nn.py 252.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
162
       is_test=False,
163
       name=None):
Y
Yu Yang 已提交
164
    """
165
    **Fully Connected Layer**
Y
Yu Yang 已提交
166

167 168 169 170 171 172 173 174
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
175
    to the output as well.
C
caoying03 已提交
176

C
caoying03 已提交
177
    This process can be formulated as follows:
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

C
caoying03 已提交
185 186 187 188
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
C
caoying03 已提交
190
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
191 192

    Args:
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
208 209
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
210
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
211
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
212
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
213

214
    Returns:
F
fengjiayi 已提交
215
        Variable: The transformation result.
216 217

    Raises:
C
caoying03 已提交
218
        ValueError: If rank of the input tensor is less than 2.
219 220 221 222

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
223
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
224
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
225
    """
C
caoying03 已提交
226

C
caoying03 已提交
227
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
228 229 230 231

    dtype = helper.input_dtype()

    mul_results = []
232 233
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
234 235 236
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
237

Y
Yu Yang 已提交
238
        w = helper.create_parameter(
239 240
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
241
        helper.append_op(
242 243 244
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
245
            outputs={"Out": tmp},
M
mozga-intel 已提交
246 247
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
248 249 250 251
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
252
    else:
253 254
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
255 256 257
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
258
            attrs={"use_mkldnn": False})
259 260 261 262
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
263 264


265 266 267
def embedding(input,
              size,
              is_sparse=False,
268
              is_distributed=False,
269 270 271
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
272
    """
273 274
    **Embedding Layer**

275
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
276 277
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
278 279 280

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
281 282

    Args:
283 284 285 286 287
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
288
        is_distributed(bool): Whether to run lookup table from remote parameter server.
289 290
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
291
            with zeros whenever lookup encounters it in :attr:`input`. If
292
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
293 294
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
295
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
296

297 298 299
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
300

301 302
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
303

C
chengduoZH 已提交
304
          dict_size = len(dataset.ids)
305
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
306
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
307 308 309 310 311 312
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
313 314
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
315 316 317 318 319
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
320 321 322 323 324
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
325 326 327
    return tmp


Y
yi.wu 已提交
328
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
329 330
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
331 332
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
333 334 335 336 337 338 339
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
340 341
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
342
    """
Y
yi.wu 已提交
343
    ${comment}
Y
Yibing Liu 已提交
344 345

    Args:
Y
yi.wu 已提交
346 347
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
348 349 350 351 352 353 354
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

355
        param_attr(ParamAttr|None): The parameter attribute for the learnable
356
                               hidden-hidden weights.
Y
Yibing Liu 已提交
357 358 359

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
360 361
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduozh 已提交
362 363 364 365 366

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
367
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
368 369 370
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
371

372
                              1. `use_peepholes = False`
Y
yi.wu 已提交
373 374
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
375
                              2. `use_peepholes = True`
Y
yi.wu 已提交
376
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
377
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
378
                                 - The shape is (1 x 7D).
C
chengduozh 已提交
379 380 381 382 383

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
384 385 386 387 388 389 390 391
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
392 393

    Returns:
Y
Yibing Liu 已提交
394 395
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
396

Y
Yibing Liu 已提交
397
    Examples:
Y
Yibing Liu 已提交
398 399
        .. code-block:: python

Y
Yibing Liu 已提交
400 401
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduozh 已提交
402
                                           bias_attr=False)
Y
Yibing Liu 已提交
403 404
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
405
    """
C
chengduozh 已提交
406
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
407
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
408
    size = size // 4
Y
Yu Yang 已提交
409 410 411 412 413 414 415 416 417 418 419 420
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
421 422 423 424 425 426 427 428 429 430
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
431 432 433

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
434
        inputs=inputs,
Y
Yu Yang 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
451 452 453 454 455 456 457 458 459 460 461
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
462 463
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
464 465 466
    """
    **Dynamic LSTMP Layer**

467 468 469 470 471 472
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
473 474 475 476 477

    The formula is as follows:

    .. math::

478
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
479

480
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
481

482
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
483

484
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
485

486
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
487

488
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
489

490
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
491

Y
Yibing Liu 已提交
492 493 494 495 496 497
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
498
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
499
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
500
          bias vector).
Y
Yibing Liu 已提交
501 502 503
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
504
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
505
    * :math:`h`: The hidden state.
506
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
507 508
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
509
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
510
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
511
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
512 513
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
514 515 516 517

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
518

Y
Yibing Liu 已提交
519 520 521 522 523 524 525 526 527 528 529 530
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
531
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
532 533
                               hidden-hidden weight and projection weight.

534 535
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
536 537
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
538 539
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
540
                               - The shape of projection weight is (D x P).
C
chengduozh 已提交
541 542 543 544 545

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
546
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
547 548 549 550 551 552
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
553
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
554 555 556
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
557
                                - The shape is (1 x 7D).
C
chengduozh 已提交
558 559 560 561 562

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
563 564 565 566 567 568 569 570 571
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
572
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
573 574
                              default "tanh".
        proj_activation(str): The activation for projection output.
575
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
576 577
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
578 579
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
580 581

    Returns:
582 583 584 585
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
586 587

    Examples:
588

Y
Yibing Liu 已提交
589 590
        .. code-block:: python

591 592 593 594
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
595
            hidden_dim, proj_dim = 512, 256
596
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
597
                                     act=None, bias_attr=None)
598 599 600
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
601 602 603 604
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
605
    """
606

C
chengduozh 已提交
607
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
608
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
609
    size = size // 4
Y
Yibing Liu 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
654 655 656 657 658 659 660 661 662
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
663
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
664

665
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
666
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
667

G
guosheng 已提交
668 669 670 671 672 673 674 675 676
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
677

G
guosheng 已提交
678
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
679

G
guosheng 已提交
680
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
681 682
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
683 684 685 686
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
687
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
688 689

    Args:
690 691
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
692
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
693
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
694 695
            is the hidden size.
        size(int): The dimension of the gru cell.
696
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
697 698
            hidden-hidden weight matrix. Note:

699
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
700
              :math:`D` is the hidden size.
701
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
702
              The first part are weights of the update gate and reset gate with
703
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
704
              candidate hidden state with shape :math:`(D \\times D)`.
705
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
706
            hidden-hidden bias.
707
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
708 709 710
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
711
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
712
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
713 714 715 716
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
717 718

    Returns:
G
guosheng 已提交
719
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
720
            and sequence length is the same with the input.
721

G
guosheng 已提交
722
    Examples:
723

G
guosheng 已提交
724 725
        .. code-block:: python

726 727 728 729
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
730
            hidden_dim = 512
731
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
732 733 734 735 736 737 738 739 740 741
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
742
    batch_size = input.shape[0]
G
guosheng 已提交
743 744 745
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
746 747 748
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
772 773 774
def gru_unit(input,
             hidden,
             size,
775 776
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
777
             activation='tanh',
778
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
779
    """
780
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
781

782 783
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
784

785
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
786

787
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
788

789
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
790 791

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
792 793 794
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
795 796
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

797 798
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
799 800 801
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
802 803 804 805 806

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
807 808
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
809 810 811 812
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
813

814 815 816 817 818 819
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
820

821
             # assuming we have x_t_data and prev_hidden of size=10
822
             x_t = fluid.layers.fc(input=x_t_data, size=30)
823 824
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
825 826 827 828 829 830 831 832 833 834 835 836

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
837
    size = size // 3
Y
Yu Yang 已提交
838 839

    # create weight
840 841
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
842

843 844 845 846
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
847
    # create bias
848
    if helper.bias_attr:
Y
Yu Yang 已提交
849 850 851
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
852
        inputs['Bias'] = bias
Y
Yu Yang 已提交
853 854 855

    helper.append_op(
        type='gru_unit',
856
        inputs=inputs,
Y
Yu Yang 已提交
857 858 859 860 861 862
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
863 864
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
865 866 867 868 869
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
870
@templatedoc()
871
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
872 873 874 875 876 877 878
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
879
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
880 881 882 883
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
884 885 886
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
887 888

    """
Y
Yu Yang 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
914
@templatedoc()
915
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
916 917 918 919 920
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
921

Y
yuyang18 已提交
922
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
923

Y
yuyang18 已提交
924 925 926
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
927
        Variable: ${viterbi_path_comment}
928

Y
yi.wu 已提交
929 930 931 932 933
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
934
    """
Y
Yu Yang 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
948
@templatedoc()
F
fengjiayi 已提交
949
def cos_sim(X, Y):
Y
Yu Yang 已提交
950
    """
Y
yi.wu 已提交
951 952 953
    ${comment}

    Args:
954 955
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
956

Y
yi.wu 已提交
957
    Returns:
958
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
959
    """
F
fengjiayi 已提交
960
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


974
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
975 976 977 978 979
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
980
    training. The dropout operator randomly sets (according to the given dropout
981 982 983 984
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
985 986
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
987 988 989 990 991 992 993
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
994 995

    Returns:
996
        Variable: A tensor variable is the shape with `x`.
997 998

    Examples:
999

1000 1001
        .. code-block:: python

1002 1003
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1004 1005
    """

F
fengjiayi 已提交
1006
    helper = LayerHelper('dropout', **locals())
1007 1008
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1009 1010 1011 1012

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1013 1014 1015 1016 1017
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1018 1019 1020 1021 1022 1023
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1024 1025 1026
    return out


1027
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1028
    """
Y
Yibing Liu 已提交
1029 1030
    **Cross Entropy Layer**

1031 1032 1033
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1034 1035

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1036
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1037

Y
Yibing Liu 已提交
1038
        .. math::
Y
yangyaming 已提交
1039

Y
Yibing Liu 已提交
1040 1041 1042
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1043 1044
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1045 1046 1047 1048 1049

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1050
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1051 1052 1053
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1054 1055
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1056
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1057

Y
Yibing Liu 已提交
1058
    Args:
Y
yangyaming 已提交
1059
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1060 1061 1062 1063
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1064
        label (Variable|list): the ground truth which is a 2-D tensor. When
1065 1066 1067 1068
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1069
        soft_label (bool): a flag indicating whether to
1070
                                           interpretate the given labels as soft
1071
                                           labels. Default: `False`.
M
minqiyang 已提交
1072 1073
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1074
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1075 1076 1077 1078 1079

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1080 1081 1082 1083 1084
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1085 1086 1087 1088 1089 1090

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1091
    """
F
fengjiayi 已提交
1092
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1093 1094 1095 1096 1097 1098
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1099 1100
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1101 1102 1103
    return out


F
fengjiayi 已提交
1104
def square_error_cost(input, label):
Y
Yu Yang 已提交
1105
    """
1106 1107
    **Square error cost layer**

1108 1109
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1124 1125
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1126 1127

    Returns:
G
guosheng 已提交
1128
        Variable: The tensor variable storing the element-wise squared error \
1129
                  difference of input and label.
1130 1131 1132 1133 1134 1135 1136 1137

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1138
    """
F
fengjiayi 已提交
1139
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1149 1150
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1151 1152 1153
    return square_out


Y
yi.wu 已提交
1154
@templatedoc()
Y
Yu Yang 已提交
1155 1156 1157 1158
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1159
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1160
    """
Y
yi.wu 已提交
1161
    **Chunk Evaluator**
Y
yi.wu 已提交
1162

Y
yangyaming 已提交
1163
    This function computes and outputs the precision, recall and
1164
    F1-score of chunk detection.
Y
yi.wu 已提交
1165

Y
yi.wu 已提交
1166 1167 1168 1169 1170 1171 1172 1173
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1174

Y
yi.wu 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1200

Y
yi.wu 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1225
    Args:
1226 1227 1228 1229 1230
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1231

Y
yi.wu 已提交
1232
    Returns:
Y
update  
yi.wu 已提交
1233 1234 1235
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1236

Y
yi.wu 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1249
    """
F
fengjiayi 已提交
1250
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1251 1252 1253 1254 1255

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1256 1257 1258
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1259 1260 1261 1262 1263 1264 1265 1266

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1267 1268 1269 1270
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1271 1272 1273
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1274 1275
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1276
        })
1277 1278
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1279 1280


1281
@templatedoc()
Y
Yu Yang 已提交
1282 1283 1284 1285 1286 1287 1288
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduozh 已提交
1289 1290
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1291 1292 1293 1294
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1295 1296 1297 1298 1299 1300 1301

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduozh 已提交
1302
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
C
chengduozh 已提交
1303
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1304 1305 1306
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduozh 已提交
1307
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1308 1309 1310
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
C
chengduozh 已提交
1311 1312
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduozh 已提交
1313 1314
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1315

1316 1317
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1336
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduozh 已提交
1343
def sequence_softmax(input, use_cudnn=False, name=None):
1344 1345 1346
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1347
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1364 1365 1366
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduozh 已提交
1390
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1391
    """
1392
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1393
    has the same shape as the input.
Q
qiaolongfei 已提交
1394

1395 1396 1397 1398 1399 1400
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1401
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1402 1403 1404 1405 1406 1407 1408

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1409
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1410 1411 1412 1413 1414 1415 1416 1417

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduozh 已提交
1418 1419 1420
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1444 1445 1446
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1447 1448
           stride=1,
           padding=0,
1449
           dilation=1,
Y
Yu Yang 已提交
1450 1451 1452
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1453
           use_cudnn=True,
1454 1455
           act=None,
           name=None):
Y
Yu Yang 已提交
1456
    """
C
chengduoZH 已提交
1457
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1458 1459
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1460
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1461 1462 1463 1464 1465 1466 1467
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1468 1469 1470
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1471

1472
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1473

C
chengduoZH 已提交
1474 1475
    .. math::

C
refine  
chengduoZH 已提交
1476
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1477

T
tensor-tang 已提交
1478
    Where:
C
chengduoZH 已提交
1479

1480 1481 1482 1483 1484
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1485
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1486 1487 1488

    Example:

1489 1490
        - Input:

W
weixing02 已提交
1491
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1492

W
weixing02 已提交
1493
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1494

1495
        - Output:
T
tensor-tang 已提交
1496

W
weixing02 已提交
1497
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1498

C
chengduoZH 已提交
1499
        Where
1500 1501

        .. math::
C
chengduoZH 已提交
1502

W
weixing02 已提交
1503 1504
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1505 1506

    Args:
1507
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1508
        num_filters(int): The number of filter. It is as same as the output
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduozh 已提交
1526
            connected to the second half of the input channels. Default: groups=1.
C
chengduozh 已提交
1527
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1528 1529 1530 1531 1532
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
C
chengduozh 已提交
1533
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1534 1535 1536
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1537 1538
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1539 1540
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1541
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1542
            will be named automatically. Default: None
C
chengduoZH 已提交
1543 1544

    Returns:
G
guosheng 已提交
1545
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1546 1547
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1548
    Raises:
1549 1550
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1551

C
chengduoZH 已提交
1552 1553 1554
    Examples:
        .. code-block:: python

1555 1556
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1557 1558 1559
    """

    num_channels = input.shape[1]
C
chengduozh 已提交
1560
    assert param_attr is not False, "param_attr should not be False here."
1561
    l_type = 'conv2d'
X
xzl 已提交
1562 1563
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1564
        l_type = 'depthwise_conv2d'
1565 1566 1567 1568

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1569 1570 1571 1572 1573
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1574
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1575

C
chengduoZH 已提交
1576 1577 1578
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1579
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1580

C
chengduoZH 已提交
1581 1582
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1583 1584

    input_shape = input.shape
M
minqiyang 已提交
1585
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1586 1587

    def _get_default_param_initializer():
C
chengduozh 已提交
1588 1589
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1601
        type=l_type,
Y
Yu Yang 已提交
1602 1603 1604 1605 1606
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1607 1608 1609
        attrs={
            'strides': stride,
            'paddings': padding,
1610
            'dilations': dilation,
C
chengduoZH 已提交
1611
            'groups': groups,
1612
            'use_cudnn': use_cudnn,
1613
            'use_mkldnn': False
C
chengduoZH 已提交
1614
        })
Y
Yu Yang 已提交
1615 1616 1617 1618 1619 1620

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1638 1639 1640 1641 1642 1643
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1653 1654
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1655 1656 1657
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1658
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1684
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1685 1686
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1687
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1688 1689
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1690
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1691 1692
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1693
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1694 1695 1696 1697 1698 1699
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduozh 已提交
1700
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
1701 1702 1703 1704 1705
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
C
chengduozh 已提交
1706
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
1707 1708 1709
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1710 1711
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
1712 1713
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1714
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
1715
            will be named automatically. Default: None.
C
chengduoZH 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1728 1729
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1730 1731 1732
    """

    l_type = 'conv3d'
C
chengduozh 已提交
1733
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1744
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduozh 已提交
1758 1759 1760
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1784
            'use_mkldnn': False
C
chengduoZH 已提交
1785 1786
        })

1787
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1788 1789 1790 1791

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1792
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1793
    """
Y
yangyaming 已提交
1794 1795 1796
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1808
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1809 1810 1811 1812 1813
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1814
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1815 1816 1817 1818 1819 1820 1821

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1822 1823
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1824

L
Luo Tao 已提交
1825 1826
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1827
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1828 1829 1830 1831 1832 1833 1834 1835
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1836

Y
yangyaming 已提交
1837
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1838 1839 1840 1841 1842
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1843 1844
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1845
    """
F
fengjiayi 已提交
1846
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1858 1859 1860 1861 1862
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1863 1864 1865
    return pool_out


C
add doc  
chengduoZH 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1891
def sequence_first_step(input):
L
Luo Tao 已提交
1892
    """
L
Luo Tao 已提交
1893
    This function gets the first step of sequence.
L
Luo Tao 已提交
1894 1895 1896 1897

    .. code-block:: text

       x is a 1-level LoDTensor:
1898
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1899 1900 1901 1902 1903
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1904
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1905
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1906

L
Luo Tao 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1916

Y
yangyaming 已提交
1917
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1918 1919 1920
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1921 1922 1923
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1924
def sequence_last_step(input):
L
Luo Tao 已提交
1925
    """
L
Luo Tao 已提交
1926
    This function gets the last step of sequence.
L
Luo Tao 已提交
1927 1928 1929 1930

    .. code-block:: text

       x is a 1-level LoDTensor:
1931
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1932 1933 1934 1935 1936
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1937
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1938
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1939

L
Luo Tao 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1949

Y
yangyaming 已提交
1950
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1951 1952 1953
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1954 1955 1956
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1957
@templatedoc()
Y
Yu Yang 已提交
1958
def pool2d(input,
C
chengduoZH 已提交
1959 1960
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1961 1962
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1963
           global_pooling=False,
C
chengduoZH 已提交
1964
           use_cudnn=True,
1965
           ceil_mode=False,
C
caoying03 已提交
1966
           name=None):
Y
Yu Yang 已提交
1967
    """
F
fengjiayi 已提交
1968
    ${comment}
1969 1970

    Args:
1971 1972 1973
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1974
                          feature, and W is the width of the feature.
1975
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1976
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1977
        pool_type: ${pooling_type_comment}
1978 1979
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1980 1981 1982
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1983
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1984 1985
                        layer will be named automatically.

1986
    Returns:
F
fengjiayi 已提交
1987
        Variable: The pooling result.
F
fengjiayi 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2001 2002 2003 2004
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2005
                            global_pooling=False)
Y
Yu Yang 已提交
2006 2007 2008 2009 2010
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2011

C
chengduoZH 已提交
2012 2013 2014 2015 2016
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2017 2018 2019 2020
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2021 2022
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2023

C
Add doc  
chengduoZH 已提交
2024
    l_type = 'pool2d'
2025 2026

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2027 2028 2029 2030
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2042
            "use_mkldnn": False
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2059
    pooling configurations mentioned in input parameters.
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2072

2073
    Returns:
2074
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2075 2076 2077 2078 2079
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2080

C
chengduoZH 已提交
2081 2082 2083 2084 2085
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2086 2087 2088
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2089

C
chengduoZH 已提交
2090 2091
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2092

2093 2094
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2095 2096 2097 2098
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2099
        type=l_type,
Y
Yu Yang 已提交
2100 2101 2102 2103 2104 2105 2106
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2107
            "paddings": pool_padding,
2108
            "use_cudnn": use_cudnn,
2109
            "ceil_mode": ceil_mode,
2110
            "use_mkldnn": False
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2123
               data_layout='NCHW',
Y
Yang Yang 已提交
2124
               in_place=False,
2125 2126
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2127
               moving_variance_name=None,
2128 2129
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2130
    """
Q
qiaolongfei 已提交
2131 2132 2133 2134
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2135

Q
qiaolongfei 已提交
2136
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2137

Q
qiaolongfei 已提交
2138 2139
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2140 2141 2142
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2155 2156

    Args:
Q
qiaolongfei 已提交
2157
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2158 2159 2160 2161
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduozh 已提交
2162 2163 2164 2165 2166 2167 2168 2169
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2170
        data_layout(string, default NCHW): NCHW|NHWC
2171
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2172 2173 2174 2175
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2176
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2177
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2178 2179

    Returns:
Q
qiaolongfei 已提交
2180
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2181 2182 2183 2184 2185 2186 2187

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2188
    """
C
chengduozh 已提交
2189
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2212
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2213

2214 2215
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2216 2217 2218
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2219
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2220
        shape=param_shape,
2221 2222 2223 2224 2225 2226 2227
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2228
            trainable=False,
W
wanghaoshuang 已提交
2229
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2230
        shape=param_shape,
2231 2232
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2233 2234 2235 2236 2237 2238

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2239 2240
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2241

2242
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2260 2261 2262 2263
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2264
            "use_mkldnn": False,
2265
            "fuse_with_relu": fuse_with_relu
2266
        })
Y
Yu Yang 已提交
2267 2268 2269 2270

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2271
@templatedoc()
G
guosheng 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2282
    ${comment}
G
guosheng 已提交
2283 2284 2285

    The formula is as follows:

Y
yuyang18 已提交
2286
    ..  math::
G
guosheng 已提交
2287 2288 2289 2290 2291 2292 2293

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2294 2295 2296 2297 2298 2299 2300 2301
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2302

G
guosheng 已提交
2303 2304
    Args:
        input(Variable): The input tensor variable.
2305
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2306
            normalization.
2307
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2308
            normalization.
2309
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2310
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2311
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2312 2313 2314 2315 2316 2317
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2318
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2319 2320

    Returns:
Y
yuyang18 已提交
2321
        ${y_comment}
G
guosheng 已提交
2322 2323 2324

    Examples:

Y
yuyang18 已提交
2325 2326 2327
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2343
    if shift:
G
guosheng 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2368 2369 2370 2371
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2372 2373 2374
                     padding=0,
                     stride=1,
                     dilation=1,
2375
                     groups=None,
C
caoying03 已提交
2376
                     param_attr=None,
2377
                     bias_attr=None,
C
chengduoZH 已提交
2378
                     use_cudnn=True,
2379
                     act=None,
C
caoying03 已提交
2380
                     name=None):
Y
Yu Yang 已提交
2381
    """
2382 2383 2384 2385 2386 2387 2388 2389
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2390 2391
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2392 2393 2394
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2395 2396 2397 2398 2399

    For each input :math:`X`, the equation is:

    .. math::

2400
        Out = \sigma (W \\ast X + b)
2401

2402
    Where:
2403 2404 2405

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2406 2407 2408 2409
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2410

2411 2412 2413 2414
    Example:

        - Input:

2415
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2416

2417
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2418 2419 2420

        - Output:

2421
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2422 2423

        Where
Y
Yu Yang 已提交
2424

2425 2426
        .. math::

2427 2428 2429 2430
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2431 2432

    Args:
2433 2434 2435 2436
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2437 2438 2439 2440
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduozh 已提交
2459
            Default: groups = 1.
C
chengduozh 已提交
2460
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2461 2462 2463 2464
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
C
chengduozh 已提交
2465
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2466 2467 2468
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2469
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduozh 已提交
2470 2471 2472
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2473
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduozh 已提交
2474
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2475 2476

    Returns:
2477
        Variable: The tensor variable storing the convolution transpose result.
2478 2479

    Raises:
2480 2481
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2482 2483 2484 2485

    Examples:
       .. code-block:: python

2486 2487
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2488
    """
C
chengduozh 已提交
2489
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2490 2491 2492 2493 2494 2495 2496 2497
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2498 2499 2500
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2501 2502 2503
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2504

C
chengduoZH 已提交
2505 2506
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2507

Y
Yu Yang 已提交
2508 2509 2510 2511 2512
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2513

Y
Yu Yang 已提交
2514 2515
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2516

C
chengduoZH 已提交
2517
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2518
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2519
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2520
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2521
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2522 2523 2524
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduozh 已提交
2525

2526 2527 2528 2529 2530 2531 2532
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2533
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2534
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduozh 已提交
2535

Y
Yu Yang 已提交
2536 2537 2538
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2539
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2540
    helper.append_op(
2541
        type=op_type,
Y
Yu Yang 已提交
2542 2543
        inputs={'Input': [input],
                'Filter': [img_filter]},
2544
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2545
        attrs={
2546
            'output_size': output_size,
2547 2548 2549 2550 2551
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2552 2553
        })

2554 2555 2556
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2557 2558


2559
def conv3d_transpose(input,
Y
Yu Yang 已提交
2560 2561 2562
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2563 2564 2565
                     padding=0,
                     stride=1,
                     dilation=1,
2566
                     groups=None,
C
caoying03 已提交
2567
                     param_attr=None,
2568
                     bias_attr=None,
C
chengduoZH 已提交
2569
                     use_cudnn=True,
2570
                     act=None,
C
caoying03 已提交
2571
                     name=None):
Y
Yu Yang 已提交
2572
    """
2573
    **Convlution3D transpose layer**
2574

2575
    The convolution3D transpose layer calculates the output based on the input,
2576
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2577 2578 2579 2580 2581 2582
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2583 2584 2585
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2586 2587 2588 2589 2590

    For each input :math:`X`, the equation is:

    .. math::

2591
        Out = \sigma (W \\ast X + b)
2592 2593 2594

    In the above equation:

2595 2596
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2597 2598 2599 2600
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2601

2602 2603 2604 2605
    Example:

        - Input:

2606
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2607

2608
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2609 2610 2611

        - Output:

2612
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2613 2614

        Where
Y
Yu Yang 已提交
2615

2616 2617
        .. math::

2618 2619 2620
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2621 2622

    Args:
2623
        input(Variable): The input image with [N, C, D, H, W] format.
2624 2625 2626
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2627
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2628 2629
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2630
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2631 2632 2633
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2634 2635
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2636
        stride(int|tuple): The stride size. If stride is a tuple, it must
2637 2638
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2639
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2640 2641 2642
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2643 2644 2645 2646 2647
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduozh 已提交
2648
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
C
chengduozh 已提交
2649 2650 2651 2652
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
C
chengduozh 已提交
2653
            If it is set to False, no bias will be added to the output units.
C
chengduozh 已提交
2654 2655 2656
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2657 2658
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduozh 已提交
2659 2660
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2661 2662
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2663 2664

    Returns:
2665
        Variable: The tensor variable storing the convolution transpose result.
2666 2667

    Raises:
2668 2669
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2670 2671 2672 2673

    Examples:
       .. code-block:: python

2674 2675
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2676
    """
C
chengduozh 已提交
2677
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2678 2679
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2680
    if not isinstance(input, Variable):
2681
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2682 2683
    input_channel = input.shape[1]

2684 2685 2686
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2687

C
chengduoZH 已提交
2688 2689 2690
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2691 2692 2693 2694 2695 2696
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2697 2698 2699
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2700

2701
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2702
                         padding[0] - 1) // dilation[0] + 1
2703
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2704
                         padding[1] - 1) // dilation[1] + 1
2705
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2706
                         padding[2] - 1) // dilation[2] + 1
2707
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2708
    else:
2709 2710
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2711

2712
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2713
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2714 2715 2716
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2717
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2718
    helper.append_op(
2719
        type=l_type,
Y
Yu Yang 已提交
2720 2721
        inputs={'Input': [input],
                'Filter': [img_filter]},
2722
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2723 2724 2725 2726
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2727
            'groups': groups,
C
chengduoZH 已提交
2728 2729
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2730

2731 2732
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2733
    return out
Y
yangyaming 已提交
2734 2735


Y
yangyaming 已提交
2736
def sequence_expand(x, y, ref_level=-1, name=None):
2737
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2738 2739 2740 2741
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2742 2743 2744 2745 2746

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2747
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2748
                x.data = [[a], [b], [c], [d]]
2749 2750 2751
                x.dims = [4, 1]

            y is a LoDTensor:
2752 2753
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2754

Y
yangyaming 已提交
2755
            ref_level: 0
2756

Y
yangyaming 已提交
2757
            then output is a 1-level LoDTensor:
2758
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2759
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2760 2761 2762 2763
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2764
                x.data = [[a], [b], [c]]
2765 2766 2767
                x.dims = [3, 1]

            y is a LoDTensor:
2768
                y.lod = [[2, 0, 3]]
2769

Y
yangyaming 已提交
2770
            ref_level: -1
2771

Y
yangyaming 已提交
2772 2773 2774
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2775 2776 2777
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2778 2779
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2780
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2781
                        will be named automatically.
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2792
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2793
    """
Y
yangyaming 已提交
2794
    helper = LayerHelper('sequence_expand', input=x, **locals())
2795 2796 2797
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2798 2799 2800 2801 2802
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2803
    return tmp
2804 2805


C
chengduo 已提交
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2871 2872 2873 2874 2875 2876 2877
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2878 2879 2880
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2881
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2882 2883 2884 2885
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2886
            longest original sequence."
M
minqiyang 已提交
2887

F
fengjiayi 已提交
2888
    Returns:
M
minqiyang 已提交
2889
        Variable: The padded sequence batch and the original lengths before
2890
                  padding. All sequences has the same length.
M
minqiyang 已提交
2891

F
fengjiayi 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2906 2907 2908 2909 2910
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2911 2912 2913 2914 2915 2916
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2917 2918
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2919
        attrs={'padded_length': maxlen})
2920
    return out, length
F
fengjiayi 已提交
2921 2922


2923 2924 2925 2926 2927 2928 2929 2930 2931
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2932 2933
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2934 2935 2936

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2937 2938

    This layer does the search in beams for one time step. Specifically, it
2939 2940 2941 2942 2943 2944
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2945

2946 2947 2948 2949 2950 2951 2952 2953
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2954

2955
    Args:
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2981

2982
    Returns:
2983 2984
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2985 2986 2987 2988

    Examples:
        .. code-block:: python

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3017
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3035 3036 3037 3038 3039 3040 3041
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3052

3053 3054 3055 3056 3057 3058
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3059

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3085 3086 3087 3088
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3089
              param_attr=None,
C
caoying03 已提交
3090 3091
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3092 3093 3094 3095
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3096
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3097

3098
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3099

3100
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3101

3102
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3103 3104 3105

            h_t & = o_t tanh(c_t)

3106 3107 3108 3109 3110 3111
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3112 3113 3114

        .. math::

3115
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3116 3117 3118 3119 3120 3121 3122 3123

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3124
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3125 3126

    Args:
Y
yangyaming 已提交
3127 3128 3129 3130 3131 3132
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3133
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3134 3135
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3136 3137
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3138 3139
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3140 3141

    Returns:
Y
yangyaming 已提交
3142
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3143 3144

    Raises:
3145 3146 3147 3148
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3149 3150 3151 3152 3153 3154

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3155
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3156
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3157
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3174
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3175 3176 3177 3178
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3179 3180
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3181 3182 3183
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3184
    size = cell_t_prev.shape[1]
3185
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3186 3187
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3188
                param_attr=param_attr,
3189
                bias_attr=bias_attr)
Y
yangyaming 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3202
    return h, c
G
guosheng 已提交
3203 3204


C
caoying03 已提交
3205
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3206
    """
Y
yangyaming 已提交
3207
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3208 3209 3210

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3211
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3212 3213
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3214 3215
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3216
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3217
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3218
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3219 3220
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3221 3222 3223

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3224

G
guosheng 已提交
3225 3226 3227 3228 3229 3230
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3231
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3232 3233 3234 3235
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3236 3237 3238 3239

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3240
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3241 3242 3243
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3244 3245 3246
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3247 3248
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3249 3250 3251 3252 3253
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3254
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3255 3256 3257 3258
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3259 3260


C
caoying03 已提交
3261
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3262
    """
Y
Yibing Liu 已提交
3263
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3264 3265 3266

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3267 3268 3269
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3270
            must be in the range :math:`[-rank(input), rank(input))`. If
3271
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3272
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3273 3274
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3275
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3276
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3277
                       will be named automatically.
G
guosheng 已提交
3278 3279

    Returns:
Y
Yibing Liu 已提交
3280
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3281

G
guosheng 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3292 3293
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3294 3295 3296 3297 3298 3299 3300

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3301 3302 3303
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3304 3305
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3306 3307 3308 3309 3310
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3311
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3312 3313 3314 3315
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3316 3317


C
caoying03 已提交
3318
def reduce_max(input, dim=None, keep_dim=False, name=None):
3319
    """
Y
yangyaming 已提交
3320
    Computes the maximum of tensor elements over the given dimension.
3321 3322 3323

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3324
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3325 3326 3327
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3328
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3329 3330
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3331
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3332 3333
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3334 3335 3336

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3349 3350 3351 3352 3353 3354 3355

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3356 3357 3358
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3359 3360
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3361 3362 3363 3364 3365
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3366
            'dim': dim if dim != None else [0],
3367 3368 3369 3370 3371 3372
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3373
def reduce_min(input, dim=None, keep_dim=False, name=None):
3374
    """
Y
yangyaming 已提交
3375
    Computes the minimum of tensor elements over the given dimension.
3376 3377 3378

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3379
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3380 3381 3382
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3383
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3384 3385
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3386
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3387 3388
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3389 3390 3391

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3392

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3404 3405 3406 3407 3408 3409 3410

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3411 3412 3413
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3414 3415
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3416 3417 3418 3419 3420
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3421
            'dim': dim if dim != None else [0],
3422 3423 3424 3425
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3426 3427


3428 3429 3430 3431 3432 3433
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3434
        dim (list|int|None): The dimensions along which the product is performed. If
3435 3436
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3437 3438
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3439 3440 3441
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3442
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3443
            layer will be named automatically.
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3458
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3459
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3460 3461 3462 3463 3464 3465 3466

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3467 3468 3469
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3470 3471
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3472 3473 3474 3475 3476
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3477
            'dim': dim if dim != None else [0],
3478 3479 3480 3481 3482 3483
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3484
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3485
    """
C
caoying03 已提交
3486
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3487 3488 3489

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3490 3491 3492 3493 3494
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3495
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3496
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3497
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3498 3499
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3500 3501

    Returns:
D
dzhwinter 已提交
3502
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3512 3513
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3552
    .. math::
3553 3554

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3555 3556 3557 3558 3559

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3560
        x(Variable|list): The input tensor to l2_normalize layer.
3561
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3562 3563
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3564
        epsilon(float): The epsilon value is used to avoid division by zero, \
3565
            the defalut value is 1e-10.
3566
        name(str|None): A name for this layer(optional). If set None, the layer \
3567
            will be named automatically.
C
caoying03 已提交
3568 3569

    Returns:
3570
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3571 3572

    Examples:
3573

C
caoying03 已提交
3574 3575
        .. code-block:: python

3576 3577 3578 3579
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3580 3581
    """

F
fengjiayi 已提交
3582 3583
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3584 3585
    helper = LayerHelper("l2_normalize", **locals())

3586 3587
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3588
    helper.append_op(
3589 3590 3591 3592
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3593
        attrs={
3594 3595
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3596 3597
        })
    return out
3598 3599


S
sneaxiy 已提交
3600
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3601
    """
Y
ying 已提交
3602 3603 3604 3605
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3606

C
chengduoZH 已提交
3607
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3608
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3609

3610 3611 3612 3613 3614
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3615
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3616

C
chengduoZH 已提交
3617
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3618
      performs in the following way.
G
guosheng 已提交
3619

3620
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3621
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3622
        last two dimensions and a batched matrix multiply supporting broadcast
3623
        applies on the two tensors.
G
guosheng 已提交
3624

Y
ying 已提交
3625 3626
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3627
    removed after matrix multiplication.
G
guosheng 已提交
3628 3629 3630

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3631 3632 3633
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3634
        alpha (float): The scale of output. Default 1.0.
3635
        name(str|None): A name for this layer(optional). If set None, the layer
3636
            will be named automatically.
G
guosheng 已提交
3637 3638

    Returns:
3639
        Variable: The product Tensor variable.
G
guosheng 已提交
3640

G
guosheng 已提交
3641 3642 3643
    Examples:
        .. code-block:: python

3644
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3645 3646
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3647

3648 3649
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3650

3651 3652
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3653

3654 3655
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3656 3657 3658 3659

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3660 3661
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3662

Y
ying 已提交
3663
            # x: [M], y: [N]
3664
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3665
    """
Y
ying 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3678
            y_shape = y_shape + [1]
Y
ying 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3695
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3696
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3697
    helper.append_op(
3698 3699 3700 3701
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3702 3703 3704
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3705
            'alpha': float(alpha),
S
sneaxiy 已提交
3706
        })
3707
    return out
3708 3709


3710
def topk(input, k, name=None):
Q
qingqing01 已提交
3711 3712 3713 3714
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3715
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3716 3717 3718 3719 3720 3721
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3743 3744 3745
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3746
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3747
                 of input.
3748
        name(str|None): A name for this layer(optional). If set None, the layer
3749
                       will be named automatically.
F
fengjiayi 已提交
3750
                       Default: None
Q
qingqing01 已提交
3751 3752

    Returns:
3753 3754 3755
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3756
        within the last dimension of input.
Q
qingqing01 已提交
3757

F
fengjiayi 已提交
3758 3759
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3780
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3781
    """
Y
ying 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3791

Y
ying 已提交
3792
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3793

3794
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3795 3796
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3797
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3798

3799
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3800 3801
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3802

3803 3804 3805
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3806
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3807
                          the length of reference string.
3808
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3809
                                     calculating edit distance.
3810
        name (str): The name of this layer. It is optional.
3811

W
wanghaoshuang 已提交
3812
    Returns:
W
wanghaoshuang 已提交
3813
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3814 3815 3816 3817 3818

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3819
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3820
            cost = fluid.layers.edit_distance(input=x,label=y)
3821
    """
3822
    helper = LayerHelper("edit_distance", **locals())
3823

3824
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3825
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3826 3827 3828 3829 3830 3831 3832
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3833
            attrs={"tokens": ignored_tokens})
3834 3835 3836 3837 3838
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3839
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3840
            attrs={"tokens": ignored_tokens})
3841 3842
        label = erased_label

3843 3844
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3845
    sequence_num = helper.create_tmp_variable(dtype="int64")
3846 3847 3848 3849
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3850 3851
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3852 3853
        attrs={"normalized": normalized})

3854
    return edit_distance_out, sequence_num
3855 3856 3857 3858 3859


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3860

Y
ying 已提交
3861 3862 3863 3864
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3882
        input.lod = [[4, 4]]
3883 3884 3885 3886 3887 3888 3889

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3890
        output.lod = [[2, 1]]
3891 3892 3893

    Args:

Y
ying 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3903
        name (str): The name of this layer. It is optional.
3904 3905

    Returns:
3906
        Variable: CTC greedy decode result. If all the sequences in result were
3907
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3908 3909 3910 3911 3912

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3913

3914
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3915
    """
3916
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3917
    _, topk_indices = topk(input, k=1)
3918 3919 3920 3921 3922 3923

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3924
        outputs={"Output": [ctc_out]},
3925 3926
        attrs={"merge_repeated": True,
               "blank": blank})
3927
    return ctc_out
3928 3929


F
fengjiayi 已提交
3930
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3931
    """
3932 3933
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3934
    to compute Connectionist Temporal Classification (CTC) loss.
3935 3936
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3937 3938 3939
    input tensor.

    Args:
3940
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3941 3942 3943 3944
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3945
       label (Variable): The ground truth of variable-length sequence,
3946 3947 3948
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3949 3950
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3951 3952 3953
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3954
         follewed by a mean_op.
W
wanghaoshuang 已提交
3955 3956

    Returns:
3957 3958
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3959 3960

    Examples:
3961

W
wanghaoshuang 已提交
3962
        .. code-block:: python
3963

3964 3965 3966
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3967 3968

    """
F
fengjiayi 已提交
3969
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3996 3997 3998
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3999 4000 4001 4002 4003
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4004

4005
            out.lod  = [[0, 1, 3]]
4006 4007 4008 4009

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4010 4011 4012 4013 4014 4015 4016
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4017 4018 4019

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4020 4021

    Returns:
4022

4023 4024 4025 4026 4027
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4028
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4029
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4030 4031 4032 4033 4034 4035 4036 4037 4038
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4039 4040


4041 4042 4043 4044
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4045 4046 4047 4048 4049 4050
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduozh 已提交
4051 4052
        num_neg_samples=None,
        name=None):
4053 4054 4055 4056 4057 4058 4059
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4060 4061
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4062
            sample is 1.0.
C
chengduozh 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4072
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduozh 已提交
4073 4074
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4075

4076
    Returns:
Y
Yibing Liu 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4104
    """
Y
Yang Yu 已提交
4105 4106 4107
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduozh 已提交
4108 4109

    dim = input.shape[1]
Y
Yang Yu 已提交
4110 4111 4112 4113 4114 4115
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduozh 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
Y
Yang Yu 已提交
4129 4130 4131 4132
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4142 4143 4144

    helper.append_op(
        type='nce',
C
chengduozh 已提交
4145
        inputs=inputs,
Y
Yang Yu 已提交
4146 4147 4148 4149 4150 4151
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4152
    return cost / (num_neg_samples + 1)
4153 4154


C
chengduozh 已提交
4155 4156 4157 4158 4159 4160
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4161 4162
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4163
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4173

W
weixing02 已提交
4174
    Args:
M
minqiyang 已提交
4175
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4176 4177 4178 4179 4180
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduozh 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4192 4193 4194 4195 4196 4197 4198 4199

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4200 4201 4202
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4203 4204 4205 4206 4207 4208 4209 4210
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4211
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4212 4213 4214 4215 4216
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4217 4218 4219 4220 4221 4222 4223 4224
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4225 4226
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4227
        inputs=inputs,
W
weixing02 已提交
4228 4229 4230 4231 4232 4233
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4234
def transpose(x, perm, name=None):
Y
ying 已提交
4235 4236 4237 4238 4239 4240 4241
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4242 4243 4244
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4245 4246 4247 4248 4249 4250 4251 4252

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4253
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4254 4255
    """

Y
fix ci.  
ying 已提交
4256
    if len(perm) != len(x.shape):
Y
ying 已提交
4257 4258 4259
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4260 4261 4262 4263 4264 4265
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4266 4267

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4268
    out = helper.create_tmp_variable(x.dtype)
4269
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4270
    helper.append_op(
4271
        type='transpose2',
Y
fix ci.  
ying 已提交
4272
        inputs={'X': [x]},
4273 4274
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4275 4276
        attrs={'axis': perm})
    return out
4277 4278


4279 4280 4281 4282 4283 4284 4285
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4286
    """
4287 4288 4289 4290 4291 4292 4293
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4322 4323 4324 4325 4326 4327 4328 4329 4330
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4331 4332 4333
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4334 4335 4336 4337 4338
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4366 4367 4368
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4381
            output.dims = {8, 8}
4382

4383
            output.lod = [[4, 4]]
4384

D
dzhwinter 已提交
4385
     Examples:
4386 4387 4388

        .. code-block:: python

4389 4390
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4391 4392

    """
W
wanghaoshuang 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4403 4404 4405 4406 4407 4408 4409
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4410
    helper = LayerHelper('im2sequence', **locals())
4411 4412
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4413
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4414
    return out
4415 4416


Y
yuyang18 已提交
4417
@templatedoc()
4418
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4419 4420
    """
    ${comment}
4421 4422

    Args:
Y
yuyang18 已提交
4423
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4424 4425
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4426 4427 4428 4429 4430
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4431
        ${out_comment}.
4432 4433

    Examples:
Y
yuyang18 已提交
4434 4435 4436 4437
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4450
    return helper.append_activation(out)
4451 4452


Y
yuyang18 已提交
4453
@templatedoc()
4454 4455
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4456 4457 4458 4459 4460 4461 4462
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4463 4464

    Args:
Y
yuyang18 已提交
4465 4466
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4467 4468

    Returns:
Y
yuyang18 已提交
4469
        ${out_comment}.
4470 4471
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4472 4473 4474 4475 4476 4477

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4478 4479 4480 4481 4482 4483
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4484 4485


4486 4487 4488 4489
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4490 4491
    """
    **Softmax With Cross Entropy Operator.**
4492

4493 4494 4495 4496
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4497

4498 4499 4500
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4501

4502 4503 4504
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4505

4506
    The equation is as follows:
4507

4508
    1) Hard label (one-hot label, so every sample has exactly one class)
4509

4510 4511 4512 4513
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4514

4515 4516 4517
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4518

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4531 4532
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4533 4534
                            if soft_label is set to False. Default: -100

4535 4536 4537 4538 4539 4540 4541 4542 4543
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4544 4545
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4556 4557
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4558 4559 4560 4561 4562
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4563 4564
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4565
    For each instance, it computes the smooth L1 loss element by element first
4566
    and then sums all the losses. So the shape of ouput Variable is
4567
    [batch_size, 1].
4568

4569 4570
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4571
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4572
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4573
            L1 loss op with same shape as :attr:`x`.
4574
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4575 4576
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4577
            by this tensor element by element.
4578
        outside_weight (Variable|None): A tensor with rank at least 2. This
4579 4580
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4581
            element by element.
4582
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4583 4584
           scalar with default value 1.0.

4585
    Returns:
4586
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4587 4588 4589 4590 4591

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4592 4593
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4594
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4595
            out = fluid.layers.smooth_l1(x=fc, y=label)
4596
    """
4597

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4613 4614 4615 4616


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4617
    This layer creates the one-hot representations for input indices.
4618 4619

    Args:
Y
Yibing Liu 已提交
4620 4621
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4622 4623

    Returns:
Y
Yibing Liu 已提交
4624
        Variable: The one-hot representations of input.
4625 4626

    Examples:
C
caoying03 已提交
4627
        .. code-block:: python
4628

Y
Yibing Liu 已提交
4629 4630
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4631 4632 4633 4634 4635 4636 4637 4638 4639
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4640 4641


Y
Yu Yang 已提交
4642
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4643
    """
Y
yi.wu 已提交
4644 4645 4646
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4647 4648 4649 4650 4651 4652

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4653 4654
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4655 4656 4657 4658 4659 4660

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4661 4662
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4663 4664
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4665 4666 4667 4668 4669
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4670
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4671
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4672 4673
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4674 4675
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4676 4677 4678
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4679 4680


4681
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4682
    """
C
caoying03 已提交
4683 4684
    Gives a new shape to the input Tensor without changing its data.

4685 4686 4687 4688 4689
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4690

4691
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4692

4693 4694 4695 4696
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4697
    2. 0 means the actual dimension value is going to be copied from the
4698 4699 4700 4701
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4702 4703

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4704
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4705
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4706

4707
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4708 4709
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4710 4711
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4712
    dimensions.
C
caoying03 已提交
4713

4714
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4715 4716 4717 4718
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4719 4720

    Args:
4721
        x(variable): The input tensor.
C
caoying03 已提交
4722 4723
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4724 4725 4726 4727 4728
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4729
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4730 4731 4732 4733
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4734
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4735

4736 4737
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4738

X
Xin Pan 已提交
4739 4740 4741
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4742 4743
    Examples:
        .. code-block:: python
G
guosheng 已提交
4744

4745
            data = fluid.layers.data(
4746
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4747
            reshaped = fluid.layers.reshape(
4748
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4749 4750 4751
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4752
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4753 4754 4755 4756 4757
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4758

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4774
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4775
    out = helper.create_tmp_variable(dtype=x.dtype)
4776
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4777
    helper.append_op(
4778
        type="reshape2",
X
Xin Pan 已提交
4779
        inputs=inputs,
D
dzhwinter 已提交
4780
        attrs={"shape": shape},
4781 4782
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4783

D
dzhwinter 已提交
4784
    return helper.append_activation(out)
4785

4786

4787
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4788
    """
M
minqiyang 已提交
4789 4790 4791
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4792
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4793

Y
Yibing Liu 已提交
4794 4795
    Examples:
    Case 1:
M
minqiyang 已提交
4796
      Given
Y
Yibing Liu 已提交
4797 4798 4799 4800 4801 4802 4803 4804
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4805
        and
Y
Yibing Liu 已提交
4806 4807 4808
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4809

Y
Yibing Liu 已提交
4810
    Args:
4811
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4812
        axes (list): List of integers, indicating the dimensions to be squeezed.
4813
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4814 4815 4816 4817 4818 4819 4820 4821

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4822
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4823 4824
    """
    helper = LayerHelper("squeeze", **locals())
4825
    out = helper.create_tmp_variable(dtype=input.dtype)
4826
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4827
    helper.append_op(
4828
        type="squeeze2",
4829
        inputs={"X": input},
Y
Yibing Liu 已提交
4830
        attrs={"axes": axes},
4831 4832
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4833

4834 4835 4836
    return out


4837
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4838
    """
M
minqiyang 已提交
4839 4840 4841
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4842

M
minqiyang 已提交
4843 4844
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4845
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4846

Y
Yibing Liu 已提交
4847
    Args:
4848
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4849
        axes (list): List of integers, indicating the dimensions to be inserted.
4850
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4851 4852 4853 4854 4855 4856 4857 4858

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4859
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4860 4861
    """
    helper = LayerHelper("unsqueeze", **locals())
4862
    out = helper.create_tmp_variable(dtype=input.dtype)
4863
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4864
    helper.append_op(
4865
        type="unsqueeze2",
4866
        inputs={"X": input},
Y
Yibing Liu 已提交
4867
        attrs={"axes": axes},
4868 4869
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4870

4871 4872
    return out

4873

Y
yangyaming 已提交
4874
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4875
    """
Y
Yibing Liu 已提交
4876
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4877 4878 4879 4880
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4881
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4882 4883 4884 4885 4886 4887

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4888
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4889 4890 4891
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4892
            target_lod: [4, 2]
Y
yangyaming 已提交
4893 4894

            then we get a 1-level LoDTensor:
4895
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4896 4897 4898 4899 4900 4901
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4902
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4903 4904 4905 4906
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4907
                y.data = [[2, 4]]
Y
yangyaming 已提交
4908 4909 4910
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4911
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4912 4913 4914 4915 4916 4917
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4918
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4919 4920 4921 4922
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4923
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4924 4925 4926 4927
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4928
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4929 4930 4931 4932 4933
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4934
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4935
                           from :attr:`y`.
Y
yangyaming 已提交
4936
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4937
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4938 4939

    Returns:
Y
Yibing Liu 已提交
4940
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4941 4942

    Raises:
Y
Yibing Liu 已提交
4943
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4979
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5008 5009
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5037 5038 5039 5040


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5041
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5042
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5043

G
guosheng 已提交
5044 5045 5046 5047
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5070
                         The length of :attr:paddings must be
G
guosheng 已提交
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5081

G
guosheng 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5096 5097


C
chengduo 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5178 5179 5180 5181 5182 5183 5184
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5185 5186
    called label-smoothing regularization (LSR).

5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5210
                              be :math:`(1, class\_num)`.
5211 5212
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5213
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5241 5242


Y
yi.wu 已提交
5243
@templatedoc()
5244 5245
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5246
    ${comment}
5247 5248

    Args:
Y
yi.wu 已提交
5249 5250
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5251 5252 5253
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5254 5255

    Returns:
Y
update  
yi.wu 已提交
5256
        Variable: ${out_comment}.
5257 5258

    Examples:
5259 5260
        .. code-block:: python

5261
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5307 5308
        .. code-block:: python

W
whs 已提交
5309 5310 5311 5312
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5313
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5314 5315 5316 5317 5318 5319
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5320 5321


5322 5323 5324 5325 5326
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5327
    """
Q
qiaolongfei 已提交
5328
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5329

5330
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5331 5332 5333
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5334

5335
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5336

5337
    Args:
5338
        input (Variable): The input tensor of image resize layer,
5339 5340
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5341
        out_shape(list|tuple|Variable|None): Output shape of image resize
5342 5343
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5344
        scale(float|None): The multiplier for the input height or width.
5345 5346 5347
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5348 5349
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5350 5351
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5352 5353

    Returns:
Q
update  
qiaolongfei 已提交
5354 5355
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5356

5357 5358 5359
    Examples:
        .. code-block:: python

5360
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5361
    """
5362 5363 5364 5365
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5366 5367
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5368 5369
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5370 5371 5372 5373

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5374 5375 5376
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5377
    if out_shape is not None:
B
baiyf 已提交
5378 5379 5380
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5381 5382 5383 5384 5385 5386
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5387 5388 5389 5390
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5391 5392
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5393
        type=resample_methods[resample],
5394
        inputs=inputs,
5395 5396 5397 5398
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5399 5400


Y
yuyang18 已提交
5401
@templatedoc(op_type="bilinear_interp")
5402 5403
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5404 5405 5406 5407 5408 5409
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5410

Y
yuyang18 已提交
5411 5412 5413 5414 5415 5416 5417 5418
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5419 5420 5421 5422 5423 5424 5425
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5426 5427 5428
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5429 5430 5431 5432 5433 5434 5435
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5436
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5437

5438
    Returns:
Q
update  
qiaolongfei 已提交
5439
        Variable: The output is a 4-D tensor of the shape
5440
        (num_batches, channls, out_h, out_w).
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5451 5452 5453
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5454 5455 5456
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5457 5458
def gather(input, index):
    """
Q
qiaolongfei 已提交
5459 5460
    **Gather Layer**

5461
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5462 5463 5464 5465
    of X indexed by `index` and concatenate them together.

    .. math::

5466
        Out = X[Index]
W
whs 已提交
5467 5468 5469 5470 5471 5472 5473


    .. code-block:: text


                Given:

5474 5475
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5486
        input (Variable): The source input with rank>=1.
W
whs 已提交
5487 5488 5489 5490 5491 5492
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5493

W
whs 已提交
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5623

5624 5625 5626
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5627
    """
F
stash  
fengjiayi 已提交
5628
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5629
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5630
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5631
    if seed is None:
5632
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5633
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5634
    if isinstance(seed, int):
F
fengjiayi 已提交
5635 5636 5637 5638 5639
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5640 5641 5642 5643
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5644
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5645 5646
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5647 5648
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5649
    return out
W
whs 已提交
5650 5651


5652
def log(x, name=None):
W
wanghaoshuang 已提交
5653 5654 5655 5656 5657
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5658
        Out = \\ln(x)
W
wanghaoshuang 已提交
5659 5660

    Args:
5661
        x (Variable): Input tensor.
5662 5663
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5664 5665 5666 5667 5668 5669 5670 5671

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5672
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5673 5674
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5675
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5676
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5677
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5678 5679 5680
    return out


5681
def relu(x, name=None):
W
wanghaoshuang 已提交
5682 5683
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5684
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5685 5686 5687 5688
    the tensor elementwise.

    .. math::

5689
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5690 5691

    Args:
5692
        x (Variable): The input tensor.
5693 5694
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5695 5696 5697 5698 5699 5700 5701 5702

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5703
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5704 5705
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5706
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5707
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5708
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5709
    return out
5710 5711


W
whs 已提交
5712 5713 5714
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5715 5716 5717 5718
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5719
    .. math::
5720 5721

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5722

5723
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5724 5725 5726 5727 5728
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5729
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5730
                           Its shape should be the same as input.
5731
        num_classes (int): The possible number of labels.
W
whs 已提交
5732 5733 5734 5735

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5736
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5737 5738 5739 5740

    Examples:

        .. code-block:: python
5741

W
whs 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5751 5752
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5753
        outputs={
W
whs 已提交
5754 5755 5756
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5757 5758 5759
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5834
                    isinstance(shape, Variable)):
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5868

5869 5870
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5871

5872 5873 5874 5875
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5876

5877 5878 5879 5880 5881
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5882 5883 5884

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5929 5930


W
whs 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5945

W
whs 已提交
5946 5947
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5948

W
whs 已提交
5949
      Case 0:
M
minqiyang 已提交
5950

W
whs 已提交
5951 5952 5953
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5954

W
whs 已提交
5955 5956 5957
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5958

W
whs 已提交
5959
      Case 1:
M
minqiyang 已提交
5960

W
whs 已提交
5961 5962
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5963

W
whs 已提交
5964 5965 5966
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5967

W
whs 已提交
5968
      Case 2:
M
minqiyang 已提交
5969

W
whs 已提交
5970 5971
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5972

W
whs 已提交
5973 5974 5975
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5976 5977


W
whs 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6175
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6176
                        will be named automatically.
J
jerrywgz 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6295

6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6306 6307
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6323
        ValueError: If axis is not in range [0, rank(x)].
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6341
    x_shape = helper.create_tmp_variable(x.dtype)
6342
    helper.append_op(
6343
        type='flatten2',
6344
        inputs={"X": x},
6345 6346
        outputs={'Out': out,
                 'XShape': x_shape},
6347 6348
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6349 6350


C
chenweihang 已提交
6351
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6352
    """
C
chenweihang 已提交
6353
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6354
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6355 6356
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6357

C
chenweihang 已提交
6358 6359 6360 6361
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6362
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6363 6364 6365 6366 6367 6368
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6369
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6370 6371 6372
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6373 6374 6375
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6387
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6388 6389 6390 6391 6392 6393
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6394

6395

S
sneaxiy 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6405

S
sneaxiy 已提交
6406
    .. math::
6407

S
sneaxiy 已提交
6408 6409 6410
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6411
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6412 6413 6414 6415
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6416 6417 6418
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6419 6420
    Returns:
        Variable: The output sequence mask.
6421

S
sneaxiy 已提交
6422 6423
    """

Q
qingqing01 已提交
6424
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6425 6426 6427 6428 6429
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6430 6431 6432
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6433 6434
        outputs={'Y': out},
        attrs={
6435
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6436 6437 6438
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6439 6440


X
Xin Pan 已提交
6441
def stack(x, axis=0):
S
sneaxiy 已提交
6442 6443 6444 6445
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6446 6447 6448 6449 6450 6451 6452

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6453
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6454
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6455 6456

    Args:
6457
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6458
        axis (int|None): The axis along which all inputs are stacked.
6459

S
sneaxiy 已提交
6460 6461
    Returns:
        Variable: The stacked variable.
6462

S
sneaxiy 已提交
6463 6464
    """

X
Xin Pan 已提交
6465 6466 6467 6468 6469 6470
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

S
sneaxiy 已提交
6471
    out = helper.create_tmp_variable(dtype=x[0].dtype)
X
Xin Pan 已提交
6472
    helper.append_op(
S
sneaxiy 已提交
6473 6474
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6475

X
Xin Pan 已提交
6476
    return out
D
dzhwinter 已提交
6477 6478 6479 6480 6481 6482 6483


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6484

D
dzhwinter 已提交
6485 6486 6487
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6488
    raised.
D
dzhwinter 已提交
6489 6490

    Args:
M
minqiyang 已提交
6491
        x (Variable): Input variable.
D
dzhwinter 已提交
6492 6493
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6494

D
dzhwinter 已提交
6495 6496
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6497

D
dzhwinter 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
S
sneaxiy 已提交
6508 6509
    for _ in xrange(num):
        outs.append(helper.create_tmp_variable(dtype=x.dtype))
D
dzhwinter 已提交
6510 6511 6512 6513 6514 6515 6516 6517

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6530

W
whs 已提交
6531 6532 6533 6534
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6535

W
whs 已提交
6536
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6537

W
whs 已提交
6538
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6539

W
whs 已提交
6540 6541 6542 6543
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6544

W
whs 已提交
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6568 6569 6570 6571 6572


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6573
@templatedoc()
G
fix  
gongweibao 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6583
    ${comment}
G
fix  
gongweibao 已提交
6584 6585

    Args:
G
gongweibao 已提交
6586 6587 6588
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6589
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6590 6591 6592
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6593 6594
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6595
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6617 6618


G
gongweibao 已提交
6619
@templatedoc()
6620
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6621
    """
G
gongweibao 已提交
6622
    ${comment}
G
fix  
gongweibao 已提交
6623 6624

    Args:
G
gongweibao 已提交
6625 6626 6627 6628
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6629 6630 6631
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6632
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
6648
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6649 6650 6651 6652 6653
        })

    return out


G
gongweibao 已提交
6654
@templatedoc()
G
fix  
gongweibao 已提交
6655
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6656
    """
G
gongweibao 已提交
6657
    ${comment}
G
fix  
gongweibao 已提交
6658 6659

    Args:
G
gongweibao 已提交
6660 6661 6662 6663
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6664
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6665 6666

    Returns:
G
gongweibao 已提交
6667
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6668 6669 6670 6671

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6672
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6684
@templatedoc()
G
fix  
gongweibao 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6694
    ${comment}
G
fix  
gongweibao 已提交
6695 6696

    Args:
G
gongweibao 已提交
6697 6698
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6699
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6700 6701 6702 6703
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6704
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6705 6706

    Returns:
G
gongweibao 已提交
6707
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6730
@templatedoc()
6731
def sum(x):
G
fix  
gongweibao 已提交
6732
    """
G
gongweibao 已提交
6733
    ${comment}
G
fix  
gongweibao 已提交
6734 6735

    Args:
G
gongweibao 已提交
6736
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6737 6738

    Returns:
G
gongweibao 已提交
6739
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6740 6741 6742
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6743
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6744 6745 6746 6747
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
6748
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6749 6750 6751 6752

    return out


G
gongweibao 已提交
6753
@templatedoc()
G
fix  
gongweibao 已提交
6754 6755
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6756
    ${comment}
G
fix  
gongweibao 已提交
6757 6758

    Args:
G
gongweibao 已提交
6759 6760 6761 6762
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6763 6764

    Returns:
G
gongweibao 已提交
6765
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6766 6767 6768 6769

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6770
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6782
@templatedoc()
G
fix  
gongweibao 已提交
6783 6784
def shape(input):
    """
G
gongweibao 已提交
6785
    ${comment}
G
fix  
gongweibao 已提交
6786 6787

    Args:
G
gongweibao 已提交
6788
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6789 6790

    Returns:
G
gongweibao 已提交
6791
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6792 6793 6794 6795

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6796
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6797
    helper.append_op(
G
fix  
gongweibao 已提交
6798
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6799 6800

    return out
G
merge  
gongweibao 已提交
6801 6802


S
sneaxiy 已提交
6803 6804 6805 6806 6807 6808 6809 6810
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6811 6812 6813 6814 6815 6816
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6817

S
sneaxiy 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6829
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6830 6831 6832 6833 6834 6835 6836 6837
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6838
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6839
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6840 6841 6842 6843 6844 6845

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6846 6847 6848 6849 6850
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6861
    return helper.append_activation(out)
S
sneaxiy 已提交
6862 6863


6864
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6865 6866 6867
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


6868
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6869 6870 6871
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


6872
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6873 6874 6875
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


6876
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6877 6878 6879
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


6880
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6881 6882 6883
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


6884
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6885 6886 6887
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


6888
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6900 6901
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6902
        ])
M
minqiyang 已提交
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out