distributed_strategy.py 90.3 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import copy

18 19 20
import google.protobuf
import google.protobuf.text_format

21
import paddle
22
from paddle.distributed.fleet.proto import distributed_strategy_pb2
23
from paddle.distributed.fleet.utils.log_util import logger
24
from paddle.fluid.framework import _global_flags
25
from paddle.fluid.wrapped_decorator import wrap_decorator
26

27
__all__ = []
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

43

44 45 46 47
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
48 49 50 51 52 53 54 55 56
        v = getattr(msg, f.name)
        # NOTE(zhiqiu): convert repeated filed to list to
        # avoid segment fault when the process exit?
        # WHY?
        # I guess the type or value of protobuf item is NULL when
        # dealloc.
        if f.label == google.protobuf.descriptor.FieldDescriptor.LABEL_REPEATED:
            v = list(v)
        res_dict[f.name] = v
57 58 59 60 61 62 63 64
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
65 66 67
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
68
                if f.label == 3:
S
sneaxiy 已提交
69 70
                    if config[f.name] is not None:
                        getattr(msg, f.name).extend(config[f.name])
71 72 73 74 75 76 77
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
78
        assert key in key_list, f"key:{key} not in {field_name}"
79 80


81
class DistributedJobInfo:
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


118 119 120
ReduceStrategyFleet = int


121
class DistributedStrategy:
122 123
    __lock_attr = False

124
    def __init__(self):
125
        """
126

127 128
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
129
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
130
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
131

132 133
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

134
        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
135 136 137
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
138
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
139 140 141

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
142
        if _global_flags().is_public(key):
143
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
144 145
                _global_flags()[key]
            )
146
        key = 'FLAGS_conv_workspace_size_limit'
147 148
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
149
        key = 'FLAGS_cudnn_exhaustive_search'
150 151
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
152
        key = 'FLAGS_sync_nccl_allreduce'
153 154
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
155

156
        self.hybrid_parallel_order = ['dp', 'pp', 'sharding', 'mp']
W
wuhuachaocoding 已提交
157 158
        self.sync_param_name = ["embedding", "layer_norm", ".b_"]

159
        self.__lock_attr = True
160
        logger.info("distributed strategy initialized")
161 162 163

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
164
            raise TypeError(
165
                f"{key} is not a attribute of {self.__class__.__name__}"
166
            )
167
        object.__setattr__(self, key, value)
168

169
    def save_to_prototxt(self, output):
170
        """
171

172 173 174
        Serialize current DistributedStrategy to string and save to output file

        Examples:
175
            .. code-block:: python
1
123malin 已提交
176

177 178 179 180 181 182
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.recompute = True
                strategy.recompute_configs = {"checkpoints": ["x"]}
                strategy.save_to_prototxt("dist_strategy.prototxt")
1
123malin 已提交
183

184
        """
185 186 187 188
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
189
        """
190

191 192 193
        Load from prototxt file for DistributedStrategy initialization

        Examples:
194
            .. code-block:: python
1
123malin 已提交
195

196 197 198
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.load_from_prototxt("dist_strategy.prototxt")
199 200 201 202

        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
203 204
                str(f.read()), self.strategy
            )
205 206 207 208 209 210 211

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
212
            .. code-block:: python
1
123malin 已提交
213

214 215 216 217 218
                import paddle
                exe_strategy = paddle.static.ExecutionStrategy()
                exe_strategy.num_threads = 10
                exe_strategy.num_iteration_per_drop_scope = 10
                exe_strategy.num_iteration_per_run = 10
219

220 221
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.execution_strategy = exe_strategy
222 223

        """
W
wangxiaoning 已提交
224
        execution_strategy = paddle.static.ExecutionStrategy()
225 226
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
227 228 229 230 231
            setattr(
                execution_strategy,
                f.name,
                getattr(self.strategy.execution_strategy, f.name),
            )
232 233 234
        return execution_strategy

    @execution_strategy.setter
235
    @is_strict_auto
236 237 238
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
239 240 241 242 243
            setattr(
                self.strategy.execution_strategy,
                f.name,
                getattr(strategy, f.name),
            )
244 245 246 247

    @property
    def build_strategy(self):
        """
248

249 250 251 252 253
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
254
            .. code-block:: python
1
123malin 已提交
255

256 257 258 259 260 261 262 263 264 265
                import paddle
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_sequential_execution = True
                build_strategy.fuse_elewise_add_act_ops = True
                build_strategy.fuse_bn_act_ops = True
                build_strategy.enable_auto_fusion = True
                build_strategy.fuse_relu_depthwise_conv = True
                build_strategy.fuse_broadcast_ops = True
                build_strategy.fuse_all_optimizer_ops = True
                build_strategy.enable_inplace = True
266

267 268
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.build_strategy = build_strategy
1
123malin 已提交
269

270 271
        """

W
wangxiaoning 已提交
272
        build_strategy = paddle.static.BuildStrategy()
273 274
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
275 276
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
277
                value = paddle.static.BuildStrategy.ReduceStrategy(value)
278
            setattr(build_strategy, f.name, value)
279 280 281
        return build_strategy

    @build_strategy.setter
282
    @is_strict_auto
283 284 285 286
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
287 288 289 290
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
291
            elif f.label == 3:  # repeated field
292 293 294
                getattr(self.strategy.build_strategy, f.name).extend(
                    getattr(strategy, f.name)
                )
295 296

    @property
Y
Yuang Liu 已提交
297 298
    def gradient_scale_configs(self):
        """
299

Y
Yuang Liu 已提交
300
        Set the strategy of gradient scale
301

Y
Yuang Liu 已提交
302
        Examples:
303
            .. code-block:: python
Y
Yuang Liu 已提交
304

305 306 307
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_scale_configs = {'scale_strategy': 'avg'}
Y
Yuang Liu 已提交
308 309

        Note that, strategy must be in 'avg', 'sum' or 'customized'
310

Y
Yuang Liu 已提交
311 312 313 314 315 316
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
317 318 319 320 321
        check_configs_key(
            self.strategy.gradient_scale_configs,
            config,
            'gradient_scale_configs',
        )
Y
Yuang Liu 已提交
322 323 324
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
325
    def a_sync(self):
326
        """
327

328
        Indicating whether we are using asynchronous stocastic gradient descent updates
329
        for training. This property is valid when we are using parameter server training,
330 331 332 333
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
334
            .. code-block:: python
1
123malin 已提交
335

336 337 338
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
339

340 341
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
342

343 344
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
345

346
        """
D
Dong Daxiang 已提交
347
        return self.strategy.a_sync
348

D
Dong Daxiang 已提交
349
    @a_sync.setter
350
    @is_strict_auto
D
Dong Daxiang 已提交
351
    def a_sync(self, flag):
352
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
353
            self.strategy.a_sync = flag
354
            self.a_sync_configs = {"k_steps": 0}
355
        else:
356
            raise ValueError(
357 358 359 360
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
361 362

    @property
D
Dong Daxiang 已提交
363
    def a_sync_configs(self):
364
        """
365

D
Dong Daxiang 已提交
366
        Set a_sync update configurations. In general, asynchronous parameter server
367 368
        training has serveral configurable settings that can be configured through
        a dict.
369

370
        **Notes**:
M
mapingshuo 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
384

385
        Examples:
386
            .. code-block:: python
1
123malin 已提交
387

388 389 390
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
391

392 393 394 395
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
                configs = {"k_steps": 1024, "send_queue_size": 32}
                strategy.a_sync_configs = configs
396

397 398
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
399

400
        """
D
Dong Daxiang 已提交
401
        return get_msg_dict(self.strategy.a_sync_configs)
402

D
Dong Daxiang 已提交
403
    @a_sync_configs.setter
404
    @is_strict_auto
D
Dong Daxiang 已提交
405
    def a_sync_configs(self, configs):
406 407 408
        check_configs_key(
            self.strategy.a_sync_configs, configs, "a_sync_configs"
        )
D
Dong Daxiang 已提交
409
        assign_configs_value(self.strategy.a_sync_configs, configs)
410

411 412 413
    @property
    def trainer_desc_configs(self):
        """
414

415
        Set trainer desc configurations.
416 417 418 419 420 421 422 423

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

424
            stat_var_names(list(str)):
425 426

        Examples:
427
            .. code-block:: python
428

429 430 431
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
432

433 434 435
                strategy = fleet.DistributedStrategy()
                configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
                strategy.trainer_desc_configs = configs
436

437 438
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
439 440 441 442

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

443 444 445
    @property
    def adam_d2sum(self):
        """
446

447
        set adam_d2sum
W
wangguanqun 已提交
448
        Default value: False
449 450

        Examples:
451
            .. code-block:: python
452

453 454 455
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
456

457 458
                strategy = fleet.DistributedStrategy()
                strategy.adam_d2sum = True  # by default this is False
459

460 461
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
462 463 464 465 466 467 468 469 470 471 472

        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
473 474 475 476
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
477

478 479 480
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
481 482 483
        check_configs_key(
            self.strategy.trainer_desc_configs, configs, "trainer_desc_configs"
        )
484 485
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

486 487 488
    @property
    def fs_client_param(self):
        """
489

490
        Set fs client configurations.
491 492

        Note:
493
            uri(str): the uri of fs client
494

495
            user(str): the user_name of fs client
496

497
            passwd(str): the passwd of fs client
498

499
            hadoop_bin(str):
500

501
        Examples:
502 503 504 505 506 507 508 509 510 511 512
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
                strategy = fleet.DistributedStrategy()
                configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
                strategy.fs_client_param = configs
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)

513 514 515 516 517 518
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
519 520 521
        check_configs_key(
            self.strategy.fs_client_param, configs, "fs_client_param"
        )
522 523 524 525 526 527 528 529 530 531
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
532

533 534
        table_param = self.strategy.downpour_table_param

535
        def set_table_config(msg, config_name, configs, index=0):
536 537 538
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
539
                    logger.debug(f"message: {name}")
540 541 542 543
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
544
                        logger.debug(f"message num: {name} {num}")
545 546 547 548
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
549 550 551
                        set_table_config(
                            getattr(msg, field.name), name, configs
                        )
552
                else:
553
                    logger.debug("not message: %s", name)
554 555 556 557 558
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
559 560 561 562
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
563

564
        if not configs:
565
            logger.info("table configs is empty")
566
        else:
567 568 569
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
570 571 572 573 574
                set_table_config(
                    table_data,
                    "table_parameters." + table_name,
                    configs[table_name],
                )
575

576 577
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        support_sparse_key_list = [
            'sparse_table_class',
            'sparse_compress_in_save',
            'sparse_shard_num',
            'sparse_accessor_class',
            'sparse_learning_rate',
            'sparse_initial_g2sum',
            'sparse_initial_range',
            'sparse_weight_bounds',
            'sparse_fea_dim',
            'sparse_embedx_dim',
            'sparse_embedx_threshold',
            'sparse_nonclk_coeff',
            'sparse_click_coeff',
            'sparse_base_threshold',
            'sparse_delta_threshold',
            'sparse_delta_keep_days',
            'sparse_delete_after_unseen_days',
            'sparse_show_click_decay_rate',
            'sparse_delete_threshold',
            'sparse_converter',
            'sparse_deconverter',
            'sparse_enable_cache',
            'sparse_cache_rate',
            'sparse_cache_file_num',
            'sparse_beta1_decay_rate',
            'sparse_beta2_decay_rate',
            'sparse_ada_epsilon',
            'sparse_optimizer',
            'sparse_ssd_unseenday_threshold',
            'embed_sparse_optimizer',
            'embed_sparse_learning_rate',
            'embed_sparse_weight_bounds',
            'embed_sparse_initial_range',
            'embed_sparse_initial_g2sum',
            'embed_sparse_beta1_decay_rate',
            'embed_sparse_beta2_decay_rate',
            'embedx_sparse_optimizer',
            'embedx_sparse_learning_rate',
            'embedx_sparse_weight_bounds',
            'embedx_sparse_initial_range',
            'embedx_sparse_initial_g2sum',
            'embedx_sparse_beta1_decay_rate',
            'embedx_sparse_beta2_decay_rate',
            'feature_learning_rate',
            'nodeid_slot',
L
lxsbupt 已提交
624 625 626 627 628
            'sparse_load_filter_slots',
        ]
        support_sparse_table_class = [
            'DownpourSparseTable',
            'DownpourSparseSSDTable',
629
        ]
630
        support_sparse_accessor_class = [
631 632 633 634 635 636
            'DownpourSparseValueAccessor',
            'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor',
            'DownpourUnitAccessor',
            'DownpourDoubleUnitAccessor',
            'DownpourCtrDymfAccessor',
637 638 639
        ]
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
640
        def add_graph_config(graph, strategy):
641 642 643
            graph.feature_learning_rate = strategy.get(
                'feature_learning_rate', 0.05
            )
D
danleifeng 已提交
644 645
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

646
        def sparse_optimizer_config(sgd, strategy, prefix):
647 648 649
            optimizer_name = strategy.get(
                prefix + "sparse_optimizer", "adagrad"
            )
650 651 652 653
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
654 655
                    prefix + 'sparse_learning_rate', 0.05
                )
656
                sgd.naive.initial_range = strategy.get(
657 658 659 660 661
                    prefix + 'sparse_initial_range', 1e-4
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
662 663 664 665
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
666 667
                    prefix + 'sparse_learning_rate', 0.05
                )
668
                sgd.adagrad.initial_range = strategy.get(
669 670
                    prefix + 'sparse_initial_range', 1e-4
                )
671 672 673
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
674 675 676 677 678
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
679 680 681 682
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
683 684
                    prefix + 'sparse_learning_rate', 0.05
                )
685
                sgd.adagrad.initial_range = strategy.get(
686 687
                    prefix + 'sparse_initial_range', 1e-4
                )
688 689 690
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
691 692 693 694 695
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
696 697 698
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
699
                sgd.adam.learning_rate = strategy.get(
700 701
                    prefix + 'sparse_learning_rate', 0.001
                )
D
danleifeng 已提交
702
                sgd.adam.initial_range = strategy.get(
703 704
                    prefix + 'sparse_initial_range', 1e-4
                )
D
danleifeng 已提交
705
                sgd.adam.beta1_decay_rate = strategy.get(
706 707
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
D
danleifeng 已提交
708
                sgd.adam.beta2_decay_rate = strategy.get(
709 710
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
D
danleifeng 已提交
711
                sgd.adam.ada_epsilon = strategy.get(
712 713 714 715 716
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
D
danleifeng 已提交
717 718 719
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
720
                sgd.adam.learning_rate = strategy.get(
721 722
                    prefix + 'sparse_learning_rate', 0.001
                )
723
                sgd.adam.initial_range = strategy.get(
724 725
                    prefix + 'sparse_initial_range', 1e-4
                )
726
                sgd.adam.beta1_decay_rate = strategy.get(
727 728
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
729
                sgd.adam.beta2_decay_rate = strategy.get(
730 731
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
732
                sgd.adam.ada_epsilon = strategy.get(
733 734 735 736 737
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
738 739 740 741 742 743
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
744 745 746
            table_class = config.get(
                "sparse_table_class", "DownpourSparseTable"
            )
747 748
            if table_class not in support_sparse_table_class:
                raise ValueError(
L
lxsbupt 已提交
749
                    "support sparse_table_class: ['DownpourSparseTable, DownpourSparseSSDTable'], but actual %s"
750 751
                    % (table_class)
                )
L
lxsbupt 已提交
752 753 754 755
            if table_class == "DownpourSparseSSDTable":
                table_data.table_class = 'SSDSparseTable'
            else:
                table_data.table_class = 'MemorySparseTable'
756
            table_data.shard_num = config.get('sparse_shard_num', 1000)
757
            table_data.enable_sparse_table_cache = config.get(
758 759
                'sparse_enable_cache', True
            )
760
            table_data.sparse_table_cache_rate = config.get(
761 762
                'sparse_cache_rate', 0.00055
            )
763
            table_data.sparse_table_cache_file_num = config.get(
764 765
                'sparse_cache_file_num', 16
            )
766

767 768 769
            accessor_class = config.get(
                "sparse_accessor_class", "DownpourCtrAccessor"
            )
770 771
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
772
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
773 774
                    % (accessor_class)
                )
775

776 777
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
778 779
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
780
            else:
781 782 783
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
784 785 786 787 788
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
789 790
                'sparse_embedx_threshold', 10
            )
791

792 793 794 795 796
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

797
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
798 799
                'sparse_nonclk_coeff', 0.1
            )
800
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
801 802
                'sparse_click_coeff', 1
            )
803
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
804 805
                'sparse_base_threshold', 1.5
            )
806
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
807 808
                'sparse_delta_threshold', 0.25
            )
809
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
810 811 812 813 814 815 816 817 818 819 820 821 822 823
                'sparse_delta_keep_days', 16
            )
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = (
                config.get('sparse_show_click_decay_rate', 0.98)
            )
            table_data.accessor.ctr_accessor_param.delete_threshold = (
                config.get('sparse_delete_threshold', 0.8)
            )
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = (
                config.get('sparse_delete_after_unseen_days', 30)
            )
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = (
                config.get('sparse_ssd_unseenday_threshold', 1)
            )
L
lxsbupt 已提交
824 825 826 827
            load_filter_slots = config.get('sparse_load_filter_slots', [])
            table_data.accessor.ctr_accessor_param.load_filter_slots.extend(
                load_filter_slots
            )
828 829 830 831 832 833 834 835 836 837 838 839 840
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

841 842 843 844 845 846 847 848 849 850
            if (
                accessor_class == 'DownpourCtrAccessor'
                or accessor_class == 'DownpourCtrDoubleAccessor'
            ):
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, ''
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, ''
                )
851
            else:
852 853 854 855 856 857
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, 'embed_'
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, 'embedx_'
                )
D
danleifeng 已提交
858
            add_graph_config(table_data.accessor.graph_sgd_param, config)
859 860

        if not configs:
861
            logger.info("fleet desc config is empty")
862 863
        else:
            for table_name in configs:
864 865 866 867
                if (
                    table_name == 'dense_table'
                    or table_name == 'datanorm_table'
                ):
868 869 870 871 872 873 874
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

875
    @property
876 877 878 879
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
880

881
        Examples:
1
123malin 已提交
882

883
          .. code-block:: python
884

885
            import paddle.distributed.fleet as fleet
886 887
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
888

889 890
        """
        return self.strategy.amp
891

892
    @amp.setter
893
    @is_strict_auto
894
    def amp(self, flag):
895
        if isinstance(flag, bool):
896
            self.strategy.amp = flag
897
        else:
898
            logger.warning("amp should have value of bool type")
899 900

    @property
901
    def amp_configs(self):
902
        """
903

904 905 906 907
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
923

924 925 926 927 928 929 930 931
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
932
            .. code-block:: python
1
123malin 已提交
933

934 935 936 937 938 939
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "custom_white_list": ['conv2d']}
940 941

        Examples 2:
942 943 944 945 946 947 948 949 950 951
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                # pure fp16
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "use_pure_fp16": True
                }
952

953
        """
954
        return get_msg_dict(self.strategy.amp_configs)
955

956
    @amp_configs.setter
957
    @is_strict_auto
958 959 960
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
961

962 963 964
    @property
    def asp(self):
        """
965

966 967 968 969
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:
970
            .. code-block:: python
971

972 973 974
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.asp = True # by default this is false
975 976 977 978 979 980 981 982 983 984

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
985
            logger.warning("asp should have value of bool type")
986

987
    @property
988 989 990 991 992 993
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
994
            .. code-block:: python
1
123malin 已提交
995

996 997 998 999 1000
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                # suppose x and y are names of checkpoint tensors for recomputation
                strategy.recompute_configs = {"checkpoints": ["x", "y"]}
1001 1002 1003

        """
        return self.strategy.recompute
1004

1005 1006
    @property
    def sync_nccl_allreduce(self):
1007
        """
1008

1009 1010 1011 1012
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1013
            .. code-block:: python
1
123malin 已提交
1014

1015 1016 1017
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_nccl_allreduce = True
1018 1019

        """
1020 1021 1022
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
1023
    @is_strict_auto
1024 1025 1026 1027
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
1028
            logger.warning("sync_nccl_allreduce should have value of bool type")
1029

1030
    @property
1031
    def use_hierarchical_allreduce(self):
1032
        """
1033

1034 1035 1036 1037 1038
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1039
            .. code-block:: python
1
123malin 已提交
1040

1041 1042 1043
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.use_hierarchical_allreduce = True
1044 1045

        """
1046
        return self.strategy.use_hierarchical_allreduce
1047

1048
    @use_hierarchical_allreduce.setter
1049
    @is_strict_auto
1050
    def use_hierarchical_allreduce(self, flag):
1051
        if isinstance(flag, bool):
1052
            self.strategy.use_hierarchical_allreduce = flag
1053
        else:
1054 1055
            logger.warning(
                "use_hierarchical_allreduce should have value of bool type"
1056 1057 1058
            )

    @property
1059
    def hierarchical_allreduce_inter_nranks(self):
1060
        """
1061

1062 1063 1064 1065
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1066
            .. code-block:: python
1
123malin 已提交
1067

1068 1069 1070
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hierarchical_allreduce_inter_nranks = 8
1071 1072

        """
1073
        return self.strategy.hierarchical_allreduce_inter_nranks
1074

1075
    @hierarchical_allreduce_inter_nranks.setter
1076
    @is_strict_auto
1077 1078 1079
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
1080
        else:
1081 1082
            logger.warning(
                "hierarchical_allreduce_inter_nranks should have value of int type"
1083 1084
            )

1085
    @property
1086
    def sync_batch_norm(self):
1087
        """
1088

1089
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
1090

1091 1092 1093
        Default value: False

        Examples:
1094
            .. code-block:: python
1
123malin 已提交
1095

1096 1097 1098
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_batch_norm = True
1099 1100 1101

        """

1102
        return self.strategy.sync_batch_norm
1103

1104
    @sync_batch_norm.setter
1105
    @is_strict_auto
1106
    def sync_batch_norm(self, flag):
1107
        if isinstance(flag, bool):
1108
            self.strategy.sync_batch_norm = flag
1109
        else:
1110
            logger.warning("sync_batch_norm should have value of bool type")
1111 1112 1113

    @property
    def fuse_all_reduce_ops(self):
1114
        """
1115

1116 1117 1118 1119
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1120
            .. code-block:: python
1
123malin 已提交
1121

1122 1123 1124
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_all_reduce_ops = False
1125 1126

        """
1127 1128 1129
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
1130
    @is_strict_auto
1131 1132 1133 1134
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
1135
            logger.warning("fuse_all_reduce_ops should have value of bool type")
1136

1137 1138
    @property
    def fuse_grad_size_in_MB(self):
1139
        """
1140

1141 1142 1143 1144 1145
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1146
            .. code-block:: python
1
123malin 已提交
1147

1148 1149 1150
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_MB = 50
1
123malin 已提交
1151

1152
        """
1153 1154 1155
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
1156
    @is_strict_auto
1157 1158 1159 1160
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
1161
            logger.warning("fuse_grad_size_in_MB should have value of int type")
1162

1163 1164 1165
    @property
    def last_comm_group_size_MB(self):
        """
1166

1167 1168 1169
        Specifying the size of gradient to fuse in Mega-Bytes when
        the last group of each batch communicates. Making the last group
        small is useful to improve performance.
1170 1171 1172 1173

        Default value: 1

        Examples:
1174 1175 1176 1177 1178
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.last_comm_group_size_MB = 2
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1191 1192 1193
    @property
    def find_unused_parameters(self):
        """
1194

1195
        Indicating whether we are using find_unused_parameters to
1196 1197
        find unused parameters in DataParallel.

1198
        Default value: False
1199 1200

        Examples:
1201
            .. code-block:: python
1202

1203 1204 1205
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.find_unused_parameters = True
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
1217 1218
            logger.warning(
                "find_unused_parameters should have value of bool type"
1219
            )
1220

1221 1222 1223 1224 1225
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1226
    @is_strict_auto
1227 1228 1229 1230
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
1231 1232
            logger.warning(
                "fuse_grad_size_in_TFLOPS should have value of float type"
1233 1234
            )

1235
    @property
1236
    def nccl_comm_num(self):
1237
        """
1238

1239 1240 1241 1242 1243
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1244
            .. code-block:: python
1
123malin 已提交
1245

1246 1247 1248
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.nccl_comm_num = 2
1
123malin 已提交
1249

1250 1251
        """

1252
        return self.strategy.nccl_comm_num
1253

1254
    @nccl_comm_num.setter
1255
    @is_strict_auto
1256
    def nccl_comm_num(self, value):
1257
        if isinstance(value, int):
1258
            self.strategy.nccl_comm_num = value
1259
        else:
1260
            logger.warning("nccl_comm_num should have value of int type")
1261

1262
    @recompute.setter
1263
    @is_strict_auto
1264
    def recompute(self, flag):
1265
        if isinstance(flag, bool):
1266
            self.strategy.recompute = flag
1267
        else:
1268
            logger.warning("recompute should have value of bool type")
1269 1270

    @property
1271 1272
    def recompute_configs(self):
        """
1273

1274 1275
        Set recompute configurations.

J
JZ-LIANG 已提交
1276 1277 1278 1279
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

1280
        enable_offload(bool): enable recompute checkpoints offload feature. this feature
J
JZ-LIANG 已提交
1281 1282 1283 1284 1285 1286
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
1287
        specific here should be determined ("-1" is not allowed).
1288

1289
        Examples:
1290
            .. code-block:: python
1
123malin 已提交
1291

1292 1293 1294 1295 1296 1297 1298
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                strategy.recompute_configs = {
                    "checkpoints": ["x", "y"],
                    "enable_offload": True,
                    "checkpoint_shape": [100, 512, 1024] }
1299 1300 1301 1302 1303

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1304
    @is_strict_auto
1305
    def recompute_configs(self, configs):
1306 1307 1308
        check_configs_key(
            self.strategy.recompute_configs, configs, "checkpoint_configs"
        )
1309
        assign_configs_value(self.strategy.recompute_configs, configs)
1310

1311 1312 1313
    @property
    def sharding(self):
        """
1314

1315
        Indicating whether we are using sharding Optimizer for memory
1316
        optimization. We implement the sharding optimizer following the ZeRO-DP
J
JZ-LIANG 已提交
1317 1318
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1319

1320 1321
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1322 1323 1324
        Default value: False

        Examples:
1325
            .. code-block:: python
1
123malin 已提交
1326

1327 1328 1329
                import paddle.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
1
123malin 已提交
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
1340
            logger.warning("sharding should have value of bool type")
1341 1342 1343 1344

    @property
    def sharding_configs(self):
        """
1345

1346
        Set sharding configurations.
1347 1348

        **Note**:
1349 1350
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and
1351 1352
            communication. Default is segment_broadcast_MB.

1353
            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and
1354 1355 1356 1357
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

1358
            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation.
1359 1360 1361 1362 1363 1364
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

1365
            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model.
1366 1367 1368 1369 1370
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1371
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1372

1373
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1374

1375
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on.
1376
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1377

1378 1379 1380
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1381

1382
        Examples:
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
            .. code-block:: python

                # sharding-DP, 2 nodes with 8 gpus per node
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
                strategy.sharding_configs = {
                    "sharding_segment_strategy": "segment_broadcast_MB",
                    "segment_broadcast_MB": 32,
                    "sharding_degree": 8,
                    "dp_degree": 2,
                    "gradient_merge_acc_step": 4,
                    }
1
123malin 已提交
1396

1397 1398 1399 1400 1401 1402
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
1403 1404 1405
        check_configs_key(
            self.strategy.sharding_configs, configs, "sharding_configs"
        )
1406 1407
        assign_configs_value(self.strategy.sharding_configs, configs)

1408 1409 1410
    @property
    def without_graph_optimization(self):
        """
1411

1412 1413 1414
        Run program using Executor other than ParallelExecutor.

        Examples:
1415
            .. code-block:: python
1416

1417 1418 1419
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.without_graph_optimization = True
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
1430 1431
            logger.warning(
                "without_graph_optimization should have value of bool type"
1432 1433
            )

1434 1435 1436
    @property
    def _calc_comm_same_stream(self):
        """
1437

1438 1439 1440
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
1441

1442
        Examples:
1443 1444 1445 1446 1447 1448
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.calc_comm_same_stream = True

1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
1458 1459
            logger.warning(
                "calc_comm_same_stream should have value of boolean type"
1460 1461
            )

1462 1463 1464
    @property
    def fuse_grad_merge(self):
        """
1465

1466 1467 1468
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
1469

1470
        Examples:
1471 1472 1473 1474 1475 1476
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_param_grad = True

1477 1478 1479 1480 1481 1482 1483 1484 1485
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
1486
            logger.warning("fuse_grad_merge should have value of boolean type")
1487

1488 1489 1490
    @property
    def fuse_grad_size_in_num(self):
        """
1491

1492
        This based on raw_program_optimizer program and allreduce the num of the fused op
1493

1494
        Examples:
1495 1496 1497 1498 1499 1500 1501
            .. code-block:: python

                import paddle.distributed.fleet as fleet

                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_num = 2

1502 1503 1504 1505 1506 1507 1508 1509 1510
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
1511 1512
            logger.warning(
                "fuse_grad_size_in_num should have value of int32 type"
1513
            )
1514

1515
    @property
1516 1517
    def pipeline(self):
        """
1518

1519 1520 1521 1522 1523 1524
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1525
            .. code-block:: python
1
123malin 已提交
1526

1527 1528 1529
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
1530 1531 1532

        """
        return self.strategy.pipeline
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
1544
            logger.warning("is_fl_ps_mode should have value of bool type")
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
1556
            logger.warning("with_coordinator should have value of bool type")
1557

1558
    @pipeline.setter
1559
    @is_strict_auto
1560
    def pipeline(self, flag):
1561
        if isinstance(flag, bool):
1562
            self.strategy.pipeline = flag
1563
        else:
1564
            logger.warning("pipeline should have value of bool type")
1565 1566

    @property
1567 1568
    def pipeline_configs(self):
        """
1569

1570 1571
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
1572
        There are Tensor queue buffer between each pair of neighborhood GPUS
1573 1574 1575
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
1576
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
1577
        so that we will have a faster producer for downstream consumers.
1578

1579 1580
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1581

1582
            **micro_batch_size**: the number of small batches in each user defined batch
1583

1584
        Examples:
1585
            .. code-block:: python
1
123malin 已提交
1586

1587 1588 1589 1590
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
                strategy.pipeline_configs = {"micro_batch_size": 12}
1591

1592
        """
1593

1594
        return get_msg_dict(self.strategy.pipeline_configs)
1595

1596
    @pipeline_configs.setter
1597
    @is_strict_auto
1598
    def pipeline_configs(self, configs):
1599 1600 1601
        check_configs_key(
            self.strategy.pipeline_configs, configs, "pipeline_configs"
        )
1602
        assign_configs_value(self.strategy.pipeline_configs, configs)
1603

L
lilong12 已提交
1604 1605 1606
    @property
    def tensor_parallel(self):
        """
1607

L
lilong12 已提交
1608 1609 1610
        Indicating whether we are using tensor parallel for distributed training.

        Examples:
1611
            .. code-block:: python
L
lilong12 已提交
1612

1613 1614 1615
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
L
lilong12 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
1626
            logger.warning("tensor_parallel should have value of bool type")
L
lilong12 已提交
1627 1628 1629 1630

    @property
    def tensor_parallel_configs(self):
        """
1631

L
lilong12 已提交
1632 1633 1634 1635
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
1636

L
lilong12 已提交
1637
            **tensor_parallel_degree**: degree of tensor parallel
1638

1639 1640
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1641 1642

        Examples:
1643
            .. code-block:: python
L
lilong12 已提交
1644

1645 1646 1647 1648 1649
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
                strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                    "tensor_init_seed": 123}
L
lilong12 已提交
1650 1651 1652 1653 1654 1655 1656

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
1657 1658 1659 1660 1661
        check_configs_key(
            self.strategy.tensor_parallel_configs,
            configs,
            "tensor_parallel_configs",
        )
L
lilong12 已提交
1662 1663
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1664 1665 1666
    @property
    def hybrid_configs(self):
        """
1667

1668
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism
1669 1670 1671 1672 1673
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
1674
            **dp_degree(int)**: set number of GPUs in a data parallel group. Default -1.
1675
                                    This value should be an integer greater than 0.
1676
                                    If it is not set, or set to -1, its value will be inferred
1677 1678
                                    based on the total number of cards.

1679 1680 1681
            **mp_degree(int)**: set number of GPUs in a model parallel group. Default 1

            **pp_degree(int)**: set number of GPUs in a pipeline parallel group. Default 1
1682

1683 1684
            **order(list(string))**: set hybrid parallel dimensions, the order is from outside to inside. Default ['dp','pp','sharding','mp']

1685
        Examples:
1686 1687 1688 1689 1690 1691 1692
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hybrid_configs = {
                    "dp_degree": 1,
                    "mp_degree": 2,
1693 1694
                    "pp_degree": 1,
                    "order":['dp','pp','sharding','mp']}
1695

1696 1697 1698 1699 1700
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
1701 1702 1703 1704 1705
        hybrid_config = copy.deepcopy(configs)
        if "order" in hybrid_config:
            self.hybrid_parallel_order = hybrid_config["order"]
            hybrid_config.pop('order')

1706
        check_configs_key(
1707
            self.strategy.hybrid_configs, hybrid_config, "hybrid_configs"
1708
        )
1709 1710

        if "mp_configs" in configs:
W
wuhuachaocoding 已提交
1711 1712 1713 1714
            if "sync_param_name" in configs["mp_configs"]:
                self.sync_param_name = configs["mp_configs"]["sync_param_name"]
                configs["mp_configs"].pop("sync_param_name")

1715 1716 1717 1718
            assign_configs_value(
                self.strategy.hybrid_configs.mp_configs, configs["mp_configs"]
            )
            configs.pop("mp_configs")
1719 1720 1721 1722 1723 1724
        if "pp_configs" in configs:
            assign_configs_value(
                self.strategy.hybrid_configs.pp_configs, configs["pp_configs"]
            )
            configs.pop("pp_configs")

1725 1726
        assign_configs_value(self.strategy.hybrid_configs, configs)

1727
    @property
1728
    def localsgd(self):
1729
        """
1730

M
mapingshuo 已提交
1731 1732 1733
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1734 1735 1736


        Examples:
1737
            .. code-block:: python
1
123malin 已提交
1738

1739 1740 1741
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True # by default this is false
1742 1743

        """
1744
        return self.strategy.localsgd
1745

1746
    @localsgd.setter
1747
    @is_strict_auto
1748 1749 1750
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1751
        else:
1752
            logger.warning("localsgd should have value of bool type")
1753 1754

    @property
1755
    def localsgd_configs(self):
1756
        """
1757

1758 1759 1760 1761
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1762
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1763
            begin_step(int) The step of beginning training by localsgd. Default 1.
1764 1765

        Examples:
1766
            .. code-block:: python
1
123malin 已提交
1767

1768 1769 1770 1771 1772
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True
                strategy.localsgd_configs = {"k_steps": 4,
                                            "begin_step": 30}
1773 1774 1775

        """

1776
        return get_msg_dict(self.strategy.localsgd_configs)
1777

1778
    @localsgd_configs.setter
1779
    @is_strict_auto
1780
    def localsgd_configs(self, configs):
1781 1782 1783
        check_configs_key(
            self.strategy.localsgd_configs, configs, "localsgd_configs"
        )
1784
        assign_configs_value(self.strategy.localsgd_configs, configs)
1785

1786 1787 1788
    @property
    def adaptive_localsgd(self):
        """
1789

1790
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
1791
        For more details, please refer to `Adaptive Communication Strategies to Achieve
1792 1793 1794
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.

        Examples:
1795
            .. code-block:: python
1
123malin 已提交
1796

1797 1798 1799
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True # by default this is false
1800 1801

        """
1802
        return self.strategy.adaptive_localsgd
1803 1804 1805 1806 1807

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1808
            self.strategy.adaptive_localsgd = flag
1809
        else:
1810
            logger.warning("adaptive_localsgd should have value of bool type")
1811 1812 1813 1814

    @property
    def adaptive_localsgd_configs(self):
        """
1815

1816 1817 1818 1819 1820 1821 1822
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1823

1824
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1825 1826

        Examples:
1827
            .. code-block:: python
1
123malin 已提交
1828

1829 1830 1831 1832 1833
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True
                strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                    "begin_step": 30}
1834 1835 1836 1837 1838 1839 1840 1841

        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
1842 1843 1844 1845 1846
        check_configs_key(
            self.strategy.adaptive_localsgd_configs,
            configs,
            "adaptive_localsgd_configs",
        )
1847 1848
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1849
    @property
1850
    def dgc(self):
1851
        """
1852

1853 1854 1855 1856 1857 1858
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1859
            .. code-block:: python
1
123malin 已提交
1860

1861 1862 1863
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True # by default this is false
1864 1865

        """
1866
        return self.strategy.dgc
1867

1868
    @dgc.setter
1869
    @is_strict_auto
1870 1871 1872
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1873
        else:
1874
            logger.warning("dgc should have value of bool type")
1875 1876

    @property
1877
    def dgc_configs(self):
1878
        r"""
1879

1880 1881 1882 1883
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1894 1895

        Examples:
1896
            .. code-block:: python
1
123malin 已提交
1897

1898 1899 1900 1901
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.dgc_configs = {"rampup_begin_step": 1252}
1902 1903

        """
1904
        return get_msg_dict(self.strategy.dgc_configs)
1905

1906
    @dgc_configs.setter
1907
    @is_strict_auto
1908 1909 1910
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1911

1912 1913 1914
    @property
    def fp16_allreduce(self):
        """
1915

1916 1917 1918 1919
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1920
            .. code-block:: python
1
123malin 已提交
1921

1922
                import paddle.distributed.fleet as fleet
1923

1924 1925
                strategy = fleet.DistributedStrategy()
                strategy.fp16_allreduce = True # by default this is false
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1937
    @property
1938
    def gradient_merge(self):
1939
        """
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1951
            .. code-block:: python
1
123malin 已提交
1952

1953 1954 1955 1956
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1957

1958
        """
1959
        return self.strategy.gradient_merge
1960

1961
    @gradient_merge.setter
1962
    @is_strict_auto
1963
    def gradient_merge(self, flag):
1964
        if isinstance(flag, bool):
1965
            self.strategy.gradient_merge = flag
1966
        else:
1967
            logger.warning("gradient_merge should have value of bool type")
1968 1969 1970

    @property
    def gradient_merge_configs(self):
1971
        """
1972

1973
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1974 1975 1976 1977 1978 1979 1980

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1981
            .. code-block:: python
1
123malin 已提交
1982

1983 1984 1985 1986
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1987

1988
        """
1989 1990 1991
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1992
    @is_strict_auto
1993
    def gradient_merge_configs(self, configs):
1994 1995 1996
        check_configs_key(
            self.strategy.gradient_merge_configs, configs, "gradient_configs"
        )
1997
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1998 1999

    @property
2000
    def lars(self):
2001
        """
2002

2003 2004
        Set lars configurations. lars is used to deal with the convergence problems when the global
        batch size is larger than 8k.  For more details, please refer to
2005 2006 2007 2008 2009
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
2010
            .. code-block:: python
1
123malin 已提交
2011

2012 2013 2014
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True # by default this is false
2015 2016

        """
2017
        return self.strategy.lars
2018

2019
    @lars.setter
2020
    @is_strict_auto
2021
    def lars(self, flag):
2022
        if isinstance(flag, bool):
2023
            self.strategy.lars = flag
2024
        else:
2025
            logger.warning("lars should have value of bool type")
2026

2027 2028
    @property
    def lars_configs(self):
2029
        """
2030

2031 2032 2033 2034 2035
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
2036 2037
        **epsilon (float)**: argument is used to avoid potential devision-by-zero
        when compute the local lr;
2038 2039 2040 2041
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
2042
            .. code-block:: python
1
123malin 已提交
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True
                strategy.lars_configs = {
                            "lars_coeff": 0.01,
                            "lars_weight_decay": 0.0005,
                            "epsilon": 0,
                            "exclude_from_weight_decay": ['batch_norm', '.b_0']
                        }
M
mapingshuo 已提交
2053

2054
        """
2055 2056 2057
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
2058
    @is_strict_auto
2059 2060 2061 2062
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

2063
    @property
2064
    def lamb(self):
2065
        """
2066

2067 2068 2069
        Set lamb configurations. lamb is used to deal with the convergence problems for large
        batch size training, specially for attention-related model like BERT. For more details,
        please refer to
2070 2071 2072
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
2073

2074
        Examples:
2075
            .. code-block:: python
1
123malin 已提交
2076

2077 2078 2079
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True # by default this is false
2080 2081 2082

        """

2083
        return self.strategy.lamb
2084

2085
    @lamb.setter
2086
    @is_strict_auto
2087
    def lamb(self, flag):
2088
        if isinstance(flag, bool):
2089
            self.strategy.lamb = flag
2090
        else:
2091
            logger.warning("lamb should have value of bool type")
2092

2093 2094
    @property
    def lamb_configs(self):
2095
        """
2096

2097 2098 2099 2100 2101 2102 2103 2104
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
2105 2106 2107 2108 2109 2110 2111 2112 2113
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True
                strategy.lamb_configs = {
                        'lamb_weight_decay': 0.01,
                        'exclude_from_weight_decay': [],
                    }
1
123malin 已提交
2114

2115
        """
2116 2117 2118
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
2119
    @is_strict_auto
2120 2121 2122 2123
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

2124 2125
    @property
    def elastic(self):
2126
        """
2127

2128 2129
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
2130

2131
        """
2132 2133 2134
        return self.strategy.elastic

    @elastic.setter
2135
    @is_strict_auto
2136 2137 2138 2139
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
2140
            logger.warning("elastic should have value of bool type")
2141 2142 2143

    @property
    def auto(self):
2144
        """
2145

2146
        Indicating whether we are using auto-parallel configuration
2147
        This feature is currently an experimental feature. Currently,
2148 2149 2150 2151 2152 2153
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2154
            .. code-block:: python
1
123malin 已提交
2155

2156 2157 2158
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2159

2160 2161 2162 2163
                strategy = fleet.DistributedStrategy()
                strategy.auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2164

2165 2166
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2167 2168

        """
2169 2170 2171 2172 2173 2174 2175
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
2176
            logger.warning("auto should have value of bool type")
2177

2178 2179 2180
    @property
    def semi_auto(self):
        """
2181

2182
        Indicating whether we are using semi-auto parallel function
2183
        This feature is currently an experimental feature. Currently,
2184 2185 2186 2187 2188 2189
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2190
            .. code-block:: python
2191

2192 2193 2194
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2195

2196 2197 2198 2199
                strategy = fleet.DistributedStrategy()
                strategy.semi_auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2200

2201 2202
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2203 2204 2205 2206 2207 2208 2209 2210 2211

        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
2212
            logger.warning("semi-auto should have value of bool type")
2213

Z
zhaoyingli 已提交
2214 2215 2216
    @property
    def auto_search(self):
        """
2217

Z
zhaoyingli 已提交
2218 2219 2220
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
2221

Z
zhaoyingli 已提交
2222
        Examples:
2223 2224 2225 2226 2227 2228 2229 2230 2231
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.auto_search = True

Z
zhaoyingli 已提交
2232 2233 2234 2235 2236 2237 2238 2239
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
2240
            logger.warning("auto-search should have value of bool type")
Z
zhaoyingli 已提交
2241

2242 2243 2244
    @property
    def split_data(self):
        """
2245

2246 2247
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
2248

2249
        Examples:
2250 2251 2252 2253 2254 2255 2256 2257 2258
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.split_data = True

2259 2260 2261 2262 2263 2264 2265 2266
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
2267
            logger.warning("split_data should have value of bool type")
2268

2269 2270 2271
    @property
    def qat(self):
        """
2272

2273 2274
        Indicating whether we are using quantization training
        Default Value: False
2275

2276 2277 2278 2279 2280 2281 2282 2283
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
2284
            logger.warning("qat should have value of bool type")
2285 2286 2287 2288

    @property
    def qat_configs(self):
        """
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

2300
            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope,
2301 2302 2303 2304 2305
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:
2306
            .. code-block:: python
2307

2308
                import paddle.distributed.fleet as fleet
2309

2310 2311 2312 2313 2314 2315 2316
                strategy = fleet.DistributedStrategy()
                strategy.qat = True
                strategy.qat_configs = {
                    "channel_wise_abs_max": True,
                    "weight_bits": 8,
                    "activation_bits: 8,
                    "not_quant_pattern": ['skip_quant']}
2317 2318 2319 2320 2321 2322 2323 2324 2325

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2326 2327 2328
    @property
    def heter_ccl_mode(self):
        """
2329

K
kuizhiqing 已提交
2330 2331 2332 2333 2334 2335
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:
2336
            .. code-block:: python
K
kuizhiqing 已提交
2337

2338 2339
                import paddle
                import paddle.distributed.fleet as fleet
K
kuizhiqing 已提交
2340

2341 2342
                strategy = fleet.DistributedStrategy()
                strategy.heter_ccl_mode = True
K
kuizhiqing 已提交
2343

2344 2345 2346
                # for initialize parallel env, only need to call
                paddle.distributed.init_parallel_env()
                # then the heterogenous context will be created.
K
kuizhiqing 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355

        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
2356
            logger.warning("heter_ccl_mode should have value of bool type")
K
kuizhiqing 已提交
2357

2358 2359
    @property
    def cudnn_exhaustive_search(self):
2360
        """
2361

2362 2363 2364 2365 2366 2367 2368
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
2369
            .. code-block:: python
1
123malin 已提交
2370

2371 2372 2373
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2374

2375 2376 2377 2378 2379
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_exhaustive_search = False

                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2380 2381

        """
2382 2383 2384
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2385
    @is_strict_auto
2386 2387 2388 2389
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
2390 2391
            logger.warning(
                "cudnn_exhaustive_search should have value of bool type"
2392 2393 2394 2395
            )

    @property
    def conv_workspace_size_limit(self):
2396
        """
2397

2398
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
C
co63oc 已提交
2399
        The inner function of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
2400 2401 2402 2403 2404
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
2405
            .. code-block:: python
1
123malin 已提交
2406

2407 2408 2409
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2410

2411 2412
                strategy = fleet.DistributedStrategy()
                strategy.conv_workspace_size_limit = 1024
2413

2414 2415
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2416

2417
        """
2418 2419 2420
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2421
    @is_strict_auto
2422 2423 2424 2425
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
2426 2427
            logger.warning(
                "conv_workspace_size_limit should have value of int type"
2428 2429 2430 2431
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2432
        """
2433

2434 2435 2436 2437 2438
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
2439
            .. code-block:: python
1
123malin 已提交
2440

2441 2442 2443
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2444

2445 2446
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_batchnorm_spatial_persistent = True
2447

2448 2449
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2450 2451

        """
2452 2453 2454
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2455
    @is_strict_auto
2456 2457 2458 2459
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
2460 2461
            logger.warning(
                "cudnn_batchnorm_spatial_persistent should have value of bool type"
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2484 2485
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2486

2487 2488 2489 2490 2491 2492
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2493
    def __repr__(self):
2494 2495 2496 2497 2498 2499
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

2500
        h1_format = "    " + f"|{{:^{length}s}}|\n"
2501
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
2502 2503
            max_k, " " * spacing, max_v
        )
2504 2505 2506 2507 2508 2509 2510 2511 2512

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2513
        fields = self.strategy.DESCRIPTOR.fields
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
2528
                                f"{f.name}=True <-> {f.name}_configs"
2529
                            )
2530
                            draws += line + "\n"
2531 2532 2533
                            my_configs = getattr(
                                self.strategy, f.name + "_configs"
                            )
2534
                            config_fields = my_configs.DESCRIPTOR.fields
R
risemeup1 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543
                            protobuf_version = google.protobuf.__version__
                            if protobuf_version >= "4.21.0":
                                RepeatedScalarContainer = (
                                    google._upb._message.RepeatedScalarContainer
                                )
                            else:
                                RepeatedScalarContainer = (
                                    google.protobuf.pyext._message.RepeatedScalarContainer
                                )
2544 2545
                            for ff in config_fields:
                                if isinstance(
2546
                                    getattr(my_configs, ff.name),
R
risemeup1 已提交
2547
                                    RepeatedScalarContainer,
2548
                                ):
2549 2550 2551
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2552
                                            draws += h2_format.format(
2553 2554
                                                ff.name, str(v)
                                            )
2555
                                        else:
2556
                                            draws += h2_format.format(
2557 2558
                                                "", str(v)
                                            )
2559 2560 2561
                                else:
                                    draws += h2_format.format(
                                        ff.name,
2562 2563
                                        str(getattr(my_configs, ff.name)),
                                    )
2564 2565
                    else:
                        env_draws += h2_format.format(
2566 2567
                            f.name, str(getattr(self.strategy, f.name))
                        )
2568 2569
                else:
                    env_draws += h2_format.format(
2570 2571 2572 2573 2574 2575 2576 2577 2578
                        f.name, str(getattr(self.strategy, f.name))
                    )

        result_res = (
            draws
            + border
            + "\n"
            + h1_format.format("Environment Flags, Communication Flags")
        )
2579 2580 2581 2582 2583 2584 2585
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2586
        for f in fields:
2587
            build_strategy_str += h2_format.format(
2588 2589
                f.name, str(getattr(self.strategy.build_strategy, f.name))
            )
2590 2591 2592 2593 2594 2595 2596 2597
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
2598 2599
                f.name, str(getattr(self.strategy.execution_strategy, f.name))
            )
2600 2601 2602 2603
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res