Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
0e617300
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e617300
编写于
7月 03, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
stride pooling for max and average layer
上级
03fd5f6b
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
103 addition
and
15 deletion
+103
-15
paddle/gserver/layers/MaxLayer.h
paddle/gserver/layers/MaxLayer.h
+5
-0
paddle/gserver/layers/SequenceLastInstanceLayer.cpp
paddle/gserver/layers/SequenceLastInstanceLayer.cpp
+1
-2
paddle/gserver/layers/SequencePoolLayer.cpp
paddle/gserver/layers/SequencePoolLayer.cpp
+2
-3
paddle/gserver/layers/SequencePoolLayer.h
paddle/gserver/layers/SequencePoolLayer.h
+0
-2
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+10
-2
paddle/parameter/Argument.cpp
paddle/parameter/Argument.cpp
+3
-3
paddle/parameter/Argument.h
paddle/parameter/Argument.h
+1
-1
paddle/parameter/tests/test_argument.cpp
paddle/parameter/tests/test_argument.cpp
+2
-2
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+8
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+12
-0
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
...ers/tests/configs/protostr/test_sequence_pooling.protostr
+51
-0
python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py
...ner_config_helpers/tests/configs/test_sequence_pooling.py
+8
-0
未找到文件。
paddle/gserver/layers/MaxLayer.h
浏览文件 @
0e617300
...
...
@@ -26,6 +26,11 @@ namespace paddle {
* If SequenceLevel = kNonSeq:
* Output: output size is the number of input sequences (NOT input instances)
* output[i] = max_{for each instance in this sequence}{input[i]}
* If stride_ > 0:
* Output: a shorten sequence. The operation of getting max instance of a
* sequence is independently performed on every slice of the input
* sequence, which is obtained by sliding a window with the window
* size set to stride_.
* If SequenceLevel = kSeq:
* Check input sequence must has sub-sequence
* Output: output size is the number of input sub-sequences
...
...
paddle/gserver/layers/SequenceLastInstanceLayer.cpp
浏览文件 @
0e617300
...
...
@@ -73,8 +73,7 @@ bool SequenceLastInstanceLayer::init(const LayerMap& layerMap,
void
SequenceLastInstanceLayer
::
forward
(
PassType
passType
)
{
SequencePoolLayer
::
forward
(
passType
);
auto
starts
=
(
stride_
>
0
)
?
stridePositions_
->
getData
()
:
startPositions_
->
getData
(
false
);
auto
starts
=
startPositions_
->
getData
(
false
);
MatrixPtr
inputValue
=
getInputValue
(
0
);
MatrixPtr
outputValue
=
getOutputValue
();
...
...
paddle/gserver/layers/SequencePoolLayer.cpp
浏览文件 @
0e617300
...
...
@@ -72,9 +72,8 @@ void SequencePoolLayer::forward(PassType passType) {
if
(
stride_
>
0
)
{
CHECK_EQ
(
input
.
hasSubseq
(),
0UL
)
<<
"sequence stride pooling is invalid for hasSubseq now"
;
output_
.
poolSequenceWithStride
(
input
,
stride_
,
&
stridePositions_
,
reversed_
);
newBatchSize_
=
stridePositions_
->
getSize
()
-
1
;
output_
.
poolSequenceWithStride
(
input
,
stride_
,
&
startPositions_
,
reversed_
);
newBatchSize_
=
startPositions_
->
getSize
()
-
1
;
}
resetOutput
(
newBatchSize_
,
dim
);
...
...
paddle/gserver/layers/SequencePoolLayer.h
浏览文件 @
0e617300
...
...
@@ -47,8 +47,6 @@ protected:
size_t
newBatchSize_
;
ICpuGpuVectorPtr
startPositions_
;
int
stride_
;
// Store the start position of each window.
IVectorPtr
stridePositions_
;
// Whether the input sequence is reversed or not.
bool
reversed_
=
false
;
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
0e617300
...
...
@@ -845,8 +845,12 @@ void testDegradeLayer(bool hasSubseq,
TEST
(
Layer
,
MaxLayer
)
{
testDegradeLayer
(
false
,
"max"
,
"non-seq"
,
-
1
);
// seq max to non-seq
testDegradeLayer
(
true
,
"max"
,
"non-seq"
,
-
1
);
// hasSubseq max to non-seq
testDegradeLayer
(
true
,
"max"
,
"seq"
,
-
1
);
// hasSubseq max to seq
testDegradeLayer
(
false
,
"max"
,
"non-seq"
,
5
);
// seq max to a shorten seq, stride window = 5
testDegradeLayer
(
true
,
"max"
,
"non-seq"
,
-
1
);
// hasSubseq max to non-seq
testDegradeLayer
(
true
,
"max"
,
"seq"
,
-
1
);
// hasSubseq max to seq
}
TEST
(
Layer
,
SequenceLastInstanceLayer
)
{
...
...
@@ -868,6 +872,10 @@ TEST(Layer, SequenceLastInstanceLayer) {
TEST
(
Layer
,
AverageLayer
)
{
testDegradeLayer
(
false
,
"average"
,
"non-seq"
,
-
1
);
// seq average to non-seq
testDegradeLayer
(
false
,
"max"
,
"non-seq"
,
5
);
// seq average to a shorten seq, stride window = 5
testDegradeLayer
(
true
,
"average"
,
"non-seq"
,
-
1
);
// hasSubseq average to non-seq
testDegradeLayer
(
true
,
"average"
,
"seq"
,
-
1
);
// hasSubseq average to seq
...
...
paddle/parameter/Argument.cpp
浏览文件 @
0e617300
...
...
@@ -561,7 +561,7 @@ void Argument::degradeSequence(const Argument& input) {
void
Argument
::
poolSequenceWithStride
(
const
Argument
&
input
,
size_t
stride
,
IVectorPtr
*
stridePostions
,
I
CpuGpu
VectorPtr
*
stridePostions
,
bool
reversed
)
{
// If input.sequenceStartPositions = [0, 9, 14, 17, 30] and stride = 5,
// then sequenceStartPositions = [0, 2, 3, 4, 7].
...
...
@@ -598,8 +598,8 @@ void Argument::poolSequenceWithStride(const Argument& input,
stridePos
.
emplace_back
(
starts
[
numSequences
]);
int
size
=
stridePos
.
size
();
CHECK_EQ
(
size
-
1
,
tgtBuf
[
numSequences
]);
IVector
::
resizeOrCreate
(
*
stridePostions
,
size
,
false
);
(
*
stridePostions
)
->
copyFrom
(
stridePos
.
data
(),
size
);
I
CpuGpu
Vector
::
resizeOrCreate
(
*
stridePostions
,
size
,
false
);
(
*
stridePostions
)
->
getMutableVector
(
false
)
->
copyFrom
(
stridePos
.
data
(),
size
);
}
void
Argument
::
getValueString
(
...
...
paddle/parameter/Argument.h
浏览文件 @
0e617300
...
...
@@ -299,7 +299,7 @@ struct Argument {
*/
void
poolSequenceWithStride
(
const
Argument
&
input
,
size_t
stride
,
IVectorPtr
*
stridePositions
,
I
CpuGpu
VectorPtr
*
stridePositions
,
bool
reversed
=
false
);
/**
* @brief getValueString will return the argument's output in string. There
...
...
paddle/parameter/tests/test_argument.cpp
浏览文件 @
0e617300
...
...
@@ -31,7 +31,7 @@ TEST(Argument, poolSequenceWithStride) {
int
strideResultReversed
[]
=
{
0
,
4
,
9
,
14
,
17
,
20
,
25
,
30
};
for
(
auto
reversed
:
{
false
,
true
})
{
IVectorPtr
stridePositions
;
I
CpuGpu
VectorPtr
stridePositions
;
output
.
poolSequenceWithStride
(
input
,
5
/* stride */
,
&
stridePositions
,
reversed
);
...
...
@@ -45,7 +45,7 @@ TEST(Argument, poolSequenceWithStride) {
CHECK_EQ
(
stridePositions
->
getSize
(),
8UL
);
auto
result
=
reversed
?
strideResultReversed
:
strideResult
;
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
CHECK_EQ
(
stridePositions
->
getData
()[
i
],
result
[
i
]);
CHECK_EQ
(
stridePositions
->
getData
(
false
)[
i
],
result
[
i
]);
}
}
}
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
0e617300
...
...
@@ -2420,10 +2420,14 @@ class MaxLayer(LayerBase):
trans_type
=
'non-seq'
,
bias
=
False
,
output_max_index
=
None
,
stride
=-
1
,
**
xargs
):
super
(
MaxLayer
,
self
).
__init__
(
name
,
'max'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'MaxLayer must have 1 input'
)
if
trans_type
==
'seq'
:
config_assert
(
stride
==
-
1
,
'subseq does not support stride window'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
seq_pool_stride
=
stride
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
self
.
set_layer_size
(
input_layer
.
size
)
...
...
@@ -2685,11 +2689,15 @@ class AverageLayer(LayerBase):
average_strategy
=
'average'
,
trans_type
=
'non-seq'
,
bias
=
False
,
stride
=-
1
,
**
xargs
):
super
(
AverageLayer
,
self
).
__init__
(
name
,
'average'
,
0
,
inputs
=
inputs
,
**
xargs
)
self
.
config
.
average_strategy
=
average_strategy
if
trans_type
==
'seq'
:
config_assert
(
stride
==
-
1
,
'subseq does not support stride window'
)
self
.
config
.
trans_type
=
trans_type
self
.
config
.
seq_pool_stride
=
stride
config_assert
(
len
(
inputs
)
==
1
,
'AverageLayer must have 1 input'
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
0e617300
...
...
@@ -1090,10 +1090,16 @@ def pooling_layer(input,
name
=
None
,
bias_attr
=
None
,
agg_level
=
AggregateLevel
.
TO_NO_SEQUENCE
,
stride
=-
1
,
layer_attr
=
None
):
"""
Pooling layer for sequence inputs, not used for Image.
If stride > 0, this layer slides a window whose size is determined by stride,
and return the pooling value of the window as the output. Thus, a long sequence
will be shorten. Note that for sequence with sub-sequence, the default value
of stride is -1.
The example usage is:
.. code-block:: python
...
...
@@ -1112,6 +1118,8 @@ def pooling_layer(input,
:param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
SumPooling, SquareRootNPooling.
:type pooling_type: BasePoolingType|None
:param stride: window size.
:type stride: Int
:param bias_attr: Bias parameter attribute. False if no bias.
:type bias_attr: ParameterAttribute|None|False
:param layer_attr: The Extra Attributes for layer, such as dropout.
...
...
@@ -1129,12 +1137,16 @@ def pooling_layer(input,
extra_dict
[
'output_max_index'
]
=
pooling_type
.
output_max_index
extra_dict
.
update
(
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
if
agg_level
==
AggregateLevel
.
TO_SEQUENCE
:
assert
stride
==
-
1
Layer
(
name
=
name
,
type
=
pooling_type
.
name
,
inputs
=
[
Input
(
input
.
name
)],
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
trans_type
=
agg_level
,
stride
=
stride
,
**
extra_dict
)
return
LayerOutput
(
...
...
python/paddle/trainer_config_helpers/tests/configs/protostr/test_sequence_pooling.protostr
浏览文件 @
0e617300
...
...
@@ -14,6 +14,7 @@ layers {
input_layer_name: "dat_in"
}
trans_type: "seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_1__"
...
...
@@ -24,6 +25,7 @@ layers {
input_layer_name: "dat_in"
}
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_2__"
...
...
@@ -35,6 +37,7 @@ layers {
}
average_strategy: "average"
trans_type: "seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_3__"
...
...
@@ -46,6 +49,7 @@ layers {
}
average_strategy: "average"
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_4__"
...
...
@@ -57,6 +61,7 @@ layers {
}
average_strategy: "sum"
trans_type: "seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_5__"
...
...
@@ -68,6 +73,7 @@ layers {
}
average_strategy: "sum"
trans_type: "non-seq"
seq_pool_stride: -1
}
layers {
name: "__seq_pooling_6__"
...
...
@@ -77,8 +83,44 @@ layers {
inputs {
input_layer_name: "dat_in"
}
trans_type: "non-seq"
seq_pool_stride: 5
}
layers {
name: "__seq_pooling_7__"
type: "average"
size: 100
active_type: ""
inputs {
input_layer_name: "dat_in"
}
average_strategy: "average"
trans_type: "non-seq"
seq_pool_stride: 5
}
layers {
name: "__seq_pooling_8__"
type: "average"
size: 100
active_type: ""
inputs {
input_layer_name: "dat_in"
}
average_strategy: "sum"
trans_type: "non-seq"
seq_pool_stride: 5
}
layers {
name: "__seq_pooling_9__"
type: "max"
size: 100
active_type: ""
inputs {
input_layer_name: "dat_in"
}
output_max_index: true
trans_type: "non-seq"
seq_pool_stride: -1
}
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
...
...
@@ -88,6 +130,9 @@ output_layer_names: "__seq_pooling_3__"
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
output_layer_names: "__seq_pooling_7__"
output_layer_names: "__seq_pooling_8__"
output_layer_names: "__seq_pooling_9__"
sub_models {
name: "root"
layer_names: "dat_in"
...
...
@@ -98,6 +143,9 @@ sub_models {
layer_names: "__seq_pooling_4__"
layer_names: "__seq_pooling_5__"
layer_names: "__seq_pooling_6__"
layer_names: "__seq_pooling_7__"
layer_names: "__seq_pooling_8__"
layer_names: "__seq_pooling_9__"
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
output_layer_names: "__seq_pooling_1__"
...
...
@@ -106,6 +154,9 @@ sub_models {
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
output_layer_names: "__seq_pooling_7__"
output_layer_names: "__seq_pooling_8__"
output_layer_names: "__seq_pooling_9__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.py
浏览文件 @
0e617300
...
...
@@ -14,6 +14,14 @@ for pt in POOL_TYPE:
for
al
in
AGG_LEVEL
:
opts
.
append
(
pooling_layer
(
input
=
din
,
agg_level
=
al
,
pooling_type
=
pt
()))
for
pt
in
POOL_TYPE
:
opts
.
append
(
pooling_layer
(
input
=
din
,
agg_level
=
AggregateLevel
.
TO_NO_SEQUENCE
,
pooling_type
=
pt
(),
stride
=
5
))
opts
.
append
(
pooling_layer
(
input
=
din
,
pooling_type
=
MaxPooling
(
output_max_index
=
True
)))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录