distributed_strategy.py 82.6 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28
non_auto_func_called = True


def __non_auto_func_called__(func):
29

30 31 32 33 34 35 36 37 38 39
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

40

41 42 43 44 45 46 47 48 49 50 51 52 53
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
54 55 56
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
57 58 59 60 61 62 63 64 65 66 67 68
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


106 107 108 109
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


110
class DistributedStrategy(object):
111 112
    __lock_attr = False

113
    def __init__(self):
114 115 116 117 118
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
119

120 121 122 123 124 125
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
126
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
127 128 129

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
130
        if _global_flags().is_public(key):
131
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
132
                _global_flags()[key])
133
        key = 'FLAGS_conv_workspace_size_limit'
134 135
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
136
        key = 'FLAGS_cudnn_exhaustive_search'
137 138
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
139
        key = 'FLAGS_sync_nccl_allreduce'
140 141
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
142

143 144 145 146 147 148 149
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
150

151
    def save_to_prototxt(self, output):
152 153 154 155
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
156

157
          .. code-block:: python
1
123malin 已提交
158

159
            import paddle.distributed.fleet as fleet
160 161 162
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
163
            strategy.recompute_configs = {"checkpoints": ["x"]}
164 165
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
166 167 168 169
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
170 171 172 173
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
174

175 176
          .. code-block:: python

177
            import paddle.distributed.fleet as fleet
178
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
179
            strategy.load_from_prototxt("dist_strategy.prototxt")
180 181 182 183 184 185 186 187 188 189 190
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
191

192 193
          .. code-block:: python

M
mapingshuo 已提交
194
            import paddle
1
123malin 已提交
195
            exe_strategy = paddle.static.ExecutionStrategy()
196 197 198 199
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

200
            strategy = paddle.distributed.fleet.DistributedStrategy()
201 202 203 204 205 206 207 208 209 210
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
211
    @is_strict_auto
212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
226

227 228
          .. code-block:: python

M
mapingshuo 已提交
229
            import paddle
1
123malin 已提交
230
            build_strategy = paddle.static.BuildStrategy()
231 232 233 234 235 236 237 238
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
239

240
            strategy = paddle.distributed.fleet.DistributedStrategy()
241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
247 248 249 250
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
251 252 253
        return build_strategy

    @build_strategy.setter
254
    @is_strict_auto
255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
259 260 261 262
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
263 264 265 266 267
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
290
    def a_sync(self):
291 292 293 294 295 296 297
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
298

299 300
          .. code-block:: python

301
            import paddle.distributed.fleet as fleet
302 303 304 305
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
306
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
307

308 309 310
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
311
        return self.strategy.a_sync
312

D
Dong Daxiang 已提交
313
    @a_sync.setter
314
    @is_strict_auto
D
Dong Daxiang 已提交
315
    def a_sync(self, flag):
316
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
317
            self.strategy.a_sync = flag
318
            self.a_sync_configs = {"k_steps": 0}
319
        else:
320
            raise ValueError(
321 322
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
323 324

    @property
D
Dong Daxiang 已提交
325
    def a_sync_configs(self):
326
        """
D
Dong Daxiang 已提交
327
        Set a_sync update configurations. In general, asynchronous parameter server
328 329
        training has serveral configurable settings that can be configured through
        a dict.
330

331
        **Notes**:
M
mapingshuo 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
345

346
        Examples:
1
123malin 已提交
347

348
          .. code-block:: python
349

350
            import paddle.distributed.fleet as fleet
351 352
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
353

354
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
355
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
356
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
357
            strategy.a_sync_configs = configs
358

359 360
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
361

362
        """
D
Dong Daxiang 已提交
363
        return get_msg_dict(self.strategy.a_sync_configs)
364

D
Dong Daxiang 已提交
365
    @a_sync_configs.setter
366
    @is_strict_auto
D
Dong Daxiang 已提交
367 368 369 370
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

404 405 406 407
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
408
        Default value: False
409 410 411 412 413 414 415 416 417 418

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
419
            strategy.adam_d2sum = True  # by default this is False
420 421 422 423 424 425 426 427 428 429 430 431 432

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
433 434
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
435

436 437 438 439 440 441 442
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    @property
    def fs_client_param(self):
        """
        Set fs client configurations. 
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
            hadoop_bin(str): 
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

482
        def set_table_config(msg, config_name, configs, index=0):
483 484 485
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
486
                    # print("message:", name)
487 488 489 490
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
491
                        # print("message num:", name, num)
492 493 494 495
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
496 497
                        set_table_config(getattr(msg, field.name), name,
                                         configs)
498
                else:
499
                    # print("not message:", name)
500 501 502 503 504
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
505 506 507 508
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
509

510 511 512
        if not configs:
            print("table configs is empty")
        else:
513 514 515 516 517
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
                set_table_config(table_data, "table_parameters." + table_name,
                                 configs[table_name])
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_fea_dim', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold',
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
D
danleifeng 已提交
533
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate', 'feature_learning_rate', 'nodeid_slot']
534 535 536 537
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
            'DownpourSparseValueAccessor', 'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor',
538
            'DownpourDoubleUnitAccessor', 'DownpourCtrDymfAccessor'
539 540 541 542
        ]
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
543 544 545 546 547
        def add_graph_config(graph, strategy):
            graph.feature_learning_rate = strategy.get('feature_learning_rate',
                                                       0.05)
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        def sparse_optimizer_config(sgd, strategy, prefix):
            optimizer_name = strategy.get(prefix + "sparse_optimizer",
                                          "adagrad")
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.naive.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
            table_class = config.get("sparse_table_class",
                                     "DownpourSparseTable")
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
                    % (table_class))
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)

            accessor_class = config.get("sparse_accessor_class",
                                        "DownpourCtrAccessor")
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
635
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
636 637
                    % (accessor_class))

638 639
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
640 641
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
642
            else:
643 644 645
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
646 647 648 649 650 651 652
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
                'sparse_embedx_threshold', 10)

653 654 655 656 657
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
                'sparse_nonclk_coeff', 0.1)
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
                'sparse_click_coeff', 1)
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
                'sparse_base_threshold', 1.5)
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
                'sparse_delta_threshold', 0.25)
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
                'sparse_delta_keep_days', 16)
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = config.get(
                'sparse_show_click_decay_rate', 0.98)
            table_data.accessor.ctr_accessor_param.delete_threshold = config.get(
                'sparse_delete_threshold', 0.8)
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = config.get(
                'sparse_delete_after_unseen_days', 30)
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = config.get(
                'sparse_ssd_unseenday_threshold', 1)
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

            if accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, '')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, '')
            else:
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, 'embed_')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, 'embedx_')
D
danleifeng 已提交
699
            add_graph_config(table_data.accessor.graph_sgd_param, config)
700 701 702 703 704 705 706 707 708 709 710 711 712

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
                if table_name == 'dense_table' or table_name == 'datanorm_table':
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

713
    @property
714 715 716 717
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
718

719
        Examples:
1
123malin 已提交
720

721
          .. code-block:: python
722

723
            import paddle.distributed.fleet as fleet
724 725
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
726

727 728
        """
        return self.strategy.amp
729

730
    @amp.setter
731
    @is_strict_auto
732
    def amp(self, flag):
733
        if isinstance(flag, bool):
734
            self.strategy.amp = flag
735
        else:
736
            print("WARNING: amp should have value of bool type")
737 738

    @property
739
    def amp_configs(self):
740 741 742 743 744
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
760

761 762 763 764 765 766 767 768
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
769

770 771 772 773 774 775 776 777
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
778 779 780 781 782 783 784 785 786 787 788 789 790

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
791
        """
792
        return get_msg_dict(self.strategy.amp_configs)
793

794
    @amp_configs.setter
795
    @is_strict_auto
796 797 798
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

825
    @property
826 827 828 829 830 831
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
832

833 834
          .. code-block:: python

835
            import paddle.distributed.fleet as fleet
836 837 838 839 840 841
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
842

843 844
    @property
    def sync_nccl_allreduce(self):
845 846 847 848 849
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
850

851 852 853 854 855 856
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
857 858 859
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
860
    @is_strict_auto
861 862 863 864
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
865
            print("WARNING: sync_nccl_allreduce should have value of bool type")
866

867
    @property
868
    def use_hierarchical_allreduce(self):
869 870 871 872 873 874
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
875

876 877 878 879 880 881
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
882
        return self.strategy.use_hierarchical_allreduce
883

884
    @use_hierarchical_allreduce.setter
885
    @is_strict_auto
886
    def use_hierarchical_allreduce(self, flag):
887
        if isinstance(flag, bool):
888
            self.strategy.use_hierarchical_allreduce = flag
889 890
        else:
            print(
891
                "WARNING: use_hierarchical_allreduce should have value of bool type"
892 893 894
            )

    @property
895
    def hierarchical_allreduce_inter_nranks(self):
896 897 898 899 900
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
901

902 903 904 905 906 907
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
908
        return self.strategy.hierarchical_allreduce_inter_nranks
909

910
    @hierarchical_allreduce_inter_nranks.setter
911
    @is_strict_auto
912 913 914
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
915 916
        else:
            print(
917
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
918 919
            )

920
    @property
921
    def sync_batch_norm(self):
922 923
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
924

925 926 927
        Default value: False

        Examples:
1
123malin 已提交
928

929 930 931 932 933 934 935
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

936
        return self.strategy.sync_batch_norm
937

938
    @sync_batch_norm.setter
939
    @is_strict_auto
940
    def sync_batch_norm(self, flag):
941
        if isinstance(flag, bool):
942
            self.strategy.sync_batch_norm = flag
943
        else:
944
            print("WARNING: sync_batch_norm should have value of bool type")
945 946 947

    @property
    def fuse_all_reduce_ops(self):
948 949 950 951 952
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
953

954 955 956 957 958 959
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
960 961 962
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
963
    @is_strict_auto
964 965 966 967 968 969
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

970 971
    @property
    def fuse_grad_size_in_MB(self):
972 973 974 975 976 977
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
978

979
          .. code-block:: python
1
123malin 已提交
980

981 982 983 984
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
985 986 987
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
988
    @is_strict_auto
989 990 991 992 993 994
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1021 1022 1023 1024 1025 1026
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

1027
        Default value: False
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
1047 1048
                "WARNING: find_unused_parameters should have value of bool type"
            )
1049

1050 1051 1052 1053 1054
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1055
    @is_strict_auto
1056 1057 1058 1059 1060 1061 1062 1063
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1064
    @property
1065
    def nccl_comm_num(self):
1066 1067 1068 1069 1070 1071
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1072

1073
          .. code-block:: python
1
123malin 已提交
1074

1075 1076 1077 1078 1079
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1080
        return self.strategy.nccl_comm_num
1081

1082
    @nccl_comm_num.setter
1083
    @is_strict_auto
1084
    def nccl_comm_num(self, value):
1085
        if isinstance(value, int):
1086
            self.strategy.nccl_comm_num = value
1087
        else:
1088
            print("WARNING: nccl_comm_num should have value of int type")
1089

1090
    @recompute.setter
1091
    @is_strict_auto
1092
    def recompute(self, flag):
1093
        if isinstance(flag, bool):
1094
            self.strategy.recompute = flag
1095
        else:
1096
            print("WARNING: recompute should have value of bool type")
1097 1098

    @property
1099 1100
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
1115

1116
        Examples:
1
123malin 已提交
1117

1118
          .. code-block:: python
1
123malin 已提交
1119

1120
            import paddle.distributed.fleet as fleet
1121 1122
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1123 1124 1125 1126
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1127 1128 1129 1130 1131

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1132
    @is_strict_auto
1133 1134 1135 1136
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
1137

1138 1139 1140 1141
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
1142 1143 1144
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1145

1146 1147
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1148 1149 1150
        Default value: False

        Examples:
1
123malin 已提交
1151

1152
          .. code-block:: python
1
123malin 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
1171
        Set sharding configurations. 
1172 1173

        **Note**:
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1196
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1197

1198
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1199

1200 1201
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1202

1203 1204 1205
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1206

1207
        Examples:
1
123malin 已提交
1208

1209
          .. code-block:: python
1
123malin 已提交
1210

1211
            # sharding-DP, 2 nodes with 8 gpus per node
1212 1213 1214
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1215
            strategy.sharding_configs = {
1216 1217 1218
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1219
                "dp_degree": 2,
1220 1221
                "gradient_merge_acc_step": 4,
                }
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
1323 1324
                "WARNING: fuse_grad_size_in_num should have value of int32 type"
            )
1325

1326
    @property
1327 1328 1329 1330 1331 1332 1333 1334
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1335

1336
          .. code-block:: python
1
123malin 已提交
1337

1338
            import paddle.distributed.fleet as fleet
1339 1340 1341 1342 1343
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
            print("WARNING: is_fl_ps_mode should have value of bool type")

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
            print("WARNING: with_coordinator should have value of bool type")

1369
    @pipeline.setter
1370
    @is_strict_auto
1371
    def pipeline(self, flag):
1372
        if isinstance(flag, bool):
1373
            self.strategy.pipeline = flag
1374
        else:
1375
            print("WARNING: pipeline should have value of bool type")
1376 1377

    @property
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1388

1389 1390
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1391

1392
            **micro_batch_size**: the number of small batches in each user defined batch
1393

1394
        Examples:
1
123malin 已提交
1395

1396
          .. code-block:: python
1
123malin 已提交
1397

1398
            import paddle.distributed.fleet as fleet
1399 1400
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1401
            strategy.pipeline_configs = {"micro_batch_size": 12}
1402

1403
        """
1404

1405
        return get_msg_dict(self.strategy.pipeline_configs)
1406

1407
    @pipeline_configs.setter
1408
    @is_strict_auto
1409 1410 1411 1412
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1413

L
lilong12 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1446 1447
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1448 1449 1450 1451 1452 1453 1454 1455

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1456 1457
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1503
    @property
1504
    def localsgd(self):
1505
        """
M
mapingshuo 已提交
1506 1507 1508
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1509 1510 1511


        Examples:
1
123malin 已提交
1512

1513 1514 1515 1516 1517 1518 1519
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1520
        return self.strategy.localsgd
1521

1522
    @localsgd.setter
1523
    @is_strict_auto
1524 1525 1526
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1527
        else:
1528
            print("WARNING: localsgd should have value of bool type")
1529 1530

    @property
1531
    def localsgd_configs(self):
1532 1533 1534 1535 1536
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1537
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1538
            begin_step(int) The step of beginning training by localsgd. Default 1.
1539 1540

        Examples:
1
123malin 已提交
1541

1542 1543 1544 1545 1546
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1547 1548
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1549 1550
        """

1551
        return get_msg_dict(self.strategy.localsgd_configs)
1552

1553
    @localsgd_configs.setter
1554
    @is_strict_auto
1555 1556 1557 1558
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1569

1570 1571 1572 1573 1574 1575 1576
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1577
        return self.strategy.adaptive_localsgd
1578 1579 1580 1581 1582

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1583
            self.strategy.adaptive_localsgd = flag
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1597
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1598 1599

        Examples:
1
123malin 已提交
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1619
    @property
1620
    def dgc(self):
1621 1622 1623 1624 1625 1626 1627
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1628

1629 1630 1631 1632 1633 1634 1635
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1636
        return self.strategy.dgc
1637

1638
    @dgc.setter
1639
    @is_strict_auto
1640 1641 1642
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1643
        else:
1644
            print("WARNING: dgc should have value of bool type")
1645 1646

    @property
1647
    def dgc_configs(self):
1648
        r"""
1649 1650 1651 1652
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1663 1664

        Examples:
1
123malin 已提交
1665

1666 1667 1668 1669 1670 1671 1672
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1673
        return get_msg_dict(self.strategy.dgc_configs)
1674

1675
    @dgc_configs.setter
1676
    @is_strict_auto
1677 1678 1679
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1680

1681 1682 1683 1684 1685 1686 1687
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1705
    @property
1706
    def gradient_merge(self):
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1718

M
mapingshuo 已提交
1719 1720
          .. code-block:: python

1721
            import paddle.distributed.fleet as fleet
1722 1723 1724 1725
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1726
        return self.strategy.gradient_merge
1727

1728
    @gradient_merge.setter
1729
    @is_strict_auto
1730
    def gradient_merge(self, flag):
1731
        if isinstance(flag, bool):
1732
            self.strategy.gradient_merge = flag
1733
        else:
1734 1735 1736 1737
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1738 1739
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1740 1741 1742 1743 1744 1745 1746

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1747

M
mapingshuo 已提交
1748 1749
          .. code-block:: python

1750
            import paddle.distributed.fleet as fleet
1751 1752 1753 1754
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1755 1756 1757
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1758
    @is_strict_auto
1759 1760 1761 1762
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1763 1764

    @property
1765
    def lars(self):
1766 1767 1768 1769 1770 1771 1772 1773
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1774

1775 1776 1777 1778 1779 1780
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1781
        return self.strategy.lars
1782

1783
    @lars.setter
1784
    @is_strict_auto
1785
    def lars(self, flag):
1786
        if isinstance(flag, bool):
1787
            self.strategy.lars = flag
1788
        else:
1789
            print("WARNING: lars should have value of bool type")
1790

1791 1792
    @property
    def lars_configs(self):
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1805

1806
          .. code-block:: python
M
mapingshuo 已提交
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1818 1819 1820
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1821
    @is_strict_auto
1822 1823 1824 1825
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1826
    @property
1827
    def lamb(self):
1828 1829 1830 1831 1832 1833 1834
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1835

1836
        Examples:
1
123malin 已提交
1837

1838 1839 1840 1841 1842 1843 1844
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1845
        return self.strategy.lamb
1846

1847
    @lamb.setter
1848
    @is_strict_auto
1849
    def lamb(self, flag):
1850
        if isinstance(flag, bool):
1851
            self.strategy.lamb = flag
1852
        else:
1853
            print("WARNING: lamb should have value of bool type")
1854

1855 1856
    @property
    def lamb_configs(self):
1857 1858 1859 1860 1861 1862 1863 1864 1865
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1866

1867
          .. code-block:: python
M
mapingshuo 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1877 1878 1879
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1880
    @is_strict_auto
1881 1882 1883 1884
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1885 1886
    @property
    def elastic(self):
1887 1888 1889 1890
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1891 1892 1893
        return self.strategy.elastic

    @elastic.setter
1894
    @is_strict_auto
1895 1896 1897 1898 1899 1900 1901 1902
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1903 1904 1905 1906 1907 1908 1909 1910 1911
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1912

1913 1914 1915
          .. code-block:: python

            import paddle
1916
            paddle.enable_static()
1
123malin 已提交
1917
            import paddle.distributed.fleet as fleet
1918

1919 1920
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1921 1922
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1923 1924 1925 1926

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1927 1928 1929 1930 1931 1932 1933 1934 1935
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

K
kuizhiqing 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

2025 2026
    @property
    def cudnn_exhaustive_search(self):
2027 2028 2029 2030 2031 2032 2033 2034
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
2035

2036 2037
          .. code-block:: python

1
123malin 已提交
2038 2039
            import paddle
            paddle.enable_static()
2040 2041 2042 2043 2044 2045 2046
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2047 2048 2049
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2050
    @is_strict_auto
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2061 2062 2063 2064 2065 2066 2067 2068
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2069

2070 2071
          .. code-block:: python

1
123malin 已提交
2072 2073
            import paddle
            paddle.enable_static()
2074 2075 2076 2077 2078 2079
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2080

2081
        """
2082 2083 2084
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2085
    @is_strict_auto
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2096 2097 2098 2099 2100 2101
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2102

2103 2104
          .. code-block:: python

1
123malin 已提交
2105 2106
            import paddle
            paddle.enable_static()
2107 2108 2109 2110 2111 2112 2113 2114
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2115 2116 2117
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2118
    @is_strict_auto
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2147 2148
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2149

2150 2151 2152 2153 2154 2155
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2156
    def __repr__(self):
2157 2158 2159 2160 2161 2162 2163
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
2164 2165
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
2166 2167 2168 2169 2170 2171 2172 2173 2174

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2175
        fields = self.strategy.DESCRIPTOR.fields
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
2190
                                "{}=True <-> {}_configs".format(f.name, f.name))
2191 2192 2193 2194 2195 2196
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2197 2198 2199
                                        getattr(my_configs,
                                                ff.name), google.protobuf.pyext.
                                        _message.RepeatedScalarContainer):
2200 2201 2202
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2203 2204
                                            draws += h2_format.format(
                                                ff.name, str(v))
2205
                                        else:
2206 2207
                                            draws += h2_format.format(
                                                "", str(v))
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2228
        for f in fields:
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res