layers.py 195.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

Z
zhangjinchao01 已提交
27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
    'sub_nested_seq_layer',
132
    'slice_projection',
Q
qijun 已提交
133
]
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140


class LayerType(object):
    """
    Layer type enumerations.
    """

141 142 143 144 145 146 147 148
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
149
    POOLING_AVG = 'average'
150
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
151
    COST = 'cost'
152 153
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
154
    HSIGMOID = 'hsigmoid'
155 156 157 158 159 160
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
161 162 163 164 165 166 167
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
168
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
176
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
177 178 179
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
180
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
181
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
182
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
183 184 185 186 187 188 189 190 191 192 193

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
194
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
195
    BLOCK_EXPAND = "blockexpand"
196
    MAXOUT = "maxout"
Q
qijun 已提交
197
    SPP_LAYER = "spp"
D
dangqingqing 已提交
198
    PAD_LAYER = "pad"
W
wwhu 已提交
199
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
200
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
201 202 203

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
204 205
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
206 207 208 209 210

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
211
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
212

213 214 215 216 217 218 219 220 221 222 223
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
224
    CROP_LAYER = 'crop'
C
caoying03 已提交
225
    SUB_NESTED_SEQ = 'sub_nested_seq'
Z
zhangjinchao01 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
247
    """
L
Luo Tao 已提交
248
    PaddlePaddle supports three sequence types:
249 250 251

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
252 253
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
254

L
Luo Tao 已提交
255
    Accordingly, AggregateLevel supports two modes:
256

L
Luo Tao 已提交
257
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
258
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
259 260
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
261
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
262 263 264
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
265 266
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
267 268 269
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
292
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
293 294
    """

Q
qijun 已提交
295 296 297 298 299 300 301 302 303
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
304
                 reverse=None):
Z
zhangjinchao01 已提交
305 306
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
307
        assert size is not None
Z
zhangjinchao01 已提交
308 309
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
310
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
311
        self.layer_type = layer_type
312 313
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
314 315 316 317 318 319 320 321
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
322
        self.reverse = reverse
Z
zhangjinchao01 已提交
323

324 325 326 327 328 329 330 331
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
332 333 334

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
335
DEVICE = 'device'
Z
zhangjinchao01 已提交
336 337 338


def layer_support(*attrs):
339
    attrs_list = list(attrs)
340
    attrs_list.append(DEVICE)
Q
qijun 已提交
341

Z
zhangjinchao01 已提交
342 343 344
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
345
            for attr in attrs_list:
Z
zhangjinchao01 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
362 363 364 365 366
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
406 407
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
408 409 410 411
    proj.origin = input
    return proj


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
442 443
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
444 445 446 447
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
487 488
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
489 490 491 492
    proj.origin = input
    return proj


493
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
524
    :type input: LayerOutput
Z
zhangjinchao01 已提交
525 526
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
527
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
528 529 530 531 532 533
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
534 535
        if size is None:
            size = input.size - offset
Q
qijun 已提交
536
        proj = IdentityOffsetProjection(
537
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
538 539 540 541
        proj.origin = input
    return proj


542 543
def slice_projection(input, slices):
    """
544 545
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
546 547

    .. math::
548
       output = [input.slices()]
549 550 551 552 553 554 555 556 557 558 559 560 561 562

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
563
    :type slices: pair of int
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
603
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
604 605 606 607
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
608
@wrap_param_attr_default()
609
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
610
    """
611
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

625 626 627 628 629 630 631
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
632 633
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
634
    proj.origin = input
635
    return proj
Z
zhangjinchao01 已提交
636

637 638

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
639 640
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
641

Z
zhangjinchao01 已提交
642
    .. math::
L
Luo Tao 已提交
643
       out.row[i] += scale * (a.row[i] .* b.row[i])
644

Z
zhangjinchao01 已提交
645 646
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
647

Z
zhangjinchao01 已提交
648
    The example usage is:
649

Z
zhangjinchao01 已提交
650
    .. code-block:: python
651

L
Luo Tao 已提交
652
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
653

654 655 656 657
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
658 659
    :param scale: config scalar, default value is one.
    :type scale: float
660 661
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
662
    """
663 664 665
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
666
    a = kwargs.get('x', a)  # For Backward capacity.
667 668 669 670 671 672
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
673
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
674
    op.origin = [a, b]
675
    return op
Z
zhangjinchao01 已提交
676

677

Z
zhangjinchao01 已提交
678
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
679 680 681
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
718 719 720 721 722 723
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
737
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
754 755 756 757 758 759 760
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
761 762 763 764 765
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

766
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
767 768 769 770 771 772 773 774
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
775
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
776
            self.inputs.append(other)
777 778 779 780
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
781 782 783 784 785 786 787 788
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

789
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
790 791
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
792
        assert len(self.inputs) != 0
793
        ml = MixedLayer(
Z
zhangjinchao01 已提交
794 795 796 797 798
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
799
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
800 801 802
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
803
        self.finalized = True
Z
zhangjinchao01 已提交
804 805 806 807 808 809


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
810 811 812 813 814
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
859 860 861 862 863 864
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
865
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
866 867 868 869 870 871 872 873
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
874
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
875 876 877 878 879 880 881
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
882
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
883 884 885 886 887

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
888
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
889
    :type height: int|None
L
Luo Tao 已提交
890
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
891
    :type width: int|None
Z
zhangjinchao01 已提交
892 893
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
894
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
895 896
    :rtype: LayerOutput
    """
Q
qijun 已提交
897 898 899 900
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
901 902
        height=height,
        width=width,
Q
qijun 已提交
903
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
904 905 906 907 908 909

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
910
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
926
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
927 928
    :rtype: LayerOutput
    """
Q
qijun 已提交
929 930 931 932 933 934
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
935 936 937 938 939 940 941 942 943
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
944 945 946 947 948 949 950
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
951 952 953 954 955 956 957 958 959 960 961 962
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
963
    which is equal to:
Z
zhangjinchao01 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
986
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
987 988 989 990
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
991
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
992 993
        param_attr = [param_attr]
    else:
994
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
995 996 997 998
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

999
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1000 1001

    Layer(
Q
qijun 已提交
1002 1003 1004
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1005 1006 1007 1008 1009
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1010 1011 1012
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1013

1014

1015
@wrap_name_default("print")
1016
def printer_layer(input, format=None, name=None):
1017 1018
    """
    Print the output value of input layers. This layer is useful for debugging.
1019 1020 1021 1022 1023

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1024
    :return: LayerOutput
1025
    """
1026 1027 1028 1029 1030
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1031 1032 1033

    Layer(
        name=name,
1034
        format=format,
1035
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1036
        inputs=[l.name for l in input], )
1037
    # this layer don't return anything, can not be input of other layer.
1038

X
xuwei06 已提交
1039 1040 1041 1042 1043 1044 1045
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1046

Y
yuan 已提交
1047
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1048
def priorbox_layer(input,
G
gaoyuan 已提交
1049
                   image,
G
gaoyuan 已提交
1050 1051 1052 1053 1054
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1055 1056 1057 1058 1059 1060 1061
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1062 1063
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1075
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1076 1077 1078
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1079
        inputs=[input.name, image.name],
Y
yuan 已提交
1080 1081 1082 1083 1084 1085
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1086 1087
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1088
        parents=[input, image],
G
gaoyuan 已提交
1089 1090 1091
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1109 1110
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1111
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1112
    :type input_conf: LayerOutput | List of LayerOutput
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1134
    input_loc_num = len(input_loc)
1135 1136 1137 1138 1139 1140

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1141
    input_conf_num = len(input_conf)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1183 1184
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1185
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1186
    :type input_conf: LayerOutput | List of LayerOutput.
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1208
    input_loc_num = len(input_loc)
1209 1210 1211 1212 1213 1214

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1215 1216
    input_conf_num = len(input_conf)

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1245 1246
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1247 1248 1249 1250 1251
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1252

G
gaoyuan 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1261
    assert input.num_filters is not None
G
gaoyuan 已提交
1262 1263
    Layer(
        name=name,
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1277 1278
    return LayerOutput(
        name,
1279
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1280 1281 1282 1283 1284
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1285 1286 1287 1288
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1289 1290 1291 1292
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1293
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1294
                  stride=-1,
Z
zhangjinchao01 已提交
1295 1296 1297 1298
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1299 1300
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1301 1302 1303
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1304
    operation. Note that for sequence with sub-sequence, the default value
1305 1306
    of stride is -1.

Z
zhangjinchao01 已提交
1307 1308 1309 1310 1311 1312
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1313
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1314

L
Luo Tao 已提交
1315 1316
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1317 1318 1319 1320 1321 1322 1323 1324
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1325
    :param stride: The step size between successive pooling regions.
1326
    :type stride: Int
Z
zhangjinchao01 已提交
1327 1328 1329 1330
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1331
    :return: LayerOutput object.
Y
Yu Yang 已提交
1332
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1333 1334
    """
    extra_dict = dict()
1335
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1336 1337
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1338 1339 1340 1341
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1342 1343
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1344 1345 1346
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1347 1348 1349 1350 1351 1352
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1353
        stride=stride,
Q
qijun 已提交
1354
        **extra_dict)
Z
zhangjinchao01 已提交
1355

Q
qijun 已提交
1356 1357
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1358

Q
qijun 已提交
1359

Z
zhangjinchao01 已提交
1360 1361
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1362
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1363 1364
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1365
@layer_support()
Q
qijun 已提交
1366 1367
def lstmemory(input,
              name=None,
1368
              size=None,
Q
qijun 已提交
1369 1370 1371 1372 1373 1374
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1375 1376 1377 1378 1379 1380 1381 1382
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1383
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1384

L
luotao02 已提交
1385
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1386

L
luotao02 已提交
1387
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1388

L
luotao02 已提交
1389
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1390

L
luotao02 已提交
1391
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1392 1393


C
caoying03 已提交
1394
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1395
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1396 1397 1398 1399
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1400

C
caoying03 已提交
1401
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1402 1403
    to config a simple plain lstm layer.

C
caoying03 已提交
1404 1405 1406 1407
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1408 1409 1410 1411 1412

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1413 1414
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1433
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1434 1435 1436 1437 1438 1439
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1440
    assert input.size is not None and input.size % 4 == 0
1441

1442 1443 1444 1445 1446
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1447 1448 1449
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1450

Q
qijun 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1461

Q
qijun 已提交
1462 1463 1464 1465 1466
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1467

Z
zhangjinchao01 已提交
1468 1469 1470

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1471
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1472 1473
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1474
@layer_support()
Q
qijun 已提交
1475
def grumemory(input,
1476
              size=None,
Q
qijun 已提交
1477 1478 1479 1480 1481 1482
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1504 1505
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1506 1507 1508 1509 1510

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1511 1512 1513
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1514 1515 1516 1517 1518

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1519
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1520
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1521 1522 1523
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1524

C
caoying03 已提交
1525 1526 1527
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1539 1540
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1541
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1557
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1558 1559 1560 1561
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1562 1563 1564 1565 1566 1567
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1568 1569 1570
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1571

Q
qijun 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1581

Q
qijun 已提交
1582 1583 1584 1585 1586
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1587

Z
zhangjinchao01 已提交
1588 1589 1590

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1591 1592
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1593
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1594
             stride=-1,
Z
zhangjinchao01 已提交
1595 1596 1597 1598
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1599 1600 1601
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1602
    of stride is -1.
1603

L
Luo Tao 已提交
1604 1605 1606 1607 1608 1609
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1610 1611 1612 1613 1614
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1615
    :param stride: The step size between successive pooling regions.
1616
    :type stride: Int
Z
zhangjinchao01 已提交
1617 1618
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1619
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1620 1621
    :rtype: LayerOutput
    """
1622 1623 1624 1625 1626 1627
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1628
    if agg_level == AggregateLevel.TO_SEQUENCE:
1629 1630
        assert stride == -1

Z
zhangjinchao01 已提交
1631 1632 1633 1634 1635
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1636
        stride=stride,
Q
qijun 已提交
1637 1638 1639 1640 1641 1642
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1643 1644 1645 1646


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1647 1648
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1649
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1650
              stride=-1,
Z
zhangjinchao01 已提交
1651 1652 1653 1654
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1655 1656 1657
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1658
    of stride is -1.
1659

L
Luo Tao 已提交
1660 1661 1662 1663 1664 1665
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1666 1667 1668 1669 1670
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1671
    :param stride: The step size between successive pooling regions.
1672
    :type stride: Int
Z
zhangjinchao01 已提交
1673 1674
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1675
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1676 1677
    :rtype: LayerOutput
    """
1678 1679 1680 1681 1682 1683 1684

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1685
    if agg_level == AggregateLevel.TO_SEQUENCE:
1686 1687
        assert stride == -1

Z
zhangjinchao01 已提交
1688 1689 1690 1691 1692
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1693
        stride=stride,
Q
qijun 已提交
1694 1695 1696 1697 1698 1699
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1700 1701 1702


class ExpandLevel(object):
1703 1704 1705 1706 1707
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1708 1709
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1710 1711
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1712 1713
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1714 1715
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1716 1717
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1718 1719
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1720

1721

Z
zhangjinchao01 已提交
1722 1723
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1724 1725
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1726 1727
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1728
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1740
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1755
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1765 1766 1767 1768 1769 1770
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1771 1772


X
xuwei06 已提交
1773
@wrap_name_default()
X
xuwei06 已提交
1774
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1775
@layer_support()
X
xuwei06 已提交
1776 1777 1778
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1779
                 act=None,
X
xuwei06 已提交
1780 1781
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1782
    """
X
xuwei06 已提交
1783
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1784

X
xuwei06 已提交
1785
    If as_row_vector:
X
xuwei06 已提交
1786
    .. math::
X
xuwei06 已提交
1787 1788 1789 1790 1791
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1792 1793 1794 1795 1796

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1797
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1798 1799 1800 1801 1802 1803

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1804 1805 1806 1807 1808 1809
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1810 1811
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1822
        active_type=act.name,
X
xuwei06 已提交
1823
        num_filters=num_repeats,
X
xuwei06 已提交
1824
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1825
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1826 1827 1828 1829 1830
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1831
        activation=act,
Q
qijun 已提交
1832 1833
        parents=[input])

X
xuwei06 已提交
1834

1835 1836 1837
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1838
@layer_support(ERROR_CLIPPING, DROPOUT)
1839 1840 1841 1842 1843 1844 1845 1846
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1847
    the dimension of each instance is M, and the input reshape_size is N, then the
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1918
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1919 1920
    :rtype: LayerOutput
    """
1921
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1922
    assert len(input) == 2
1923 1924 1925 1926 1927 1928 1929
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1930 1931 1932 1933
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1934 1935 1936 1937 1938 1939
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1940 1941


L
liaogang 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1958
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1959

L
liaogang 已提交
1960
    :param   input:        A input layer.
L
liaogang 已提交
1961
    :type    input:        LayerOutput.
L
liaogang 已提交
1962
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1963
    :type    out_size_x:   int|None
L
liaogang 已提交
1964
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1965
    :type    out_size_y:   int|None
L
liaogang 已提交
1966
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1967
    :type    name:         None|basestring
L
liaogang 已提交
1968
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1969 1970 1971 1972 1973 1974 1975
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1976
    assert input.num_filters is not None
L
liaogang 已提交
1977
    num_channels = input.num_filters
Q
qijun 已提交
1978 1979 1980 1981 1982 1983 1984
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
1985
                channels=num_channels)),
Q
qijun 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
1995

Z
zhangjinchao01 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2023
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2024 2025
    :rtype: LayerOutput
    """
2026 2027 2028
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2029 2030 2031
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2032
        inputs=[weight.name, input.name],
Q
qijun 已提交
2033 2034 2035
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2036 2037 2038 2039 2040 2041


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2042
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2043 2044

    .. math::
2045
       y  = w x
Z
zhangjinchao01 已提交
2046

2047 2048 2049 2050 2051
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2067
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2068 2069
    :rtype: LayerOutput
    """
2070 2071 2072
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2073 2074 2075 2076
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2077 2078 2079
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2080 2081 2082 2083 2084 2085


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2086
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2105
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2106 2107 2108 2109 2110 2111
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2112 2113 2114
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2115 2116


2117 2118
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2119
def rotate_layer(input, height, width, name=None, layer_attr=None):
2120
    """
H
Haonan 已提交
2121 2122
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2123 2124

    .. math::
H
Haonan 已提交
2125
       y(j,i,:) = x(M-i-1,j,:)
2126

H
Haonan 已提交
2127
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2128 2129 2130 2131 2132 2133

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2134 2135
                          height=100,
                          width=100)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2149 2150 2151
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2152
        width=width,
H
Haonan 已提交
2153 2154 2155 2156 2157 2158 2159 2160
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2161 2162


Z
zhangjinchao01 已提交
2163 2164
@wrap_name_default()
@layer_support()
2165
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2166 2167 2168 2169
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2170
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2171 2172 2173 2174 2175
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2176

2177 2178
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2179

L
Luo Tao 已提交
2180 2181 2182 2183 2184 2185
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2198
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2199 2200
    :rtype: LayerOutput
    """
2201
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2202 2203 2204 2205 2206 2207
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2208
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2209
    else:
2210 2211
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2212 2213 2214 2215 2216 2217
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2218
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2219
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2220

2221

Z
zhangjinchao01 已提交
2222 2223
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2224
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2225
@layer_support()
Q
qijun 已提交
2226 2227
def hsigmoid(input,
             label,
2228
             num_classes=None,
Q
qijun 已提交
2229 2230 2231 2232
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2244
                        label=data_layer)
Z
zhangjinchao01 已提交
2245 2246 2247 2248 2249 2250 2251

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2252
    :type num_classes: int|None
L
luotao02 已提交
2253 2254
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2255 2256 2257
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2258 2259
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2260 2261
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2262
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2263 2264 2265 2266
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2267 2268 2269 2270 2271 2272 2273 2274 2275
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2276 2277 2278
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2279 2280 2281 2282 2283
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2284 2285
    ipts_for_layer = []
    parents = []
2286
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2287
        assert isinstance(each_input, LayerOutput)
2288
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2289 2290 2291 2292
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2293
    l = Layer(
Z
zhangjinchao01 已提交
2294 2295 2296 2297 2298
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2299 2300 2301
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2302

2303

Z
zhangjinchao01 已提交
2304 2305 2306 2307 2308
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2325 2326
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2327
    """
2328
    Convolution layer for image. Paddle can support both square and non-square
2329
    input currently.
Z
zhangjinchao01 已提交
2330 2331 2332 2333

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2334

2335
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2336
    and non-square input currently.
2337

X
xuwei06 已提交
2338
    The details of convolution transpose layer,
2339 2340 2341
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2342 2343 2344 2345
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2346 2347 2348
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2349
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2350 2351
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2352

L
Luo Tao 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2363 2364 2365 2366
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2367 2368 2369
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2370 2371 2372
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2373
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2374 2375 2376 2377 2378
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2379 2380 2381
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2382 2383
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2384 2385 2386
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2401 2402
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2403
    :param layer_type: specify the layer_type, default is None. If trans=True,
2404 2405
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2406
                       "cudnn_conv"
2407
    :type layer_type: String
D
dangqingqing 已提交
2408
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2409 2410 2411 2412 2413
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2414

Z
zhangjinchao01 已提交
2415
    if filter_size_y is None:
2416 2417 2418 2419 2420 2421
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2422
    if stride_y is None:
2423 2424 2425 2426 2427 2428
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2429
    if padding_y is None:
2430 2431 2432 2433 2434 2435 2436 2437
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2438
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2439 2440 2441 2442
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2443

2444 2445
    if layer_type:
        if trans:
2446
            assert layer_type in ["exconvt", "cudnn_convt"]
2447 2448 2449 2450 2451
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2452

X
xuwei06 已提交
2453
    l = Layer(
Z
zhangjinchao01 已提交
2454
        name=name,
Q
qijun 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2467 2468 2469 2470
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2471
        type=lt,
Q
qijun 已提交
2472 2473 2474 2475 2476 2477 2478 2479
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2480 2481 2482 2483


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2494 2495
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2496 2497 2498 2499 2500 2501 2502
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2531
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2532
    :type padding: int
2533 2534
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2535 2536 2537 2538
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2539
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2540
    :type pool_size: int
2541 2542
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2543 2544
    :param num_channels: number of input channel.
    :type num_channels: int
2545
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2546 2547
                      MaxPooling.
    :type pool_type: BasePoolingType
2548
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2549
    :type stride: int
2550 2551
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2552 2553
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2554 2555 2556 2557
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2558 2559
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2570
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2571
        if (
Y
Yu Yang 已提交
2572
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2573
        else pool_type.name
2574 2575 2576 2577 2578

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2579
    l = Layer(
Z
zhangjinchao01 已提交
2580 2581
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2594
                    padding_y=padding_y))
Q
qijun 已提交
2595
        ],
2596
        ceil_mode=ceil_mode,
Q
qijun 已提交
2597 2598 2599 2600 2601 2602 2603
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2604 2605


Q
qijun 已提交
2606 2607
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2608 2609 2610 2611 2612 2613
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2614 2615 2616 2617 2618
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2619 2620 2621 2622
    The example usage is:

    ..  code-block:: python

2623 2624 2625
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2626 2627
                        pool_type=MaxPooling())

Q
qijun 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2656
    l = Layer(
Q
qijun 已提交
2657 2658
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2659 2660 2661 2662 2663
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2664
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2676 2677 2678 2679
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2680
    l = Layer(
Q
qijun 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2700 2701 2702 2703


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2704 2705 2706 2707 2708 2709
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2710
                      layer_attr=None):
Z
zhangjinchao01 已提交
2711
    """
2712
    Response normalization across feature maps.
D
dangqingqing 已提交
2713 2714
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2715

L
Luo Tao 已提交
2716 2717 2718
    The example usage is:

    ..  code-block:: python
2719

L
Luo Tao 已提交
2720 2721
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2722
    :param name: layer name.
D
dangqingqing 已提交
2723
    :type name: None|basestring
Z
zhangjinchao01 已提交
2724 2725
    :param input: layer's input.
    :type input: LayerOutput
2726
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2727
    :type size: int
D
dangqingqing 已提交
2728
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2729
    :type scale: float
D
dangqingqing 已提交
2730
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2731 2732 2733 2734 2735
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2736
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2737 2738 2739
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2740
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2741 2742 2743


@wrap_bias_attr_default()
2744 2745
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2746 2747
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2748
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2749 2750 2751 2752 2753 2754 2755
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2777 2778 2779
    The example usage is:

    ..  code-block:: python
2780

L
Luo Tao 已提交
2781 2782
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2797
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2825
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2836
    l = Layer(
Z
zhangjinchao01 已提交
2837
        name=name,
Q
qijun 已提交
2838 2839
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2840 2841 2842 2843 2844 2845
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2846
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2847

Q
qijun 已提交
2848 2849 2850 2851 2852 2853 2854
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2882
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2883 2884 2885 2886 2887 2888
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2889 2890 2891
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2892 2893 2894 2895 2896


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2897
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2898
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
2921 2922 2923
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
2924 2925

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
2926 2927
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2943 2944 2945 2946 2947 2948
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2949
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2950 2951 2952 2953 2954 2955 2956
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
2957
    l = Layer(
Q
qijun 已提交
2958 2959 2960
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
2961 2962
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
2963
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2964

Q
qijun 已提交
2965 2966 2967 2968 2969 2970 2971
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2972 2973 2974 2975


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
2976
@layer_support(DROPOUT, ERROR_CLIPPING)
2977
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
2978 2979 2980 2981
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2982 2983 2984 2985 2986 2987
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
2988 2989 2990
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2991
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
2992 2993 2994 2995
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2996
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2997 2998 2999 3000 3001 3002 3003 3004
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3005
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3006 3007

    def __is_type__(o, tp):
3008
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3030 3031
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3032

Q
qijun 已提交
3033 3034
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3035

3036 3037
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3038

3039
    layer = Layer(
Q
qijun 已提交
3040 3041
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3042 3043
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3044
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3045
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3046

3047
    sz = layer.config.size
Z
zhangjinchao01 已提交
3048

Q
qijun 已提交
3049 3050 3051 3052 3053 3054 3055 3056
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3057 3058
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3059
@wrap_bias_attr_default(has_bias=False)
3060
@layer_support(DROPOUT, ERROR_CLIPPING)
3061 3062 3063 3064
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3065

3066
    Inputs:
X
xuwei06 已提交
3067
      - a = [a1, a2, ..., am]
3068
      - b = [b1, b2, ..., bn]
3069

X
xuwei06 已提交
3070 3071 3072 3073
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3091 3092 3093 3094
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3116
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3117 3118
def memory(name,
           size,
3119
           memory_name=None,
Q
qijun 已提交
3120 3121 3122 3123
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3144 3145 3146 3147 3148 3149 3150 3151 3152
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3153

3154 3155 3156 3157 3158 3159 3160
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3161 3162 3163
    :type name: basestring
    :param size: size of memory.
    :type size: int
3164 3165 3166
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3167
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3177
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3188 3189
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3199 3200

    lout = LayerOutput(
3201
        name=memory_name,
Q
qijun 已提交
3202 3203 3204
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3205 3206 3207 3208
    return lout


@wrap_bias_attr_default()
3209 3210
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3211 3212
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3213
@layer_support()
Q
qijun 已提交
3214 3215
def lstm_step_layer(input,
                    state,
3216
                    size=None,
Q
qijun 已提交
3217 3218 3219 3220 3221 3222
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3223
    """
3224 3225
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3226 3227 3228

    ..  math::

3229
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3230

3231
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3232

3233
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3234

3235
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3236

L
luotao02 已提交
3237
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3238 3239


L
luotao02 已提交
3240
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3241
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3242
    input vectors.
Z
zhangjinchao01 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3253 3254
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3255 3256 3257 3258
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3259 3260
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3279
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3280 3281
    :rtype: LayerOutput
    """
3282 3283 3284

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3285 3286 3287 3288 3289 3290 3291
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3292
        size=state.size,
Q
qijun 已提交
3293 3294
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3295

Q
qijun 已提交
3296 3297 3298 3299 3300 3301 3302
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3303 3304 3305


@wrap_bias_attr_default()
W
wangyang59 已提交
3306
@wrap_param_attr_default()
Q
qijun 已提交
3307
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3308 3309 3310
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3311 3312 3313 3314 3315 3316 3317
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3318
                   param_attr=None,
Q
qijun 已提交
3319
                   layer_attr=None):
Z
zhangjinchao01 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3330 3331
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3332
    :param layer_attr:
D
dangqingqing 已提交
3333
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3334 3335 3336 3337 3338 3339 3340 3341
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3342 3343 3344 3345
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3346
        # backward model compatibility.
3347
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3348 3349 3350 3351
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3352
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3353
    return LayerOutput(
Q
qijun 已提交
3354 3355
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3356
        parents=[input, output_mem],
Q
qijun 已提交
3357 3358
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3359 3360


Y
Yu Yang 已提交
3361 3362 3363 3364
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3365
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3433 3434 3435 3436
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3437 3438 3439 3440
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3450
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3451 3452 3453 3454 3455 3456 3457
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3458 3459 3460 3461 3462 3463 3464
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3465

Q
qijun 已提交
3466 3467 3468 3469 3470
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3471 3472 3473 3474 3475 3476 3477


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3478 3479 3480 3481 3482 3483 3484
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3485
    """
3486 3487
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3516
    :return: LayerOutput object.
3517
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3518
    """
Q
qijun 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3534 3535 3536 3537 3538 3539


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3540 3541
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3542
    """
3543

Z
zhangjinchao01 已提交
3544 3545 3546
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3547
        assert input.size is not None
Z
zhangjinchao01 已提交
3548
        if size is not None:
3549
            assert input.size == size
Z
zhangjinchao01 已提交
3550 3551


3552
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3553
    """
3554
    DEPRECATED.
Z
zhangjinchao01 已提交
3555 3556 3557 3558 3559 3560 3561 3562
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3563
    return input
Z
zhangjinchao01 已提交
3564 3565 3566


@wrap_name_default("recurrent_group")
3567
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3568
    """
C
caoying03 已提交
3569 3570 3571 3572 3573
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3618 3619
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3620
    :type reverse: bool
3621

3622 3623
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3624 3625 3626 3627 3628 3629 3630 3631 3632

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3633
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3634 3635 3636 3637
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3638
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3639
        input = [input]
3640
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3641 3642

    def is_in_links(x):
3643
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3644 3645 3646 3647

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3648
        name=name,
3649 3650
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3651 3652
    in_args = []
    for each_input in input:
3653
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3654
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3655
            mem = memory(
3656
                name=None,
Q
qijun 已提交
3657 3658
                size=each_input.input.size,
                boot_layer=each_input.input)
3659
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3660
            in_args.append(mem)
3661 3662
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3663

Z
zhangjinchao01 已提交
3664 3665 3666 3667 3668
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3669 3670 3671 3672 3673 3674
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3675 3676 3677

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3678
    for layer_out in layer_outs:
3679 3680
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3681 3682
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3683 3684 3685 3686 3687
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3688

Z
zhangjinchao01 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3717 3718

    def before_real_step(self):
Q
qijun 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3728 3729 3730
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3731
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3755
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3756 3757 3758 3759
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3770

3771

H
Haonan 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3808

Z
zhangjinchao01 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3825 3826
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3827 3828 3829 3830 3831 3832
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3833
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3834 3835
    :rtype: LayerOutput
    """
Q
qijun 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3847 3848 3849


@wrap_name_default()
Q
qijun 已提交
3850 3851 3852 3853 3854 3855 3856
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3857
                num_results_per_sample=None):
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3869
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3870 3871 3872 3873
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3874 3875 3876 3877 3878
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3879 3880
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3881 3882
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3883 3884
                               bos_id=0,
                               eos_id=1,
3885
                               beam_size=5)
3886 3887 3888 3889 3890 3891 3892 3893 3894

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3895
                 step, and it is applied to sequences with arbitrary length by
3896 3897 3898 3899 3900
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3901 3902
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3903
                  In beam_search, none of the input's type should be LayerOutput.
3904
    :type input: list
3905 3906 3907
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3908
                   symbol is essential, since it is used to initialize the RNN
3909 3910 3911 3912 3913 3914 3915 3916
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3917 3918
    :param max_length: Max generated sequence length.
    :type max_length: int
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3929 3930
    :return: The generated word index.
    :rtype: LayerOutput
3931 3932
    """

Z
zhangjinchao01 已提交
3933 3934 3935 3936 3937
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
3938
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
3939 3940 3941 3942 3943 3944
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3945 3946 3947
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
3948
        if isinstance(each_input, BaseGeneratedInput):
3949 3950
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
3951
            generated_input_index = i
3952

Z
zhangjinchao01 已提交
3953 3954 3955
        else:
            real_input.append(each_input)

3956
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
3957 3958 3959 3960 3961 3962 3963 3964

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
3965 3966 3967 3968 3969 3970
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
3971 3972 3973 3974 3975 3976

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

3977
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
3978 3979
        return predict

3980 3981
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
3982

Q
qijun 已提交
3983

3984 3985
def __cost_input__(input, label, weight=None):
    """
3986
    inputs and parents for cost layers.
3987 3988 3989 3990
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3991
        assert weight.size == 1
3992 3993 3994
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3995

Z
zhangjinchao01 已提交
3996 3997

@wrap_name_default()
L
luotao1 已提交
3998
@layer_support()
3999
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4000
    """
L
Luo Tao 已提交
4001 4002 4003 4004
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4005
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4006 4007

    :param name: layer name.
4008
    :type name: basestring
Z
zhangjinchao01 已提交
4009
    :param input: Network prediction.
4010
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4011
    :param label: Data label.
4012 4013 4014 4015
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4016 4017
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4018 4019
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4020
    :return: LayerOutput object.
4021
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4022
    """
4023 4024
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4025 4026 4027 4028
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4029
        coeff=coeff,
Q
qijun 已提交
4030
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4031
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4032 4033


L
Luo Tao 已提交
4034 4035 4036
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4037
@wrap_name_default("cost")
4038
@layer_support()
Q
qijun 已提交
4039 4040 4041 4042
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4043
                        evaluator=classification_error_evaluator,
4044 4045
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4055 4056 4057
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4058
    :param evaluator: Evaluator method.
4059 4060
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4061 4062
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4063
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4064 4065 4066 4067 4068
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4069 4070 4071

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4072 4073 4074 4075
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4076
        coeff=coeff,
Q
qijun 已提交
4077
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4088
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4089

4090
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4091 4092 4093 4094 4095
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4096
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4097

4098

Q
qijun 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4108 4109
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4120 4121
       op = conv_operator(img=input1,
                          filter=input2,
4122
                          filter_size=3,
Z
zhangjinchao01 已提交
4123 4124 4125
                          num_filters=64,
                          num_channels=64)

4126 4127 4128 4129
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4130 4131
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4132 4133 4134
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4135
    :type filter_size_y: int
4136 4137
    :param num_filters: channel of output data.
    :type num_filters: int
4138 4139
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4140
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4141
    :type stride: int
Z
zhangjinchao01 已提交
4142
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4143
    :type stride_y: int
Z
zhangjinchao01 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4157

4158 4159
    if num_channels is None:
        num_channels = img.num_filters
4160 4161 4162

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4163
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4164

4165 4166 4167
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4179

4180
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4181 4182
    return op

Q
qijun 已提交
4183

4184
@wrap_param_attr_default()
Q
qijun 已提交
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4195 4196
                    param_attr=None,
                    trans=False):
4197 4198 4199 4200 4201 4202 4203 4204 4205
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4206
       proj = conv_projection(input=input1,
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4221 4222
    :param num_channels: channel of input data.
    :type num_channels: int
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4235 4236
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4267
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4268 4269 4270 4271 4272
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4273 4274 4275
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4288 4289 4290 4291

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4292

D
dangqingqing 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4310

D
dangqingqing 已提交
4311
    For example,
4312

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4334 4335

    The simply usage is:
D
dangqingqing 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4397
@wrap_name_default()
L
luotao1 已提交
4398 4399
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4411 4412 4413 4414
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4415 4416 4417 4418 4419

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4420
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4421 4422 4423

    :param name: layer name
    :type name: basestring
4424 4425
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4426
    :param b: input layer b.
4427
    :type b: LayerOutput
L
luotao1 已提交
4428 4429
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4430
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4431 4432
    :rtype: LayerOutput
    """
4433 4434
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4435 4436 4437
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4438
        inputs=[a.name, b.name],
Q
qijun 已提交
4439
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4440

Q
qijun 已提交
4441 4442
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4443 4444 4445 4446 4447


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4448
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4449
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4450 4451 4452 4453 4454 4455 4456 4457
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4458 4459 4460 4461 4462
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4463
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4464 4465

    In this formular:
4466 4467
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4468 4469
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4470
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4471 4472 4473 4474 4475

    The simple usage is:

    .. code-block:: python

4476
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4477 4478 4479

    :param name: layer name
    :type name: basestring
4480 4481 4482 4483
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4484
    :param size: the layer dimension.
L
luotao02 已提交
4485
    :type size: int.
Z
zhangjinchao01 已提交
4486 4487 4488
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4489
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4490 4491 4492 4493 4494 4495
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4496
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4497 4498
    :rtype: LayerOutput
    """
4499
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4500 4501 4502 4503 4504 4505
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4506 4507 4508 4509
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4510 4511 4512 4513 4514 4515


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4516
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4517 4518
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4519
                       select=None,
Q
qijun 已提交
4520 4521
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4522 4523 4524
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4525 4526 4527
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4538
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4539 4540 4541 4542 4543

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4544 4545
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4546
                   If is None, acts exactly like fc_layer.
4547
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4560
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4561 4562 4563 4564
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4565
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4566 4567
        param_attr = [param_attr]
    else:
4568
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4569 4570 4571 4572
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4573 4574 4575 4576
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4577
    Layer(
Q
qijun 已提交
4578 4579 4580
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4581 4582 4583
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4584
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4585 4586 4587 4588
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4589 4590 4591 4592 4593 4594 4595
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4596 4597 4598


@wrap_name_default()
L
luotao1 已提交
4599 4600
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4615 4616
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4617
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4618 4619
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4620
    l = Layer(
Z
zhangjinchao01 已提交
4621 4622 4623
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4624 4625 4626
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4627 4628 4629


@wrap_name_default()
L
luotao1 已提交
4630
@layer_support()
Q
qijun 已提交
4631 4632 4633 4634
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4635
                          layer_attr=None):
Z
zhangjinchao01 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4657 4658
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4659
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4660 4661 4662 4663 4664 4665 4666 4667
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4668 4669 4670
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4671 4672 4673


@wrap_name_default()
L
luotao1 已提交
4674
@layer_support()
Q
qijun 已提交
4675
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4676
    """
4677 4678 4679 4680
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4681 4682 4683

    .. math::

4684
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4685

4686 4687 4688 4689 4690
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4691

4692
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4693 4694

    In this formular:
4695 4696 4697 4698 4699 4700
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4701 4702 4703 4704 4705

    The simple usage is:

    .. code-block:: python

4706
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4707 4708
                                       size=elem_dim)

4709 4710 4711 4712
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4713 4714 4715 4716
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4717 4718
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4719
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4720 4721
    :rtype: LayerOutput
    """
4722 4723 4724 4725
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4726
            size = vectors.size / weights.size
4727 4728
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4729 4730
    Layer(
        name=name,
4731
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4732
        size=size,
4733
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4734 4735 4736
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4737

4738

4739
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4740

4741

Z
zhangjinchao01 已提交
4742
@wrap_name_default()
L
luotao1 已提交
4743
@layer_support()
Z
zhangjinchao01 已提交
4744 4745 4746 4747 4748 4749 4750
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4751
                       num_channels=None,
L
luotao1 已提交
4752 4753
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4754 4755
    """
    Expand feature map to minibatch matrix.
4756
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4757
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4768
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4769 4770
    convolution neural network, and before recurrent neural network.

4771 4772 4773 4774
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4775
       block_expand = block_expand_layer(input=layer,
4776
                                         num_channels=128,
4777 4778 4779 4780 4781
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4782 4783
    :param input: The input layer.
    :type input: LayerOutput
4784 4785
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4800 4801
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4802
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4803 4804
    :rtype: LayerOutput
    """
4805 4806 4807
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4825 4826


4827 4828
@wrap_name_default()
@layer_support()
4829
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4830 4831 4832 4833 4834
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4835
    So groups should be larger than 1, and the num of channels should be able
4836 4837
    to devided by groups.

X
xuwei06 已提交
4838 4839 4840 4841 4842 4843 4844 4845
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4846
    Please refer to Paper:
4847 4848 4849 4850
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4851

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4890 4891


Z
zhangjinchao01 已提交
4892
@wrap_name_default()
L
luotao1 已提交
4893
@layer_support()
Q
qijun 已提交
4894 4895 4896 4897 4898
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4899
              layer_attr=None):
Z
zhangjinchao01 已提交
4900 4901 4902 4903 4904
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4905 4906
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4907 4908
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4909 4910 4911 4912 4913 4914 4915 4916

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4917
    The example usage is:
Z
zhangjinchao01 已提交
4918 4919 4920 4921 4922 4923 4924 4925

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4926
    :param input: The input layer.
Z
zhangjinchao01 已提交
4927 4928 4929
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4930
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
4931
    :type size: int
4932 4933
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
4934 4935
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4936 4937
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4938
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4939 4940 4941 4942
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4943 4944 4945 4946 4947
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
4948
    Layer(
4949 4950 4951 4952
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4953
        inputs=[input.name, label.name],
Q
qijun 已提交
4954
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4955 4956
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4957

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
4969
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4970
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4988 4989 4990 4991

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
4992
    icml2006_GravesFGS06.pdf>`_.
4993 4994 4995

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
4996 4997 4998
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4999 5000
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5001
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5002
          'linear' activation is expected instead in the 'input' layer.
5003

C
caoying03 已提交
5004
    The example usage is:
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5050
@wrap_name_default()
5051
@wrap_param_attr_default()
L
luotao1 已提交
5052
@layer_support()
Q
qijun 已提交
5053 5054 5055 5056 5057 5058
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5059
              coeff=1.0,
L
luotao1 已提交
5060
              layer_attr=None):
Z
zhangjinchao01 已提交
5061 5062 5063 5064
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5065
    The example usage is:
Z
zhangjinchao01 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5076
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5086 5087
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5088 5089
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5090
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5091 5092 5093 5094 5095
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5096 5097 5098 5099 5100 5101
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5102

Q
qijun 已提交
5103
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5104 5105 5106 5107
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5108 5109 5110 5111
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5112
        coeff=coeff,
Q
qijun 已提交
5113
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5114 5115 5116
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5117 5118 5119 5120
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5121

5122

Z
zhangjinchao01 已提交
5123
@wrap_name_default()
5124
@wrap_param_attr_default()
L
luotao1 已提交
5125
@layer_support()
Q
qijun 已提交
5126 5127 5128 5129 5130
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5131
                       layer_attr=None):
Z
zhangjinchao01 已提交
5132 5133 5134 5135 5136 5137 5138
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5139
    The example usage is:
L
Luo Tao 已提交
5140 5141 5142 5143 5144 5145

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5156 5157
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5158
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5159 5160 5161 5162 5163 5164
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5165
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5166 5167 5168 5169
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5170 5171 5172 5173
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5174
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5175 5176 5177
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5178 5179 5180 5181
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5182

Q
qijun 已提交
5183

Y
Yu Yang 已提交
5184
@wrap_act_default(act=SigmoidActivation())
5185
@wrap_bias_attr_default(has_bias=True)
5186
@wrap_param_attr_default()
5187 5188
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5189 5190
def nce_layer(input,
              label,
C
caoying03 已提交
5191
              num_classes=None,
Y
Yu Yang 已提交
5192
              act=None,
5193
              param_attr=None,
Q
qijun 已提交
5194 5195 5196 5197 5198 5199
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5200 5201 5202 5203 5204 5205 5206 5207 5208
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5209 5210
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5222
    :type num_classes: int
Y
Yu Yang 已提交
5223 5224
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5225 5226
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5227
    :param num_neg_samples: number of negative samples. Default is 10.
5228
    :type num_neg_samples: int
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5242 5243 5244 5245 5246 5247 5248 5249
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5250
    assert isinstance(input, collections.Sequence)
5251

5252 5253
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5254 5255
    if num_classes is None:
        num_classes = label.size
5256 5257 5258
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5259
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5260 5261
    if not isinstance(act, BaseActivation):
        raise TypeError()
5262

5263 5264
    ipts_for_layer = []
    parents = []
5265
    for each_input, attr in zip(input, param_attr):
5266
        assert isinstance(each_input, LayerOutput)
5267
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5278
    l = Layer(
5279 5280 5281 5282
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5283
        active_type=act.name,
5284 5285 5286
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5287 5288
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5289 5290 5291 5292 5293
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5294

5295

Z
zhangjinchao01 已提交
5296 5297 5298
"""
following are cost Layers.
"""
5299 5300


Z
zhangjinchao01 已提交
5301
@wrap_name_default()
L
luotao1 已提交
5302
@layer_support()
Q
qijun 已提交
5303 5304 5305 5306 5307 5308 5309
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5310
    """
5311
    A cost Layer for learning to rank using gradient descent. Details can refer
5312 5313
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5314 5315 5316 5317 5318
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5319
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5320

L
luotao02 已提交
5321
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5322

L
luotao02 已提交
5323
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5324 5325 5326 5327 5328 5329 5330 5331

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5332
    The example usage is:
Z
zhangjinchao01 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5353 5354
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5355
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5368 5369 5370 5371 5372 5373
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5374

X
xuwei06 已提交
5375
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5376

5377

Z
zhangjinchao01 已提交
5378
@wrap_name_default()
L
luotao1 已提交
5379
@layer_support()
Q
qijun 已提交
5380 5381 5382 5383 5384 5385
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5386 5387 5388
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5389
    The example usage is:
Z
zhangjinchao01 已提交
5390 5391 5392 5393 5394 5395 5396 5397

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5398
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5410 5411 5412
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5413 5414 5415
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5416 5417
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5418
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5419 5420
    :rtype: LayerOutput
    """
5421 5422 5423
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5424 5425 5426 5427 5428 5429 5430
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5431

Q
qijun 已提交
5432 5433
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5434

5435

Z
zhangjinchao01 已提交
5436
@wrap_name_default()
L
luotao1 已提交
5437
@layer_support()
5438 5439 5440 5441 5442 5443
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5444 5445 5446
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5447 5448
    The example usage is:

Z
zhangjinchao01 已提交
5449 5450
    .. code-block:: python

X
xuwei06 已提交
5451
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5452
                            label=label_layer)
Z
zhangjinchao01 已提交
5453 5454 5455 5456 5457 5458 5459

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5460 5461
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5462
    :type coeff: float.
5463 5464 5465 5466
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5467 5468
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5469
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5470 5471 5472
    :rtype: LayerOutput.
    """

5473
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5474 5475 5476
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5477
        inputs=ipts,
Q
qijun 已提交
5478 5479
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5480
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5481

5482

Z
zhangjinchao01 已提交
5483
@wrap_name_default()
L
luotao1 已提交
5484
@layer_support()
Q
qijun 已提交
5485 5486 5487 5488
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5489 5490
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5491 5492
    """
    A loss layer for multi class entropy with selfnorm.
5493
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5494

C
caoying03 已提交
5495 5496
    The example usage is:

Z
zhangjinchao01 已提交
5497 5498
    .. code-block:: python

X
xuwei06 已提交
5499
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5500
                                          label=label_layer)
Z
zhangjinchao01 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5512 5513
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5514
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5515 5516
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5517 5518 5519 5520 5521 5522 5523
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5524

Q
qijun 已提交
5525 5526 5527 5528 5529
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5530

5531

X
xuwei06 已提交
5532 5533 5534 5535 5536 5537
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5538 5539
    The example usage is:

X
xuwei06 已提交
5540 5541
    .. code-block:: python

L
Luo Tao 已提交
5542
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5553
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5554 5555 5556 5557 5558
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5559

Q
qijun 已提交
5560
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5561 5562


Z
zhangjinchao01 已提交
5563
@wrap_name_default()
L
luotao1 已提交
5564 5565
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5566 5567 5568
    """
    A loss layer for huber loss.

C
caoying03 已提交
5569 5570
    The example usage is:

Z
zhangjinchao01 已提交
5571 5572
    .. code-block:: python

X
xuwei06 已提交
5573
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5574
                         label=label_layer)
Z
zhangjinchao01 已提交
5575 5576 5577 5578 5579 5580 5581 5582 5583

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5584 5585
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5586
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5587 5588
    :rtype: LayerOutput.
    """
5589 5590 5591
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5592 5593 5594 5595 5596 5597
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5598
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5599

5600

Z
zhangjinchao01 已提交
5601
@wrap_name_default()
L
luotao1 已提交
5602
@layer_support()
Q
qijun 已提交
5603 5604 5605 5606
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5607
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5608 5609 5610
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5611 5612
    The example usage is:

Z
zhangjinchao01 已提交
5613 5614
    .. code-block:: python

X
xuwei06 已提交
5615
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5616
                                               label=label_layer)
Z
zhangjinchao01 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5626 5627
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5628
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5629 5630 5631
    :rtype: LayerOutput
    """

5632 5633
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5650 5651 5652 5653


@wrap_name_default()
@layer_support()
5654
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5655 5656
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5657
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5667
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5668

D
dangqingqing 已提交
5669 5670 5671
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5672 5673
    The example usage is:

D
dangqingqing 已提交
5674 5675
    .. code-block:: python

5676 5677
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5678 5679 5680 5681 5682 5683 5684

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5685 5686
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5700
        coeff=coeff,
D
dangqingqing 已提交
5701 5702 5703
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5723 5724
    The example usage is:

W
wwhu 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5757 5758


5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5775 5776


D
dangqingqing 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5799

D
dangqingqing 已提交
5800 5801 5802 5803 5804
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5805

D
dangqingqing 已提交
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5849 5850


5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5870 5871 5872 5873 5874 5875
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5876 5877 5878 5879 5880
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5881 5882 5883 5884 5885 5886

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5887 5888 5889 5890 5891 5892 5893 5894
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5895
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5896
    assert isinstance(param_attr, ParameterAttribute)
5897 5898 5899

    l = Layer(
        name=name,
C
caoying03 已提交
5900
        type=LayerType.PRELU,
C
caoying03 已提交
5901
        inputs=Input(input.name, **param_attr.attr),
5902 5903 5904 5905 5906 5907 5908
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5909 5910


5911
@wrap_name_default()
C
caoying03 已提交
5912
@layer_support(ERROR_CLIPPING, DROPOUT)
5913 5914 5915 5916 5917 5918 5919
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
5920 5921
                     gate_bias_attr=True,
                     inproj_attr=None,
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
5958 5959 5960 5961 5962 5963
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
5986
        layer_attr=inproj_attr,
5987 5988 5989 5990 5991 5992 5993 5994 5995
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
5996
        param_attr=gate_param_attr,
5997 5998 5999 6000 6001
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6002 6003


6004 6005
@wrap_name_default()
@layer_support()
6006
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6007
    """
6008
    The crop layer crops images by offset and shape. User can set crop shape by
6009
    args 'shape' explicitly or by reference input layer.
6010

6011 6012 6013
    The example usage is:

    .. code-block:: python
W
whs 已提交
6014
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6015 6016 6017 6018

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6019 6020
    :param offset: The crop offset
    :type offset: Sequence
6021 6022 6023 6024 6025 6026 6027
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6028
    :type shape: Sequence | None
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
C
caoying03 已提交
6051 6052 6053 6054 6055 6056


@wrap_name_default()
@layer_support()
def sub_nested_seq_layer(input, name=None, top_k=1):
    """
6057
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
C
caoying03 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
    sequence in PaddlePaddle; the second one is a learnable score or
    distribution over each sequence in the nested sequence.

    Then sub_nest_seq_layer selects top k sentences with highest scores or
    probabilites according to the second input.

    The example usage is:

    .. code-block:: python
    prob = fc_layer(input=data, size=1, act=SequenceSoftmaxActivation())
6068
    sub_nest_seq = sub_nested_seq_layer(input=[data, prob], top_k=3)
C
caoying03 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091

    :param input: The two input layers. The first input must be a nested
        sequence. The second input is a learnable scores, whose size must be 1.
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :param top_k: number of sequences with highest probabilies to select.
    :type top_k: int
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, collections.Sequence) and len(input) == 2, (
        'sub_nest_seq_layer has exactly two inputs.')
    l = Layer(
        inputs=[x.name for x in input],
        name=name,
        top_k=top_k,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)