965 6966 6967 6968 6969
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6970
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6971

6972
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6973
    :type name: basestring
R
ranqiu 已提交
6974
    :param input: The input of this layer.
G
guosheng 已提交
6975
    :type input: LayerOutput.
6976
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6977
    :type min: float
6978
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6979
    :type max: float
6980 6981
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6982 6983 6984 6985 6986
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6987 6988
        min=min,
        max=max)
G
guosheng 已提交
6989 6990
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6991 6992


6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7017
    :param name: The name of this layer. It is optional.
7018
    :type name: basestring
R
ranqiu 已提交
7019
    :param input: The input of this layer, which should be a sequence.
7020
    :type input: LayerOutput
R
ranqiu 已提交
7021
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7022
    :type starts: LayerOutput | None
R
ranqiu 已提交
7023
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7024
    :type ends: LayerOutput | None
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7056 7057


7058 7059
@wrap_name_default()
@layer_support()
7060
def kmax_seq_score_layer(input, name=None, beam_size=1):
7061
    """
R
ranqiu 已提交
7062
    This layer accepts one input which is scores over a sequence or a nested
7063 7064 7065 7066
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7067
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7068 7069


7070
    :param name: The name of this layer. It is optional.
7071
    :type name: basestring
R
ranqiu 已提交
7072 7073
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7074
    :type input: LayerOutput
R
ranqiu 已提交
7075 7076
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7077 7078 7079
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7080
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7081
                                            "accepts only one input.")
7082
    assert input.size == 1, (
7083
        "input of kmax_seq_score_layer is a score "
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7094 7095


7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7122
        conv = img_conv3d_layer(input=data, filter_size=1,
7123 7124 7125 7126 7127
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7128
    :param name: The name of this layer. It is optional.
7129
    :type name: basestring
R
ranqiu 已提交
7130
    :param input: The input of this layer.
7131
    :type input: LayerOutput
R
ranqiu 已提交
7132 7133
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7134
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7135 7136
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7137
    :param act: Activation type. ReluActivation is the default activation.
7138
    :type act: BaseActivation
R
ranqiu 已提交
7139
    :param groups: The number of the filter groups.
7140
    :type groups: int
R
ranqiu 已提交
7141 7142
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7143
    :type stride: int | tuple | list
R
ranqiu 已提交
7144 7145
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7146
    :type padding: int | tuple | list
R
ranqiu 已提交
7147 7148 7149
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7150
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7151
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7152 7153
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7154
    :type num_channels: int
R
ranqiu 已提交
7155 7156
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7157
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7158
    :param shared_biases: Whether biases will be shared between filters or not.
7159
    :type shared_biases: bool
R
ranqiu 已提交
7160 7161
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7162
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7163
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7164
    :type trans: bool
R
ranqiu 已提交
7165
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7166 7167 7168
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7169 7170 7171 7172 7173 7174 7175
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7176 7177 7178 7179 7180 7181
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7182

C
chengduoZH 已提交
7183 7184 7185 7186 7187 7188
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7189

C
chengduoZH 已提交
7190 7191 7192 7193 7194 7195
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7242 7243


G
guosheng 已提交
7244 7245 7246 7247 7248
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7249
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7250
    the input matrix. For each element, the layer first re-scales it and then
7251 7252
    adds a bias to it.

X
xuwei06 已提交
7253
    This layer is very like the SlopeInterceptLayer, except the scale and
7254 7255
    bias are trainable.

G
guosheng 已提交
7256 7257 7258 7259 7260 7261 7262 7263
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7264
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7265
    :type name: basestring
R
ranqiu 已提交
7266 7267
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7268 7269
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7270
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7271 7272 7273
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7274
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7285 7286 7287 7288 7289 7290 7291 7292 7293


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7294
    :param input: The input of this layer.
7295 7296 7297
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7298
    :param size: The resized output dimension of this layer.
7299 7300 7301 7302 7303 7304
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7324 7325
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7326
    :type offsets: LayerOutput
R
ranqiu 已提交
7327
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7328
    :type sizes: LayerOutput
7329
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7330
    :type act: BaseActivation.
R
ranqiu 已提交
7331 7332 7333
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7359 7360


Y
yangyaming 已提交
7361 7362
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7363
    """
Y
yangyaming 已提交
7364 7365 7366 7367 7368 7369
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7370 7371 7372

    .. code-block:: python

Y
yangyaming 已提交
7373 7374 7375
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7391 7392
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7393 7394 7395 7396 7397 7398 7399
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7400
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7401 7402 7403 7404 7405
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7406
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7407
        parents=[input, indices],
Y
yangyaming 已提交
7408
        num_filters=input.num_filters,
Y
yangyaming 已提交
7409
        size=input.size)
7410 7411


7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7426 7427 7428 7429 7430
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7431 7432
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7433

7434 7435 7436 7437
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7438 7439

    For details of Factorization Machine, please refer to the paper:
7440
    Factorization machines.
7441

7442
    .. code-block:: python
W
wangmeng28 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7454 7455
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7456
                        the latent vector size.
7457 7458 7459
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7460 7461
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)