nn.py 253.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
162
       is_test=False,
163
       name=None):
Y
Yu Yang 已提交
164
    """
165
    **Fully Connected Layer**
Y
Yu Yang 已提交
166

167 168 169 170 171 172 173 174
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
175
    to the output as well.
C
caoying03 已提交
176

C
caoying03 已提交
177
    This process can be formulated as follows:
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

C
caoying03 已提交
185 186 187 188
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
C
caoying03 已提交
190
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
191 192

    Args:
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
208 209
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
210
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
211
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
212
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
213

214
    Returns:
F
fengjiayi 已提交
215
        Variable: The transformation result.
216 217

    Raises:
C
caoying03 已提交
218
        ValueError: If rank of the input tensor is less than 2.
219 220 221 222

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
223
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
224
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
225
    """
C
caoying03 已提交
226

C
caoying03 已提交
227
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
228 229 230 231

    dtype = helper.input_dtype()

    mul_results = []
232 233
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
234 235 236
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
237

Y
Yu Yang 已提交
238
        w = helper.create_parameter(
239 240
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
241
        helper.append_op(
242 243 244
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
245
            outputs={"Out": tmp},
M
mozga-intel 已提交
246 247
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
248 249 250 251
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
252
    else:
253 254
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
255 256 257
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
258
            attrs={"use_mkldnn": False})
259 260 261 262
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
263 264


265 266 267
def embedding(input,
              size,
              is_sparse=False,
268
              is_distributed=False,
269 270 271
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
272
    """
273 274
    **Embedding Layer**

275
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
276 277
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
278 279 280

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
281 282

    Args:
283 284 285 286 287
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
288
        is_distributed(bool): Whether to run lookup table from remote parameter server.
289 290
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
291
            with zeros whenever lookup encounters it in :attr:`input`. If
292
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
293 294
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
295
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
296

297 298 299
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
300

301 302
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
303

C
chengduoZH 已提交
304
          dict_size = len(dataset.ids)
305
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
306
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
307 308 309 310 311 312
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
313 314
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
315 316 317 318 319
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
320 321 322 323 324
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
325 326 327
    return tmp


Y
yi.wu 已提交
328
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
329 330
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
331 332
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
333 334 335 336 337 338 339
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
340 341
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
342
    """
Y
yi.wu 已提交
343
    ${comment}
Y
Yibing Liu 已提交
344 345

    Args:
Y
yi.wu 已提交
346 347
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
348 349 350 351 352 353
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
354
        param_attr(ParamAttr|None): The parameter attribute for the learnable
355
                               hidden-hidden weights.
Y
Yibing Liu 已提交
356 357 358

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
359 360
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduozh 已提交
361 362 363 364 365

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
366
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
367 368 369
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
370

371
                              1. `use_peepholes = False`
Y
yi.wu 已提交
372 373
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
374
                              2. `use_peepholes = True`
Y
yi.wu 已提交
375
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
376
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
377
                                 - The shape is (1 x 7D).
C
chengduozh 已提交
378 379 380 381 382

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
383 384 385 386 387 388 389 390
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
391 392

    Returns:
Y
Yibing Liu 已提交
393 394
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
395

Y
Yibing Liu 已提交
396
    Examples:
Y
Yibing Liu 已提交
397 398
        .. code-block:: python

Y
Yibing Liu 已提交
399 400
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduozh 已提交
401
                                           bias_attr=False)
Y
Yibing Liu 已提交
402 403
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
404
    """
C
chengduozh 已提交
405
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
406
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
407
    size = size // 4
Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417 418 419
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
420 421 422 423 424 425 426 427 428 429
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
430 431 432

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
433
        inputs=inputs,
Y
Yu Yang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
450 451 452 453 454 455 456 457 458 459 460
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
461 462
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
463 464 465
    """
    **Dynamic LSTMP Layer**

466 467 468 469 470 471
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
472 473 474 475 476

    The formula is as follows:

    .. math::

477
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
478

479
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
480

481
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
482

483
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
484

485
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
486

487
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
488

489
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
490

Y
Yibing Liu 已提交
491 492 493 494 495 496
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
497
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
498
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
499
          bias vector).
Y
Yibing Liu 已提交
500 501 502
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
503
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
504
    * :math:`h`: The hidden state.
505
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
506 507
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
508
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
509
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
510
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
511 512
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
513 514 515 516

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
517

Y
Yibing Liu 已提交
518 519 520 521 522 523 524 525 526 527 528 529
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
530
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
531 532
                               hidden-hidden weight and projection weight.

533 534
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
535 536
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
537 538
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
539
                               - The shape of projection weight is (D x P).
C
chengduozh 已提交
540 541 542 543 544

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
545
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
546 547 548 549 550 551
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
552
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
553 554 555
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
556
                                - The shape is (1 x 7D).
C
chengduozh 已提交
557 558 559 560 561

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
562 563 564 565 566 567 568 569 570
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
571
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
572 573
                              default "tanh".
        proj_activation(str): The activation for projection output.
574
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
575 576
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
577 578
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
579 580

    Returns:
581 582 583 584
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
585 586

    Examples:
587

Y
Yibing Liu 已提交
588 589
        .. code-block:: python

590 591 592 593
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
594
            hidden_dim, proj_dim = 512, 256
595
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
596
                                     act=None, bias_attr=None)
597 598 599
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
600 601 602 603
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
604
    """
605

C
chengduozh 已提交
606
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
607
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
608
    size = size // 4
Y
Yibing Liu 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
653 654 655 656 657 658 659 660 661
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
662
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
663

664
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
665
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
666

G
guosheng 已提交
667 668 669 670 671 672 673 674 675
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
676

G
guosheng 已提交
677
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
678

G
guosheng 已提交
679
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
680 681
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
682 683 684 685
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
686
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
687 688

    Args:
689 690
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
691
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
692
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
693 694
            is the hidden size.
        size(int): The dimension of the gru cell.
695
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
696 697
            hidden-hidden weight matrix. Note:

698
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
699
              :math:`D` is the hidden size.
700
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
701
              The first part are weights of the update gate and reset gate with
702
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
703
              candidate hidden state with shape :math:`(D \\times D)`.
704
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
705
            hidden-hidden bias.
706
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
707 708 709
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
710
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
711
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
712 713 714 715
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
716 717

    Returns:
G
guosheng 已提交
718
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
719
            and sequence length is the same with the input.
720

G
guosheng 已提交
721
    Examples:
722

G
guosheng 已提交
723 724
        .. code-block:: python

725 726 727 728
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
729
            hidden_dim = 512
730
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
731 732 733 734 735 736 737 738 739 740
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
741
    batch_size = input.shape[0]
G
guosheng 已提交
742 743 744
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
745 746 747
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
771 772 773
def gru_unit(input,
             hidden,
             size,
774 775
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
776
             activation='tanh',
777
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
778
    """
779
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
780

781 782
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
783

784
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
785

786
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
787

788
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
789 790

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
791 792 793
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
794 795
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

796 797
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
798 799 800
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
801 802 803 804 805

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
806 807
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
808 809 810 811
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
812

813 814 815 816 817 818
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
819

820
             # assuming we have x_t_data and prev_hidden of size=10
821
             x_t = fluid.layers.fc(input=x_t_data, size=30)
822 823
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
824 825 826 827 828 829 830 831 832 833 834 835

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
836
    size = size // 3
Y
Yu Yang 已提交
837 838

    # create weight
839 840
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
841

842 843 844 845
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
846
    # create bias
847
    if helper.bias_attr:
Y
Yu Yang 已提交
848 849 850
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
851
        inputs['Bias'] = bias
Y
Yu Yang 已提交
852 853 854

    helper.append_op(
        type='gru_unit',
855
        inputs=inputs,
Y
Yu Yang 已提交
856 857 858 859 860 861
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
862 863
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
864 865 866 867 868
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
869
@templatedoc()
870
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
871 872 873 874 875 876 877
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
878
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
879 880 881 882
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
883 884 885
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
886 887

    """
Y
Yu Yang 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
913
@templatedoc()
914
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
915 916 917 918 919
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
920

Y
yuyang18 已提交
921
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
922

Y
yuyang18 已提交
923 924 925
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
926
        Variable: ${viterbi_path_comment}
927

Y
yi.wu 已提交
928 929 930 931 932
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
933
    """
Y
Yu Yang 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
947
@templatedoc()
F
fengjiayi 已提交
948
def cos_sim(X, Y):
Y
Yu Yang 已提交
949
    """
Y
yi.wu 已提交
950 951 952
    ${comment}

    Args:
953 954
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
955

Y
yi.wu 已提交
956
    Returns:
957
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
958
    """
F
fengjiayi 已提交
959
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


973
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
974 975 976 977 978
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
979
    training. The dropout operator randomly sets (according to the given dropout
980 981 982 983
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
984 985
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
986 987 988 989 990 991 992
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
993 994

    Returns:
995
        Variable: A tensor variable is the shape with `x`.
996 997

    Examples:
998

999 1000
        .. code-block:: python

1001 1002
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1003 1004
    """

F
fengjiayi 已提交
1005
    helper = LayerHelper('dropout', **locals())
1006 1007
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1008 1009 1010 1011

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1012 1013 1014 1015 1016
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1017 1018 1019 1020 1021 1022
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1023 1024 1025
    return out


1026
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1027
    """
Y
Yibing Liu 已提交
1028 1029
    **Cross Entropy Layer**

1030 1031 1032
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1033 1034

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1035
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1036

Y
Yibing Liu 已提交
1037
        .. math::
Y
yangyaming 已提交
1038

Y
Yibing Liu 已提交
1039 1040 1041
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1042 1043
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1044 1045 1046 1047 1048

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1049
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1050 1051 1052
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1053 1054
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1055
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1056

Y
Yibing Liu 已提交
1057
    Args:
Y
yangyaming 已提交
1058
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1059 1060 1061 1062
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1063
        label (Variable|list): the ground truth which is a 2-D tensor. When
1064 1065 1066 1067
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1068
        soft_label (bool): a flag indicating whether to
1069
                                           interpretate the given labels as soft
1070
                                           labels. Default: `False`.
M
minqiyang 已提交
1071 1072
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1073
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1074 1075 1076 1077 1078

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1079 1080 1081 1082 1083
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1084 1085 1086 1087 1088 1089

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1090
    """
F
fengjiayi 已提交
1091
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1092 1093 1094 1095 1096 1097
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1098 1099
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1100 1101 1102
    return out


F
fengjiayi 已提交
1103
def square_error_cost(input, label):
Y
Yu Yang 已提交
1104
    """
1105 1106
    **Square error cost layer**

1107 1108
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1123 1124
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1125 1126

    Returns:
G
guosheng 已提交
1127
        Variable: The tensor variable storing the element-wise squared error \
1128
                  difference of input and label.
1129 1130 1131 1132 1133 1134 1135 1136

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1137
    """
F
fengjiayi 已提交
1138
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1148 1149
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1150 1151 1152
    return square_out


Y
yi.wu 已提交
1153
@templatedoc()
Y
Yu Yang 已提交
1154 1155 1156 1157
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1158
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1159
    """
Y
yi.wu 已提交
1160
    **Chunk Evaluator**
Y
yi.wu 已提交
1161

Y
yangyaming 已提交
1162
    This function computes and outputs the precision, recall and
1163
    F1-score of chunk detection.
Y
yi.wu 已提交
1164

Y
yi.wu 已提交
1165 1166 1167 1168 1169 1170 1171 1172
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1173

Y
yi.wu 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1199

Y
yi.wu 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1224
    Args:
1225 1226 1227 1228 1229
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1230

Y
yi.wu 已提交
1231
    Returns:
Y
update  
yi.wu 已提交
1232 1233 1234
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1235

Y
yi.wu 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1248
    """
F
fengjiayi 已提交
1249
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1250 1251 1252 1253 1254

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1255 1256 1257
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1258 1259 1260 1261 1262 1263 1264 1265

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1266 1267 1268 1269
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1270 1271 1272
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1273 1274
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1275
        })
1276 1277
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1278 1279


1280
@templatedoc()
Y
Yu Yang 已提交
1281 1282 1283 1284 1285 1286 1287
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduozh 已提交
1288 1289
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1290 1291 1292 1293
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1294 1295 1296 1297 1298 1299 1300

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduozh 已提交
1301
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
C
chengduozh 已提交
1302
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1303 1304 1305
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduozh 已提交
1306
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1307 1308 1309
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
C
chengduozh 已提交
1310 1311
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduozh 已提交
1312 1313
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1314

1315 1316
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1335
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1336 1337 1338 1339 1340 1341
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduozh 已提交
1342
def sequence_softmax(input, use_cudnn=False, name=None):
1343 1344 1345
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1346
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1363 1364 1365
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduozh 已提交
1389
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1390
    """
1391
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1392
    has the same shape as the input.
Q
qiaolongfei 已提交
1393

1394 1395 1396 1397 1398 1399
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1400
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1401 1402 1403 1404 1405 1406 1407

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1408
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1409 1410 1411 1412 1413 1414 1415 1416

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1417 1418 1419
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1443 1444 1445
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1446 1447
           stride=1,
           padding=0,
1448
           dilation=1,
Y
Yu Yang 已提交
1449 1450 1451
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1452
           use_cudnn=True,
1453 1454
           act=None,
           name=None):
Y
Yu Yang 已提交
1455
    """
C
chengduoZH 已提交
1456
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1457 1458
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1459
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1460 1461 1462 1463 1464 1465 1466
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1467 1468 1469
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1470

1471
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1472

C
chengduoZH 已提交
1473 1474
    .. math::

C
refine  
chengduoZH 已提交
1475
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1476

T
tensor-tang 已提交
1477
    Where:
C
chengduoZH 已提交
1478

1479 1480 1481 1482 1483
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1484
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1485 1486 1487

    Example:

1488 1489
        - Input:

W
weixing02 已提交
1490
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1491

W
weixing02 已提交
1492
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1493

1494
        - Output:
T
tensor-tang 已提交
1495

W
weixing02 已提交
1496
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1497

C
chengduoZH 已提交
1498
        Where
1499 1500

        .. math::
C
chengduoZH 已提交
1501

W
weixing02 已提交
1502 1503
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1504 1505

    Args:
1506
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1507
        num_filters(int): The number of filter. It is as same as the output
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduozh 已提交
1525
            connected to the second half of the input channels. Default: groups=1.
C
chengduozh 已提交
1526
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1527 1528 1529 1530 1531
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
C
chengduozh 已提交
1532
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1533 1534 1535
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1536 1537
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1538 1539
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1540
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1541
            will be named automatically. Default: None
C
chengduoZH 已提交
1542 1543

    Returns:
G
guosheng 已提交
1544
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1545 1546
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1547
    Raises:
1548 1549
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1550

C
chengduoZH 已提交
1551 1552 1553
    Examples:
        .. code-block:: python

1554 1555
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1556 1557 1558
    """

    num_channels = input.shape[1]
C
chengduozh 已提交
1559
    assert param_attr is not False, "param_attr should not be False here."
1560
    l_type = 'conv2d'
X
xzl 已提交
1561 1562
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1563
        l_type = 'depthwise_conv2d'
1564 1565 1566 1567

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1568 1569 1570 1571 1572
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1573
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1574

C
chengduoZH 已提交
1575 1576 1577
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1578
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1579

C
chengduoZH 已提交
1580 1581
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1582 1583

    input_shape = input.shape
M
minqiyang 已提交
1584
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1585 1586

    def _get_default_param_initializer():
C
chengduozh 已提交
1587 1588
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1600
        type=l_type,
Y
Yu Yang 已提交
1601 1602 1603 1604 1605
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1606 1607 1608
        attrs={
            'strides': stride,
            'paddings': padding,
1609
            'dilations': dilation,
C
chengduoZH 已提交
1610
            'groups': groups,
1611
            'use_cudnn': use_cudnn,
1612
            'use_mkldnn': False
C
chengduoZH 已提交
1613
        })
Y
Yu Yang 已提交
1614 1615 1616 1617 1618 1619

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1637 1638 1639 1640 1641 1642
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1652 1653
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1654 1655 1656
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1657
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1683
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1684 1685
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1686
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1687 1688
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1689
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1690 1691
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1692
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1693 1694 1695 1696 1697 1698
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduozh 已提交
1699
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1700 1701 1702 1703 1704
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
C
chengduozh 已提交
1705
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1706 1707 1708
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1709 1710
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1711 1712
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1713
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1714
            will be named automatically. Default: None.
C
chengduoZH 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1727 1728
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1729 1730 1731
    """

    l_type = 'conv3d'
C
chengduozh 已提交
1732
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1743
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduozh 已提交
1757 1758 1759
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1783
            'use_mkldnn': False
C
chengduoZH 已提交
1784 1785
        })

1786
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1787 1788 1789 1790

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1791
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1792
    """
Y
yangyaming 已提交
1793 1794 1795
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1807
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1808 1809 1810 1811 1812
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1813
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1814 1815 1816 1817 1818 1819 1820

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1821 1822
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1823

L
Luo Tao 已提交
1824 1825
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1826
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1827 1828 1829 1830 1831 1832 1833 1834
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1835

Y
yangyaming 已提交
1836
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1837 1838 1839 1840 1841
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1842 1843
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1844
    """
F
fengjiayi 已提交
1845
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1857 1858 1859 1860 1861
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1862 1863 1864
    return pool_out


C
add doc  
chengduoZH 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1890
def sequence_first_step(input):
L
Luo Tao 已提交
1891
    """
L
Luo Tao 已提交
1892
    This function gets the first step of sequence.
L
Luo Tao 已提交
1893 1894 1895 1896

    .. code-block:: text

       x is a 1-level LoDTensor:
1897
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1898 1899 1900 1901 1902
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1903
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1904
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1905

L
Luo Tao 已提交
1906 1907 1908 1909 1910 1911 1912 1913 1914
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1915

Y
yangyaming 已提交
1916
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1917 1918 1919
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1920 1921 1922
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1923
def sequence_last_step(input):
L
Luo Tao 已提交
1924
    """
L
Luo Tao 已提交
1925
    This function gets the last step of sequence.
L
Luo Tao 已提交
1926 1927 1928 1929

    .. code-block:: text

       x is a 1-level LoDTensor:
1930
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1931 1932 1933 1934 1935
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1936
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1937
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1938

L
Luo Tao 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1948

Y
yangyaming 已提交
1949
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1950 1951 1952
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1953 1954 1955
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1956
@templatedoc()
Y
Yu Yang 已提交
1957
def pool2d(input,
C
chengduoZH 已提交
1958 1959
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1960 1961
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1962
           global_pooling=False,
C
chengduoZH 已提交
1963
           use_cudnn=True,
1964
           ceil_mode=False,
C
caoying03 已提交
1965
           name=None):
Y
Yu Yang 已提交
1966
    """
F
fengjiayi 已提交
1967
    ${comment}
1968 1969

    Args:
1970 1971 1972
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1973
                          feature, and W is the width of the feature.
1974
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1975
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1976
        pool_type: ${pooling_type_comment}
1977 1978
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1979 1980 1981
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1982
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1983 1984
                        layer will be named automatically.

1985
    Returns:
F
fengjiayi 已提交
1986
        Variable: The pooling result.
F
fengjiayi 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2000 2001 2002 2003
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2004
                            global_pooling=False)
Y
Yu Yang 已提交
2005 2006 2007 2008 2009
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2010

C
chengduoZH 已提交
2011 2012 2013 2014 2015
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2016 2017 2018 2019
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2020 2021
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2022

C
Add doc  
chengduoZH 已提交
2023
    l_type = 'pool2d'
2024 2025

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2026 2027 2028 2029
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2041
            "use_mkldnn": False
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2058
    pooling configurations mentioned in input parameters.
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2071

2072
    Returns:
2073
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2074 2075 2076 2077 2078
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2079

C
chengduoZH 已提交
2080 2081 2082 2083 2084
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2085 2086 2087
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2088

C
chengduoZH 已提交
2089 2090
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2091

2092 2093
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2094 2095 2096 2097
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2098
        type=l_type,
Y
Yu Yang 已提交
2099 2100 2101 2102 2103 2104 2105
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2106
            "paddings": pool_padding,
2107
            "use_cudnn": use_cudnn,
2108
            "ceil_mode": ceil_mode,
2109
            "use_mkldnn": False
Y
Yu Yang 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2122
               data_layout='NCHW',
Y
Yang Yang 已提交
2123
               in_place=False,
2124 2125
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2126
               moving_variance_name=None,
2127 2128
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2129
    """
Q
qiaolongfei 已提交
2130 2131 2132 2133
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2134

Q
qiaolongfei 已提交
2135
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2136

Q
qiaolongfei 已提交
2137 2138
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2139 2140 2141
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2154 2155

    Args:
Q
qiaolongfei 已提交
2156
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2157 2158 2159 2160
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduozh 已提交
2161 2162 2163 2164 2165 2166 2167 2168
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2169
        data_layout(string, default NCHW): NCHW|NHWC
2170
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2171 2172 2173 2174
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2175
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2176
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2177 2178

    Returns:
Q
qiaolongfei 已提交
2179
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2180 2181 2182 2183 2184 2185 2186

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2187
    """
C
chengduozh 已提交
2188
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2211
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2212

2213 2214
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2215 2216 2217
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2218
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2219
        shape=param_shape,
2220 2221 2222 2223 2224 2225 2226
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2227
            trainable=False,
W
wanghaoshuang 已提交
2228
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2229
        shape=param_shape,
2230 2231
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2232 2233 2234 2235 2236 2237

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2238 2239
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2240

2241
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2259 2260 2261 2262
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2263
            "use_mkldnn": False,
2264
            "fuse_with_relu": fuse_with_relu
2265
        })
Y
Yu Yang 已提交
2266 2267 2268 2269

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2270
@templatedoc()
G
guosheng 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2281
    ${comment}
G
guosheng 已提交
2282 2283 2284

    The formula is as follows:

Y
yuyang18 已提交
2285
    ..  math::
G
guosheng 已提交
2286 2287 2288 2289 2290 2291 2292

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2293 2294 2295 2296 2297 2298 2299 2300
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2301

G
guosheng 已提交
2302 2303
    Args:
        input(Variable): The input tensor variable.
2304
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2305
            normalization. Default True.
2306
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2307 2308
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2309
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2310
            Default 1.
2311
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2312
            division by zero. Default 1e-05.
G
guosheng 已提交
2313
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2314 2315 2316 2317
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2318
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2319 2320 2321 2322
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2323
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2324 2325 2326
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2327 2328

    Returns:
Y
yuyang18 已提交
2329
        ${y_comment}
G
guosheng 已提交
2330 2331 2332

    Examples:

Y
yuyang18 已提交
2333 2334 2335
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2351
    if shift:
G
guosheng 已提交
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2376 2377 2378 2379
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2380 2381 2382
                     padding=0,
                     stride=1,
                     dilation=1,
2383
                     groups=None,
C
caoying03 已提交
2384
                     param_attr=None,
2385
                     bias_attr=None,
C
chengduoZH 已提交
2386
                     use_cudnn=True,
2387
                     act=None,
C
caoying03 已提交
2388
                     name=None):
Y
Yu Yang 已提交
2389
    """
2390 2391 2392 2393 2394 2395 2396 2397
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2398 2399
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2400 2401 2402
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2403 2404 2405 2406 2407

    For each input :math:`X`, the equation is:

    .. math::

2408
        Out = \sigma (W \\ast X + b)
2409

2410
    Where:
2411 2412 2413

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2414 2415 2416 2417
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2418

2419 2420 2421 2422
    Example:

        - Input:

2423
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2424

2425
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2426 2427 2428

        - Output:

2429
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2430 2431

        Where
Y
Yu Yang 已提交
2432

2433 2434
        .. math::

2435 2436 2437 2438
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2439 2440

    Args:
2441 2442 2443 2444
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2445 2446 2447 2448
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduozh 已提交
2467
            Default: groups = 1.
C
chengduozh 已提交
2468
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2469 2470 2471 2472
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
C
chengduozh 已提交
2473
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2474 2475 2476
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2477
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduozh 已提交
2478 2479 2480
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2481
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
2482
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2483 2484

    Returns:
2485
        Variable: The tensor variable storing the convolution transpose result.
2486 2487

    Raises:
2488 2489
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2490 2491 2492 2493

    Examples:
       .. code-block:: python

2494 2495
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2496
    """
C
chengduozh 已提交
2497
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2498 2499 2500 2501 2502 2503 2504 2505
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2506 2507 2508
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2509 2510 2511
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2512

C
chengduoZH 已提交
2513 2514
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2515

Y
Yu Yang 已提交
2516 2517 2518 2519 2520
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2521

Y
Yu Yang 已提交
2522 2523
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2524

C
chengduoZH 已提交
2525
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2526
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2527
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2528
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2529
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2530 2531 2532
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduozh 已提交
2533

2534 2535 2536 2537 2538 2539 2540
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2541
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2542
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduozh 已提交
2543

Y
Yu Yang 已提交
2544 2545 2546
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2547
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2548
    helper.append_op(
2549
        type=op_type,
Y
Yu Yang 已提交
2550 2551
        inputs={'Input': [input],
                'Filter': [img_filter]},
2552
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2553
        attrs={
2554
            'output_size': output_size,
2555 2556 2557 2558 2559
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2560 2561
        })

2562 2563 2564
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2565 2566


2567
def conv3d_transpose(input,
Y
Yu Yang 已提交
2568 2569 2570
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2571 2572 2573
                     padding=0,
                     stride=1,
                     dilation=1,
2574
                     groups=None,
C
caoying03 已提交
2575
                     param_attr=None,
2576
                     bias_attr=None,
C
chengduoZH 已提交
2577
                     use_cudnn=True,
2578
                     act=None,
C
caoying03 已提交
2579
                     name=None):
Y
Yu Yang 已提交
2580
    """
2581
    **Convlution3D transpose layer**
2582

2583
    The convolution3D transpose layer calculates the output based on the input,
2584
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2585 2586 2587 2588 2589 2590
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2591 2592 2593
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2594 2595 2596 2597 2598

    For each input :math:`X`, the equation is:

    .. math::

2599
        Out = \sigma (W \\ast X + b)
2600 2601 2602

    In the above equation:

2603 2604
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2605 2606 2607 2608
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2609

2610 2611 2612 2613
    Example:

        - Input:

2614
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2615

2616
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2617 2618 2619

        - Output:

2620
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2621 2622

        Where
Y
Yu Yang 已提交
2623

2624 2625
        .. math::

2626 2627 2628
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2629 2630

    Args:
2631
        input(Variable): The input image with [N, C, D, H, W] format.
2632 2633 2634
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2635
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2636 2637
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2638
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2639 2640 2641
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2642 2643
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2644
        stride(int|tuple): The stride size. If stride is a tuple, it must
2645 2646
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2647
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2648 2649 2650
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2651 2652 2653 2654 2655
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduozh 已提交
2656
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2657 2658 2659 2660
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
C
chengduozh 已提交
2661
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2662 2663 2664
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2665 2666
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
2667 2668
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2669 2670
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2671 2672

    Returns:
2673
        Variable: The tensor variable storing the convolution transpose result.
2674 2675

    Raises:
2676 2677
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2678 2679 2680 2681

    Examples:
       .. code-block:: python

2682 2683
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2684
    """
C
chengduozh 已提交
2685
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2686 2687
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2688
    if not isinstance(input, Variable):
2689
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2690 2691
    input_channel = input.shape[1]

2692 2693 2694
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2695

C
chengduoZH 已提交
2696 2697 2698
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2699 2700 2701 2702 2703 2704
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2705 2706 2707
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2708

2709
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2710
                         padding[0] - 1) // dilation[0] + 1
2711
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2712
                         padding[1] - 1) // dilation[1] + 1
2713
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2714
                         padding[2] - 1) // dilation[2] + 1
2715
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2716
    else:
2717 2718
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2719

2720
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2721
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2722 2723 2724
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2725
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2726
    helper.append_op(
2727
        type=l_type,
Y
Yu Yang 已提交
2728 2729
        inputs={'Input': [input],
                'Filter': [img_filter]},
2730
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2731 2732 2733 2734
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2735
            'groups': groups,
C
chengduoZH 已提交
2736 2737
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2738

2739 2740
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2741
    return out
Y
yangyaming 已提交
2742 2743


Y
yangyaming 已提交
2744
def sequence_expand(x, y, ref_level=-1, name=None):
2745
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2746 2747 2748 2749
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2750 2751 2752 2753 2754

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2755
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2756
                x.data = [[a], [b], [c], [d]]
2757 2758 2759
                x.dims = [4, 1]

            y is a LoDTensor:
2760 2761
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2762

Y
yangyaming 已提交
2763
            ref_level: 0
2764

Y
yangyaming 已提交
2765
            then output is a 1-level LoDTensor:
2766
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2767
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2768 2769 2770 2771
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2772
                x.data = [[a], [b], [c]]
2773 2774 2775
                x.dims = [3, 1]

            y is a LoDTensor:
2776
                y.lod = [[2, 0, 3]]
2777

Y
yangyaming 已提交
2778
            ref_level: -1
2779

Y
yangyaming 已提交
2780 2781 2782
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2783 2784 2785
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2786 2787
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2788
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2789
                        will be named automatically.
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2800
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2801
    """
Y
yangyaming 已提交
2802
    helper = LayerHelper('sequence_expand', input=x, **locals())
2803 2804 2805
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2806 2807 2808 2809 2810
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2811
    return tmp
2812 2813


C
chengduo 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2879 2880 2881 2882 2883 2884 2885
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2886 2887 2888
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2889
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2890 2891 2892 2893
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2894
            longest original sequence."
M
minqiyang 已提交
2895

F
fengjiayi 已提交
2896
    Returns:
M
minqiyang 已提交
2897
        Variable: The padded sequence batch and the original lengths before
2898
                  padding. All sequences has the same length.
M
minqiyang 已提交
2899

F
fengjiayi 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2914 2915 2916 2917 2918
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2919 2920 2921 2922 2923 2924
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2925 2926
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2927
        attrs={'padded_length': maxlen})
2928
    return out, length
F
fengjiayi 已提交
2929 2930


2931 2932 2933 2934 2935 2936 2937 2938 2939
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2940 2941
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2942 2943 2944

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2945 2946

    This layer does the search in beams for one time step. Specifically, it
2947 2948 2949 2950 2951 2952
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2962

2963
    Args:
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2989

2990
    Returns:
2991 2992
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2993 2994 2995 2996

    Examples:
        .. code-block:: python

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3025
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3043 3044 3045 3046 3047 3048 3049
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3060

3061 3062 3063 3064 3065 3066
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3093 3094 3095 3096
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3097
              param_attr=None,
C
caoying03 已提交
3098 3099
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3100 3101 3102 3103
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3104
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3105

3106
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3107

3108
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3109

3110
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3111 3112 3113

            h_t & = o_t tanh(c_t)

3114 3115 3116 3117 3118 3119
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3120 3121 3122

        .. math::

3123
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3124 3125 3126 3127 3128 3129 3130 3131

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3132
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3133 3134

    Args:
Y
yangyaming 已提交
3135 3136 3137 3138 3139 3140
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3141
        forget_bias (float): The forget bias of lstm unit.
C
chengduozh 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3154 3155
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3156 3157

    Returns:
Y
yangyaming 已提交
3158
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3159 3160

    Raises:
3161 3162 3163 3164
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3165 3166 3167 3168 3169 3170

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3171
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3172
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3173
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3190
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3191 3192 3193 3194
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3195 3196
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3197 3198 3199
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3200
    size = cell_t_prev.shape[1]
3201
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3202 3203
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3204
                param_attr=param_attr,
3205
                bias_attr=bias_attr)
Y
yangyaming 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3218
    return h, c
G
guosheng 已提交
3219 3220


C
caoying03 已提交
3221
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3222
    """
Y
yangyaming 已提交
3223
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3224 3225 3226

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3227
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3228 3229
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3230 3231
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3232
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3233
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3234
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3235 3236
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3237 3238 3239

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3240

G
guosheng 已提交
3241 3242 3243 3244 3245 3246
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3247
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3248 3249 3250 3251
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3252 3253 3254 3255

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3256
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3257 3258 3259
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3260 3261 3262
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3263 3264
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3265 3266 3267 3268 3269
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3270
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3271 3272 3273 3274
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3275 3276


C
caoying03 已提交
3277
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3278
    """
Y
Yibing Liu 已提交
3279
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3280 3281 3282

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3283 3284 3285
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3286
            must be in the range :math:`[-rank(input), rank(input))`. If
3287
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3288
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3289 3290
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3291
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3292
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3293
                       will be named automatically.
G
guosheng 已提交
3294 3295

    Returns:
Y
Yibing Liu 已提交
3296
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3297

G
guosheng 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3308 3309
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3310 3311 3312 3313 3314 3315 3316

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3317 3318 3319
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3320 3321
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3322 3323 3324 3325 3326
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3327
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3328 3329 3330 3331
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3332 3333


C
caoying03 已提交
3334
def reduce_max(input, dim=None, keep_dim=False, name=None):
3335
    """
Y
yangyaming 已提交
3336
    Computes the maximum of tensor elements over the given dimension.
3337 3338 3339

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3340
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3341 3342 3343
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3344
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3345 3346
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3347
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3348 3349
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3350 3351 3352

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3365 3366 3367 3368 3369 3370 3371

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3372 3373 3374
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3375 3376
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3377 3378 3379 3380 3381
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3382
            'dim': dim if dim != None else [0],
3383 3384 3385 3386 3387 3388
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3389
def reduce_min(input, dim=None, keep_dim=False, name=None):
3390
    """
Y
yangyaming 已提交
3391
    Computes the minimum of tensor elements over the given dimension.
3392 3393 3394

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3395
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3396 3397 3398
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3399
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3400 3401
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3402
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3403 3404
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3405 3406 3407

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3420 3421 3422 3423 3424 3425 3426

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3427 3428 3429
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3430 3431
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3432 3433 3434 3435 3436
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3437
            'dim': dim if dim != None else [0],
3438 3439 3440 3441
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3442 3443


3444 3445 3446 3447 3448 3449
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3450
        dim (list|int|None): The dimensions along which the product is performed. If
3451 3452
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3453 3454
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3455 3456 3457
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3458
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3459
            layer will be named automatically.
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3474
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3475
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3476 3477 3478 3479 3480 3481 3482

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3483 3484 3485
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3486 3487
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3488 3489 3490 3491 3492
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3493
            'dim': dim if dim != None else [0],
3494 3495 3496 3497 3498 3499
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3500
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3501
    """
C
caoying03 已提交
3502
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3503 3504 3505

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3506 3507 3508 3509 3510
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3511
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3512
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3513
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3514 3515
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3516 3517

    Returns:
D
dzhwinter 已提交
3518
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3528 3529
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3568
    .. math::
3569 3570

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3571 3572 3573 3574 3575

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3576
        x(Variable|list): The input tensor to l2_normalize layer.
3577
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3578 3579
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3580
        epsilon(float): The epsilon value is used to avoid division by zero, \
3581
            the defalut value is 1e-10.
3582
        name(str|None): A name for this layer(optional). If set None, the layer \
3583
            will be named automatically.
C
caoying03 已提交
3584 3585

    Returns:
3586
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3587 3588

    Examples:
3589

C
caoying03 已提交
3590 3591
        .. code-block:: python

3592 3593 3594 3595
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3596 3597
    """

F
fengjiayi 已提交
3598 3599
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3600 3601
    helper = LayerHelper("l2_normalize", **locals())

3602 3603
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3604
    helper.append_op(
3605 3606 3607 3608
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3609
        attrs={
3610 3611
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3612 3613
        })
    return out
3614 3615


S
sneaxiy 已提交
3616
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3617
    """
Y
ying 已提交
3618 3619 3620 3621
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3622

C
chengduoZH 已提交
3623
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3624
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3625

3626 3627 3628 3629 3630
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3631
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3632

C
chengduoZH 已提交
3633
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3634
      performs in the following way.
G
guosheng 已提交
3635

3636
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3637
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3638
        last two dimensions and a batched matrix multiply supporting broadcast
3639
        applies on the two tensors.
G
guosheng 已提交
3640

Y
ying 已提交
3641 3642
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3643
    removed after matrix multiplication.
G
guosheng 已提交
3644 3645 3646

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3647 3648 3649
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3650
        alpha (float): The scale of output. Default 1.0.
3651
        name(str|None): A name for this layer(optional). If set None, the layer
3652
            will be named automatically.
G
guosheng 已提交
3653 3654

    Returns:
3655
        Variable: The product Tensor variable.
G
guosheng 已提交
3656

G
guosheng 已提交
3657 3658 3659
    Examples:
        .. code-block:: python

3660
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3661 3662
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3663

3664 3665
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3666

3667 3668
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3669

3670 3671
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3672 3673 3674 3675

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3676 3677
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3678

Y
ying 已提交
3679
            # x: [M], y: [N]
3680
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3681
    """
Y
ying 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3694
            y_shape = y_shape + [1]
Y
ying 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3711
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3712
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3713
    helper.append_op(
3714 3715 3716 3717
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3718 3719 3720
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3721
            'alpha': float(alpha),
S
sneaxiy 已提交
3722
        })
3723
    return out
3724 3725


3726
def topk(input, k, name=None):
Q
qingqing01 已提交
3727 3728 3729 3730
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3731
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3732 3733 3734 3735 3736 3737
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3759 3760 3761
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3762
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3763
                 of input.
3764
        name(str|None): A name for this layer(optional). If set None, the layer
3765
                       will be named automatically.
F
fengjiayi 已提交
3766
                       Default: None
Q
qingqing01 已提交
3767 3768

    Returns:
3769 3770 3771
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3772
        within the last dimension of input.
Q
qingqing01 已提交
3773

F
fengjiayi 已提交
3774 3775
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3796
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3797
    """
Y
ying 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3807

Y
ying 已提交
3808
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3809

3810
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3811 3812
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3813
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3814

3815
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3816 3817
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3818

3819 3820 3821
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3822
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3823
                          the length of reference string.
3824
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3825
                                     calculating edit distance.
3826
        name (str): The name of this layer. It is optional.
3827

W
wanghaoshuang 已提交
3828
    Returns:
W
wanghaoshuang 已提交
3829
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3830 3831 3832 3833 3834

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3835
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3836
            cost = fluid.layers.edit_distance(input=x,label=y)
3837
    """
3838
    helper = LayerHelper("edit_distance", **locals())
3839

3840
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3841
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3842 3843 3844 3845 3846 3847 3848
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3849
            attrs={"tokens": ignored_tokens})
3850 3851 3852 3853 3854
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3855
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3856
            attrs={"tokens": ignored_tokens})
3857 3858
        label = erased_label

3859 3860
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3861
    sequence_num = helper.create_tmp_variable(dtype="int64")
3862 3863 3864 3865
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3866 3867
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3868 3869
        attrs={"normalized": normalized})

3870
    return edit_distance_out, sequence_num
3871 3872 3873 3874 3875


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3876

Y
ying 已提交
3877 3878 3879 3880
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3898
        input.lod = [[4, 4]]
3899 3900 3901 3902 3903 3904 3905

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3906
        output.lod = [[2, 1]]
3907 3908 3909

    Args:

Y
ying 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3919
        name (str): The name of this layer. It is optional.
3920 3921

    Returns:
3922
        Variable: CTC greedy decode result. If all the sequences in result were
3923
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3924 3925 3926 3927 3928

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3929

3930
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3931
    """
3932
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3933
    _, topk_indices = topk(input, k=1)
3934 3935 3936 3937 3938 3939

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3940
        outputs={"Output": [ctc_out]},
3941 3942
        attrs={"merge_repeated": True,
               "blank": blank})
3943
    return ctc_out
3944 3945


F
fengjiayi 已提交
3946
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3947
    """
3948 3949
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3950
    to compute Connectionist Temporal Classification (CTC) loss.
3951 3952
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3953 3954 3955
    input tensor.

    Args:
3956
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3957 3958 3959 3960
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3961
       label (Variable): The ground truth of variable-length sequence,
3962 3963 3964
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3965 3966
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3967 3968 3969
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3970
         follewed by a mean_op.
W
wanghaoshuang 已提交
3971 3972

    Returns:
3973 3974
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3975 3976

    Examples:
3977

W
wanghaoshuang 已提交
3978
        .. code-block:: python
3979

3980 3981 3982
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3983 3984

    """
F
fengjiayi 已提交
3985
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4012 4013 4014
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4015 4016 4017 4018 4019
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4020

4021
            out.lod  = [[0, 1, 3]]
4022 4023 4024 4025

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4026 4027 4028 4029 4030 4031 4032
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4033 4034 4035

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4036 4037

    Returns:
4038

4039 4040 4041 4042 4043
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4044
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4045
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4046 4047 4048 4049 4050 4051 4052 4053 4054
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4055 4056


4057 4058 4059 4060
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4061 4062 4063 4064 4065 4066
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduozh 已提交
4067 4068
        num_neg_samples=None,
        name=None):
4069 4070 4071 4072 4073 4074 4075
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4076 4077
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4078
            sample is 1.0.
C
chengduozh 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4088
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduozh 已提交
4089 4090
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4091

4092
    Returns:
Y
Yibing Liu 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4120
    """
Y
Yang Yu 已提交
4121 4122 4123
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduozh 已提交
4124 4125

    dim = input.shape[1]
Y
Yang Yu 已提交
4126 4127 4128 4129 4130 4131
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduozh 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
Y
Yang Yu 已提交
4145 4146 4147 4148
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4158 4159 4160

    helper.append_op(
        type='nce',
C
chengduozh 已提交
4161
        inputs=inputs,
Y
Yang Yu 已提交
4162 4163 4164 4165 4166 4167
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4168
    return cost / (num_neg_samples + 1)
4169 4170


C
chengduozh 已提交
4171 4172 4173 4174 4175 4176
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4177 4178
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4179
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4189

W
weixing02 已提交
4190
    Args:
M
minqiyang 已提交
4191
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4192 4193 4194 4195 4196
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduozh 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4208 4209 4210 4211 4212 4213 4214 4215

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4216 4217 4218
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4219 4220 4221 4222 4223 4224 4225 4226
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4227
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4228 4229 4230 4231 4232
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4233 4234 4235 4236 4237 4238 4239 4240
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4241 4242
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4243
        inputs=inputs,
W
weixing02 已提交
4244 4245 4246 4247 4248 4249
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4250
def transpose(x, perm, name=None):
Y
ying 已提交
4251 4252 4253 4254 4255 4256 4257
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4258 4259 4260
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4261 4262 4263 4264 4265 4266 4267 4268

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4269
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4270 4271
    """

Y
fix ci.  
ying 已提交
4272
    if len(perm) != len(x.shape):
Y
ying 已提交
4273 4274 4275
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4276 4277 4278 4279 4280 4281
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4282 4283

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4284
    out = helper.create_tmp_variable(x.dtype)
4285
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4286
    helper.append_op(
4287
        type='transpose2',
Y
fix ci.  
ying 已提交
4288
        inputs={'X': [x]},
4289 4290
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4291 4292
        attrs={'axis': perm})
    return out
4293 4294


4295 4296 4297 4298 4299 4300 4301
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4302
    """
4303 4304 4305 4306 4307 4308 4309
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4338 4339 4340 4341 4342 4343 4344 4345 4346
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4347 4348 4349
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4350 4351 4352 4353 4354
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4382 4383 4384
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4397
            output.dims = {8, 8}
4398

4399
            output.lod = [[4, 4]]
4400

D
dzhwinter 已提交
4401
     Examples:
4402 4403 4404

        .. code-block:: python

4405 4406
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4407 4408

    """
W
wanghaoshuang 已提交
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4419 4420 4421 4422 4423 4424 4425
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4426
    helper = LayerHelper('im2sequence', **locals())
4427 4428
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4429
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4430
    return out
4431 4432


Y
yuyang18 已提交
4433
@templatedoc()
4434
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4435 4436
    """
    ${comment}
4437 4438

    Args:
Y
yuyang18 已提交
4439
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4440 4441
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4442 4443 4444 4445 4446
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4447
        ${out_comment}.
4448 4449

    Examples:
Y
yuyang18 已提交
4450 4451 4452 4453
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4466
    return helper.append_activation(out)
4467 4468


Y
yuyang18 已提交
4469
@templatedoc()
4470 4471
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4472 4473 4474 4475 4476 4477 4478
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4479 4480

    Args:
Y
yuyang18 已提交
4481 4482
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4483 4484

    Returns:
Y
yuyang18 已提交
4485
        ${out_comment}.
4486 4487
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4488 4489 4490 4491 4492 4493

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4494 4495 4496 4497 4498 4499
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4500 4501


4502 4503 4504 4505
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4506 4507
    """
    **Softmax With Cross Entropy Operator.**
4508

4509 4510 4511 4512
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4513

4514 4515 4516
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4517

4518 4519 4520
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4521

4522
    The equation is as follows:
4523

4524
    1) Hard label (one-hot label, so every sample has exactly one class)
4525

4526 4527 4528 4529
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4530

4531 4532 4533
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4534

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4547 4548
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4549 4550
                            if soft_label is set to False. Default: -100

4551 4552 4553 4554 4555 4556 4557 4558 4559
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4560 4561
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4572 4573
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4574 4575 4576 4577 4578
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4579 4580
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4581
    For each instance, it computes the smooth L1 loss element by element first
4582
    and then sums all the losses. So the shape of ouput Variable is
4583
    [batch_size, 1].
4584

4585 4586
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4587
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4588
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4589
            L1 loss op with same shape as :attr:`x`.
4590
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4591 4592
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4593
            by this tensor element by element.
4594
        outside_weight (Variable|None): A tensor with rank at least 2. This
4595 4596
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4597
            element by element.
4598
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4599 4600
           scalar with default value 1.0.

4601
    Returns:
4602
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4603 4604 4605 4606 4607

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4608 4609
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4610
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4611
            out = fluid.layers.smooth_l1(x=fc, y=label)
4612
    """
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4629 4630 4631 4632


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4633
    This layer creates the one-hot representations for input indices.
4634 4635

    Args:
Y
Yibing Liu 已提交
4636 4637
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4638 4639

    Returns:
Y
Yibing Liu 已提交
4640
        Variable: The one-hot representations of input.
4641 4642

    Examples:
C
caoying03 已提交
4643
        .. code-block:: python
4644

Y
Yibing Liu 已提交
4645 4646
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4647 4648 4649 4650 4651 4652 4653 4654 4655
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4656 4657


Y
Yu Yang 已提交
4658
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4659
    """
Y
yi.wu 已提交
4660 4661 4662
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4663 4664 4665 4666 4667 4668

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4669 4670
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4671 4672 4673 4674 4675 4676

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4677 4678
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4679 4680
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4681 4682 4683 4684 4685
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4686
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4687
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4688 4689
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4690 4691
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4692 4693 4694
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4695 4696


4697
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4698
    """
C
caoying03 已提交
4699 4700
    Gives a new shape to the input Tensor without changing its data.

4701 4702 4703 4704 4705
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4706

4707
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4708

4709 4710 4711 4712
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4713
    2. 0 means the actual dimension value is going to be copied from the
4714 4715 4716 4717
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4718 4719

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4720
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4721
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4722

4723
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4724 4725
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4726 4727
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4728
    dimensions.
C
caoying03 已提交
4729

4730
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4731 4732 4733 4734
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4735 4736

    Args:
4737
        x(variable): The input tensor.
C
caoying03 已提交
4738 4739
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4740 4741 4742 4743 4744
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4745
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4746 4747 4748 4749
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4750
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4751

4752 4753
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4754

X
Xin Pan 已提交
4755 4756 4757
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4758 4759
    Examples:
        .. code-block:: python
G
guosheng 已提交
4760

4761
            data = fluid.layers.data(
4762
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4763
            reshaped = fluid.layers.reshape(
4764
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4765 4766 4767
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4768
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4769 4770 4771 4772 4773
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4790
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4791
    out = helper.create_tmp_variable(dtype=x.dtype)
4792
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4793
    helper.append_op(
4794
        type="reshape2",
X
Xin Pan 已提交
4795
        inputs=inputs,
D
dzhwinter 已提交
4796
        attrs={"shape": shape},
4797 4798
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4799

D
dzhwinter 已提交
4800
    return helper.append_activation(out)
4801

4802

4803
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4804
    """
M
minqiyang 已提交
4805 4806 4807
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4808
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4809

Y
Yibing Liu 已提交
4810 4811
    Examples:
    Case 1:
M
minqiyang 已提交
4812
      Given
Y
Yibing Liu 已提交
4813 4814 4815 4816 4817 4818 4819 4820
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4821
        and
Y
Yibing Liu 已提交
4822 4823 4824
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4825

Y
Yibing Liu 已提交
4826
    Args:
4827
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4828
        axes (list): List of integers, indicating the dimensions to be squeezed.
4829
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4830 4831 4832 4833 4834 4835 4836 4837

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4838
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4839 4840
    """
    helper = LayerHelper("squeeze", **locals())
4841
    out = helper.create_tmp_variable(dtype=input.dtype)
4842
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4843
    helper.append_op(
4844
        type="squeeze2",
4845
        inputs={"X": input},
Y
Yibing Liu 已提交
4846
        attrs={"axes": axes},
4847 4848
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4849

4850 4851 4852
    return out


4853
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4854
    """
M
minqiyang 已提交
4855 4856 4857
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4858

M
minqiyang 已提交
4859 4860
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4861
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4862

Y
Yibing Liu 已提交
4863
    Args:
4864
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4865
        axes (list): List of integers, indicating the dimensions to be inserted.
4866
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4867 4868 4869 4870 4871 4872 4873 4874

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4875
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4876 4877
    """
    helper = LayerHelper("unsqueeze", **locals())
4878
    out = helper.create_tmp_variable(dtype=input.dtype)
4879
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4880
    helper.append_op(
4881
        type="unsqueeze2",
4882
        inputs={"X": input},
Y
Yibing Liu 已提交
4883
        attrs={"axes": axes},
4884 4885
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4886

4887 4888
    return out

4889

Y
yangyaming 已提交
4890
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4891
    """
Y
Yibing Liu 已提交
4892
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4893 4894 4895 4896
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4897
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4898 4899 4900 4901 4902 4903

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4904
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4905 4906 4907
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4908
            target_lod: [4, 2]
Y
yangyaming 已提交
4909 4910

            then we get a 1-level LoDTensor:
4911
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4912 4913 4914 4915 4916 4917
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4918
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4919 4920 4921 4922
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4923
                y.data = [[2, 4]]
Y
yangyaming 已提交
4924 4925 4926
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4927
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4928 4929 4930 4931 4932 4933
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4934
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4935 4936 4937 4938
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4939
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4940 4941 4942 4943
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4944
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4945 4946 4947 4948 4949
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4950
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4951
                           from :attr:`y`.
Y
yangyaming 已提交
4952
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4953
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4954 4955

    Returns:
Y
Yibing Liu 已提交
4956
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4957 4958

    Raises:
Y
Yibing Liu 已提交
4959
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4995
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5024 5025
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5053 5054 5055 5056


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5057
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5058
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5059

G
guosheng 已提交
5060 5061 5062 5063
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5086
                         The length of :attr:paddings must be
G
guosheng 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5097

G
guosheng 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5112 5113


C
chengduo 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5194 5195 5196 5197 5198 5199 5200
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5201 5202
    called label-smoothing regularization (LSR).

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5226
                              be :math:`(1, class\_num)`.
5227 5228
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5229
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5257 5258


Y
yi.wu 已提交
5259
@templatedoc()
5260 5261
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5262
    ${comment}
5263 5264

    Args:
Y
yi.wu 已提交
5265 5266
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5267 5268 5269
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5270 5271

    Returns:
Y
update  
yi.wu 已提交
5272
        Variable: ${out_comment}.
5273 5274

    Examples:
5275 5276
        .. code-block:: python

5277
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5323 5324
        .. code-block:: python

W
whs 已提交
5325 5326 5327 5328
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5329
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5330 5331 5332 5333 5334 5335
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5336 5337


5338 5339 5340 5341 5342
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5343
    """
Q
qiaolongfei 已提交
5344
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5345

5346
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5347 5348 5349
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5350

5351
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5352

5353
    Args:
5354
        input (Variable): The input tensor of image resize layer,
5355 5356
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5357
        out_shape(list|tuple|Variable|None): Output shape of image resize
5358 5359
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5360
        scale(float|None): The multiplier for the input height or width.
5361 5362 5363
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5364 5365
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5366 5367
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5368 5369

    Returns:
Q
update  
qiaolongfei 已提交
5370 5371
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5372

5373 5374 5375
    Examples:
        .. code-block:: python

5376
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5377
    """
5378 5379 5380 5381
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5382 5383
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5384 5385
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5386 5387 5388 5389

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5390 5391 5392
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5393
    if out_shape is not None:
B
baiyf 已提交
5394 5395 5396
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5397 5398 5399 5400 5401 5402
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5403 5404 5405 5406
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5407 5408
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5409
        type=resample_methods[resample],
5410
        inputs=inputs,
5411 5412 5413 5414
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5415 5416


Y
yuyang18 已提交
5417
@templatedoc(op_type="bilinear_interp")
5418 5419
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5420 5421 5422 5423 5424 5425
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5426

Y
yuyang18 已提交
5427 5428 5429 5430 5431 5432 5433 5434
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5435 5436 5437 5438 5439 5440 5441
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5442 5443 5444
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5445 5446 5447 5448 5449 5450 5451
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5452
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5453

5454
    Returns:
Q
update  
qiaolongfei 已提交
5455
        Variable: The output is a 4-D tensor of the shape
5456
        (num_batches, channls, out_h, out_w).
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5467 5468 5469
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5470 5471 5472
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5473 5474
def gather(input, index):
    """
Q
qiaolongfei 已提交
5475 5476
    **Gather Layer**

5477
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5478 5479 5480 5481
    of X indexed by `index` and concatenate them together.

    .. math::

5482
        Out = X[Index]
W
whs 已提交
5483 5484 5485 5486 5487 5488 5489


    .. code-block:: text


                Given:

5490 5491
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5502
        input (Variable): The source input with rank>=1.
W
whs 已提交
5503 5504 5505 5506 5507 5508
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5509

W
whs 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5639

5640 5641 5642
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5643
    """
F
stash  
fengjiayi 已提交
5644
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5645
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5646
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5647
    if seed is None:
5648
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5649
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5650
    if isinstance(seed, int):
F
fengjiayi 已提交
5651 5652 5653 5654 5655
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5656 5657 5658 5659
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5660
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5661 5662
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5663 5664
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5665
    return out
W
whs 已提交
5666 5667


5668
def log(x, name=None):
W
wanghaoshuang 已提交
5669 5670 5671 5672 5673
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5674
        Out = \\ln(x)
W
wanghaoshuang 已提交
5675 5676

    Args:
5677
        x (Variable): Input tensor.
5678 5679
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5680 5681 5682 5683 5684 5685 5686 5687

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5688
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5689 5690
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5691
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5692
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5693
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5694 5695 5696
    return out


5697
def relu(x, name=None):
W
wanghaoshuang 已提交
5698 5699
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5700
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5701 5702 5703 5704
    the tensor elementwise.

    .. math::

5705
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5706 5707

    Args:
5708
        x (Variable): The input tensor.
5709 5710
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5711 5712 5713 5714 5715 5716 5717 5718

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5719
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5720 5721
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5722
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5723
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5724
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5725
    return out
5726 5727


W
whs 已提交
5728 5729 5730
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5731 5732 5733 5734
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5735
    .. math::
5736 5737

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5738

5739
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5740 5741 5742 5743 5744
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5745
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5746
                           Its shape should be the same as input.
5747
        num_classes (int): The possible number of labels.
W
whs 已提交
5748 5749 5750 5751

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5752
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5753 5754 5755 5756

    Examples:

        .. code-block:: python
5757

W
whs 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5767 5768
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5769
        outputs={
W
whs 已提交
5770 5771 5772
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5773 5774 5775
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5850
                    isinstance(shape, Variable)):
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5884

5885 5886
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5887

5888 5889 5890 5891
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5892

5893 5894 5895 5896 5897
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5898 5899 5900

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5945 5946


W
whs 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5961

W
whs 已提交
5962 5963
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5964

W
whs 已提交
5965
      Case 0:
M
minqiyang 已提交
5966

W
whs 已提交
5967 5968 5969
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5970

W
whs 已提交
5971 5972 5973
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5974

W
whs 已提交
5975
      Case 1:
M
minqiyang 已提交
5976

W
whs 已提交
5977 5978
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5979

W
whs 已提交
5980 5981 5982
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5983

W
whs 已提交
5984
      Case 2:
M
minqiyang 已提交
5985

W
whs 已提交
5986 5987
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5988

W
whs 已提交
5989 5990 5991
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5992 5993


W
whs 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6191
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6192
                        will be named automatically.
J
jerrywgz 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6311

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6322 6323
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6339
        ValueError: If axis is not in range [0, rank(x)].
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6357
    x_shape = helper.create_tmp_variable(x.dtype)
6358
    helper.append_op(
6359
        type='flatten2',
6360
        inputs={"X": x},
6361 6362
        outputs={'Out': out,
                 'XShape': x_shape},
6363 6364
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6365 6366


C
chenweihang 已提交
6367
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6368
    """
C
chenweihang 已提交
6369
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6370
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6371 6372
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6373

C
chenweihang 已提交
6374 6375 6376 6377
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6378
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6379 6380 6381 6382 6383 6384
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6385
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6386 6387 6388
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6389 6390 6391
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6403
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6404 6405 6406 6407 6408 6409
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6410

6411

S
sneaxiy 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6421

S
sneaxiy 已提交
6422
    .. math::
6423

S
sneaxiy 已提交
6424 6425 6426
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6427
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6428 6429 6430 6431
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6432 6433 6434
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6435 6436
    Returns:
        Variable: The output sequence mask.
6437

S
sneaxiy 已提交
6438 6439
    """

Q
qingqing01 已提交
6440
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6441 6442 6443 6444 6445
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6446 6447 6448
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6449 6450
        outputs={'Y': out},
        attrs={
6451
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6452 6453 6454
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6455 6456


X
Xin Pan 已提交
6457
def stack(x, axis=0):
S
sneaxiy 已提交
6458 6459 6460 6461
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6462 6463 6464 6465 6466 6467 6468

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6469
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6470
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6471 6472

    Args:
6473
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6474
        axis (int|None): The axis along which all inputs are stacked.
6475

S
sneaxiy 已提交
6476 6477
    Returns:
        Variable: The stacked variable.
6478

S
sneaxiy 已提交
6479 6480
    """

X
Xin Pan 已提交
6481 6482 6483 6484 6485 6486
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

S
sneaxiy 已提交
6487
    out = helper.create_tmp_variable(dtype=x[0].dtype)
X
Xin Pan 已提交
6488
    helper.append_op(
S
sneaxiy 已提交
6489 6490
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6491

X
Xin Pan 已提交
6492
    return out
D
dzhwinter 已提交
6493 6494 6495 6496 6497 6498 6499


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6500

D
dzhwinter 已提交
6501 6502 6503
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6504
    raised.
D
dzhwinter 已提交
6505 6506

    Args:
M
minqiyang 已提交
6507
        x (Variable): Input variable.
D
dzhwinter 已提交
6508 6509
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6510

D
dzhwinter 已提交
6511 6512
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6513

D
dzhwinter 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
S
sneaxiy 已提交
6524 6525
    for _ in xrange(num):
        outs.append(helper.create_tmp_variable(dtype=x.dtype))
D
dzhwinter 已提交
6526 6527 6528 6529 6530 6531 6532 6533

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6546

W
whs 已提交
6547 6548 6549 6550
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6551

W
whs 已提交
6552
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6553

W
whs 已提交
6554
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6555

W
whs 已提交
6556 6557 6558 6559
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6560

W
whs 已提交
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6584 6585 6586 6587 6588


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6589
@templatedoc()
G
fix  
gongweibao 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6599
    ${comment}
G
fix  
gongweibao 已提交
6600 6601

    Args:
G
gongweibao 已提交
6602 6603 6604
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6605
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6606 6607 6608
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6609 6610
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6611
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6633 6634


G
gongweibao 已提交
6635
@templatedoc()
6636
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6637
    """
G
gongweibao 已提交
6638
    ${comment}
G
fix  
gongweibao 已提交
6639 6640

    Args:
G
gongweibao 已提交
6641 6642 6643 6644
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6645 6646 6647
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6648
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
6664
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6665 6666 6667 6668 6669
        })

    return out


G
gongweibao 已提交
6670
@templatedoc()
G
fix  
gongweibao 已提交
6671
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6672
    """
G
gongweibao 已提交
6673
    ${comment}
G
fix  
gongweibao 已提交
6674 6675

    Args:
G
gongweibao 已提交
6676 6677 6678 6679
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6680
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6681 6682

    Returns:
G
gongweibao 已提交
6683
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6684 6685 6686 6687

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6688
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6700
@templatedoc()
G
fix  
gongweibao 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6710
    ${comment}
G
fix  
gongweibao 已提交
6711 6712

    Args:
G
gongweibao 已提交
6713 6714
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6715
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6716 6717 6718 6719
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6720
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6721 6722

    Returns:
G
gongweibao 已提交
6723
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6746
@templatedoc()
6747
def sum(x):
G
fix  
gongweibao 已提交
6748
    """
G
gongweibao 已提交
6749
    ${comment}
G
fix  
gongweibao 已提交
6750 6751

    Args:
G
gongweibao 已提交
6752
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6753 6754

    Returns:
G
gongweibao 已提交
6755
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6756 6757 6758
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6759
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6760 6761 6762 6763
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
6764
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6765 6766 6767 6768

    return out


G
gongweibao 已提交
6769
@templatedoc()
G
fix  
gongweibao 已提交
6770 6771
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6772
    ${comment}
G
fix  
gongweibao 已提交
6773 6774

    Args:
G
gongweibao 已提交
6775 6776 6777 6778
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6779 6780

    Returns:
G
gongweibao 已提交
6781
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6782 6783 6784 6785

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6786
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6798
@templatedoc()
G
fix  
gongweibao 已提交
6799 6800
def shape(input):
    """
G
gongweibao 已提交
6801
    ${comment}
G
fix  
gongweibao 已提交
6802 6803

    Args:
G
gongweibao 已提交
6804
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6805 6806

    Returns:
G
gongweibao 已提交
6807
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6808 6809 6810 6811

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6812
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6813
    helper.append_op(
G
fix  
gongweibao 已提交
6814
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6815 6816

    return out
G
merge  
gongweibao 已提交
6817 6818


S
sneaxiy 已提交
6819 6820 6821 6822 6823 6824 6825 6826
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6827 6828 6829 6830 6831 6832
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6833

S
sneaxiy 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6845
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6846 6847 6848 6849 6850 6851 6852 6853
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6854
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6855
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6856 6857 6858 6859 6860 6861

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6862 6863 6864 6865 6866
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6877
    return helper.append_activation(out)
S
sneaxiy 已提交
6878 6879


6880
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6881 6882 6883
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


6884
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6885 6886 6887
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


6888
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6889 6890 6891
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


6892
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6893 6894 6895
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


6896
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6897 6898 6899
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


6900
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6901 6902 6903
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


6904
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6916 6917
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6918
        ])
M
minqiyang 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out