Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0ed51ce2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0ed51ce2
编写于
7月 17, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug of type check of inputs to recurrent_group.
上级
45ce1649
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
22 addition
and
37 deletion
+22
-37
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+15
-36
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+7
-1
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0ed51ce2
...
...
@@ -3529,12 +3529,7 @@ def SubsequenceInput(input):
@
wrap_name_default
(
"recurrent_group"
)
def
recurrent_group
(
step
,
input
,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
,
is_generating
=
False
):
def
recurrent_group
(
step
,
input
,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
...
...
@@ -3600,21 +3595,12 @@ def recurrent_group(step,
:type targetInlink: LayerOutput|SubsequenceInput
:param is_generating: If is generating, none of input type should be LayerOutput;
else, for training or testing, one of the input type must
be LayerOutput.
:type is_generating: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
model_type
(
'recurrent_nn'
)
def
is_single_input
(
x
):
return
isinstance
(
x
,
LayerOutput
)
or
isinstance
(
x
,
StaticInput
)
if
is_single_input
(
input
):
if
isinstance
(
input
,
LayerOutput
)
or
isinstance
(
input
,
StaticInput
):
input
=
[
input
]
assert
isinstance
(
input
,
collections
.
Sequence
)
...
...
@@ -3628,13 +3614,8 @@ def recurrent_group(step,
in_links
=
map
(
lambda
x
:
x
.
name
,
in_links
),
seq_reversed
=
reverse
)
in_args
=
[]
has_LayerOutput
=
False
for
each_input
in
input
:
assert
is_single_input
(
each_input
)
if
isinstance
(
each_input
,
LayerOutput
):
in_args
.
append
(
each_input
)
has_LayerOutput
=
True
else
:
# StaticInput
if
isinstance
(
each_input
,
StaticInput
):
# StaticInput
mem_name
=
"__%s_memory__"
%
each_input
.
input
.
name
mem
=
memory
(
name
=
None
,
...
...
@@ -3642,8 +3623,8 @@ def recurrent_group(step,
boot_layer
=
each_input
.
input
)
mem
.
set_input
(
mem
)
in_args
.
append
(
mem
)
assert
(
is_generating
!=
has_LayerOut
put
)
else
:
in_args
.
append
(
each_in
put
)
layer_outs
=
step
(
*
in_args
)
...
...
@@ -3869,6 +3850,7 @@ def beam_search(step,
:type step: callable
:param input: Input data for the recurrent unit, which should include the
previously generated words as a GeneratedInput object.
In beam_search, none of the input's type should be LayerOutput.
:type input: list
:param bos_id: Index of the start symbol in the dictionary. The start symbol
is a special token for NLP task, which indicates the
...
...
@@ -3910,15 +3892,18 @@ def beam_search(step,
real_input
=
[]
for
i
,
each_input
in
enumerate
(
input
):
assert
isinstance
(
each_input
,
StaticInput
)
or
isinstance
(
each_input
,
BaseGeneratedInput
)
assert
not
isinstance
(
each_input
,
LayerOutput
),
(
"in beam_search, "
"none of the input should has a type of LayerOutput."
)
if
isinstance
(
each_input
,
BaseGeneratedInput
):
assert
generated_input_index
==
-
1
assert
generated_input_index
==
-
1
,
(
"recurrent_group accepts "
"only one GeneratedInput."
)
generated_input_index
=
i
else
:
real_input
.
append
(
each_input
)
assert
generated_input_index
!=
-
1
assert
generated_input_index
!=
-
1
,
"No GeneratedInput is given."
gipt
=
input
[
generated_input_index
]
...
...
@@ -3942,14 +3927,8 @@ def beam_search(step,
eos_layer
(
input
=
predict
,
eos_id
=
eos_id
,
name
=
eos_name
)
return
predict
tmp
=
recurrent_group
(
step
=
__real_step__
,
input
=
real_input
,
reverse
=
False
,
name
=
name
,
is_generating
=
True
)
return
tmp
return
recurrent_group
(
step
=
__real_step__
,
input
=
real_input
,
reverse
=
False
,
name
=
name
)
def
__cost_input__
(
input
,
label
,
weight
=
None
):
...
...
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
0ed51ce2
...
...
@@ -15,6 +15,7 @@
"""
# from activations import *
import
pdb
from
activations
import
LinearActivation
,
ReluActivation
,
SoftmaxActivation
,
\
IdentityActivation
,
TanhActivation
,
SequenceSoftmaxActivation
from
attrs
import
ExtraAttr
...
...
@@ -614,6 +615,7 @@ def simple_lstm(input,
@
wrap_name_default
(
'lstm_unit'
)
def
lstmemory_unit
(
input
,
out_memory
=
None
,
memory_boot
=
None
,
name
=
None
,
size
=
None
,
...
...
@@ -694,7 +696,11 @@ def lstmemory_unit(input,
if
size
is
None
:
assert
input
.
size
%
4
==
0
size
=
input
.
size
/
4
out_mem
=
memory
(
name
=
name
,
size
=
size
)
if
out_memory
is
None
:
out_mem
=
memory
(
name
=
name
,
size
=
size
)
else
:
out_mem
=
out_memory
state_mem
=
memory
(
name
=
"%s_state"
%
name
,
size
=
size
,
boot_layer
=
memory_boot
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录