未验证 提交 0abdcff6 编写于 作者: H Haohongxiang 提交者: GitHub

[Dygraph] Support delaying div loss by accumulate_steps in PipelineLayer (#52848)

上级 118a7415
......@@ -57,12 +57,18 @@ message MpConfig {
optional bool sync_moment= 3 [ default = false ];
}
message PpConfig {
optional bool dp_comm_overlap = 1 [ default = false ];
optional bool delay_scale_loss = 2 [ default = false ];
}
message HybridConfig {
optional int32 dp_degree = 1 [ default = -1 ];
optional int32 mp_degree = 2 [ default = 1 ];
optional int32 pp_degree = 3 [ default = 1 ];
optional int32 sharding_degree = 4 [ default = 1 ];
optional MpConfig mp_configs = 5;
optional PpConfig pp_configs = 6;
}
message AMPConfig {
......
......@@ -1702,6 +1702,12 @@ class DistributedStrategy:
self.strategy.hybrid_configs.mp_configs, configs["mp_configs"]
)
configs.pop("mp_configs")
if "pp_configs" in configs:
assign_configs_value(
self.strategy.hybrid_configs.pp_configs, configs["pp_configs"]
)
configs.pop("pp_configs")
assign_configs_value(self.strategy.hybrid_configs, configs)
@property
......
......@@ -26,6 +26,7 @@ from ...utils.hybrid_parallel_util import (
sharding_reduce_gradients,
)
from ...utils.log_util import logger
from ...utils.mix_precision_utils import MixPrecisionOptimizer
__all__ = []
......@@ -260,38 +261,41 @@ class HybridParallelOptimizer:
"or Sharding, the grad clip of original optimizer will be changed."
)
if self._sharding_enable:
# change sharding inner_optimizer's _grad_clip
self._inner_opt._inner_optimizer._grad_clip = (
HybridParallelClipGrad(self._inner_opt._grad_clip, hcg)
)
elif (
self._inner_opt._parameter_list
and not isinstance(self._inner_opt._parameter_list[0], dict)
inner_opt = (
self._inner_opt._inner_optimizer
if self._sharding_enable
else self._inner_opt
)
if isinstance(inner_opt, MixPrecisionOptimizer):
inner_opt = inner_opt._inner_opt
if (
inner_opt._parameter_list
and not isinstance(inner_opt._parameter_list[0], dict)
and len(
[
p
for p in self._inner_opt._parameter_list
for p in inner_opt._parameter_list
if hasattr(p, "main_grad")
]
)
> 0
):
self._inner_opt._inner_opt._grad_clip = HybridParallelClipGrad(
self._inner_opt._inner_opt._grad_clip, hcg
inner_opt._grad_clip = HybridParallelClipGrad(
inner_opt._grad_clip, hcg
)
else:
self._inner_opt._grad_clip = HybridParallelClipGrad(
self._inner_opt._grad_clip, hcg
inner_opt._grad_clip = HybridParallelClipGrad(
inner_opt._grad_clip, hcg
)
if self._inner_opt._parameter_list and isinstance(
self._inner_opt._parameter_list[0], dict
if inner_opt._parameter_list and isinstance(
inner_opt._parameter_list[0], dict
):
for item in self._inner_opt._param_groups:
for item in inner_opt._param_groups:
if "grad_clip" in item.keys():
item["grad_clip"] = HybridParallelClipGrad(
self._inner_opt._grad_clip, hcg
inner_opt._grad_clip, hcg
)
def _filter_fn(self, param):
......
......@@ -24,6 +24,7 @@ from ..utils.log_util import logger
from .meta_parallel_base import MetaParallelBase
from .parallel_layers.pp_layers import PipelineLayer
from .pp_utils import p2p_communication as p2p
from .pp_utils.utils import FusedAllReduceBuffer, assign_group_by_size
__all__ = []
......@@ -59,12 +60,21 @@ class PipelineParallel(MetaParallelBase):
self.num_stages = self._hcg.get_pipe_parallel_world_size()
self.stage_id = self._hcg.get_stage_id()
self.pp_group = self._hcg.get_pipe_parallel_group()
self.dp_group = self._hcg.get_data_parallel_group()
self._virtual_pp_world_size = None
self._virtual_pp_rank = None
self._real_pp_world_size = self.num_stages
self._real_pp_rank = self.stage_id
self._delay_scale_loss = self._strategy.hybrid_configs[
"pp_configs"
].delay_scale_loss
self._dp_comm_overlap = self._strategy.hybrid_configs[
"pp_configs"
].dp_comm_overlap
self._dp_comm_buffers = []
p2p.initialize_p2p_groups(
hcg, self._using_cache, self._enable_partial_send_recv
)
......@@ -92,6 +102,11 @@ class PipelineParallel(MetaParallelBase):
logger.info("start broadcast dp parameters")
broadcast_dp_parameters(self._layers, self._hcg)
if self._dp_comm_overlap:
self.register_allreduce_overlap_hook(
self._layers, self.dp_group, self.accumulate_steps
)
def is_pipeline_first_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self._virtual_pp_world_size is not None:
......@@ -114,6 +129,27 @@ class PipelineParallel(MetaParallelBase):
def set_virtual_pipeline_rank(self, rank):
self._virtual_pp_rank = rank
def bw_hook_func(self, buffer, param):
@paddle.autograd.no_grad()
def fused_allreduce(*_):
buffer.add_grad(param)
return fused_allreduce
def register_allreduce_overlap_hook(self, model, comm_group, acc_steps):
parameter_list = [p for p in model.parameters() if not p.stop_gradient]
if len(parameter_list) < 1:
return
var_groups = assign_group_by_size(parameter_list)
for group_idx, parameters in var_groups.items():
buffer = FusedAllReduceBuffer(
group_idx, parameters, comm_group, acc_steps
)
self._dp_comm_buffers.append(buffer)
for param in parameters:
param._register_backward_hook(self.bw_hook_func(buffer, param))
def forward_backward_pipeline(self, data, scaler=None):
# use the 1f1b scheduling strategy.
# this strategy is inspired by:
......@@ -192,6 +228,11 @@ class PipelineParallel(MetaParallelBase):
)
p2p.send_backward(input_tensor_grad, self.is_pipeline_first_stage())
if self._dp_comm_overlap:
assert len(self._dp_comm_buffers) > 0
for buffer in self._dp_comm_buffers:
buffer.scale_and_split_grads()
self._layers.allreduce_shared_weight_gradients()
with paddle.amp.auto_cast(enable=False):
train_loss = self._broadcast_final_loss()
......@@ -310,7 +351,7 @@ class PipelineParallel(MetaParallelBase):
), "Currently, loss_fn should obtain Paddle.Tensor dtype"
with paddle.amp.auto_cast(enable=False):
if self.accumulate_steps > 1:
if self.accumulate_steps > 1 and not self._delay_scale_loss:
output_tensor = output_tensor / self.accumulate_steps
if self.total_loss is None:
......@@ -413,7 +454,11 @@ class PipelineParallel(MetaParallelBase):
assert (
self.total_loss is not None
), "train_batch() in last stage should obtain vaild loss"
loss = self.total_loss.detach()
loss = (
self.total_loss.detach()
if not self._delay_scale_loss
else self.total_loss / self.accumulate_steps
)
is_fp32 = (
paddle.full([], 1, 'int64')
if loss.dtype == paddle.float32
......@@ -447,6 +492,14 @@ class PipelineParallel(MetaParallelBase):
return loss
def _optimizer_step(self):
if self._delay_scale_loss:
for p in self._layers.parameters():
if hasattr(p, "main_grad") and p.main_grad is not None:
assert p.grad is None
p.main_grad = p.main_grad.scale(1.0 / self.accumulate_steps)
elif p.grad is not None:
p.grad = p.grad.scale(1.0 / self.accumulate_steps)
if self.scaler:
self.scaler.step(self.optimizer)
self.scaler.update()
......@@ -746,6 +799,11 @@ class PipelineParallelWithInterleave(PipelineParallel):
)
)
if self._dp_comm_overlap:
assert len(self._dp_comm_buffers) > 0
for buffer in self._dp_comm_buffers:
buffer.scale_and_split_grads()
self._layers.allreduce_shared_weight_gradients()
if compute_loss:
......
......@@ -12,8 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import numpy as np
import paddle
from paddle import _legacy_C_ops
from paddle.distributed.parallel import _split_tensors
from paddle.fluid import core
__all__ = []
......@@ -105,3 +111,110 @@ def _all_gather(tensor, group=None, use_calc_stream=True):
'nranks',
nranks,
)
class FusedAllReduceBuffer:
def __init__(self, id, params, comm_group, acc_steps=1):
self._id = id
self._params = params
self._acc_steps = acc_steps
self._comm_group = comm_group
self._tasks = []
self._grads = []
self._params_step_dict = {}
self._params_checked_in = 0
self._coalesced_grads_and_grad_vars = []
self._init_step_dict()
def _init_step_dict(self):
for p in self._params:
self._params_step_dict[p.name] = 0
def _reset_params_checked_in(self):
self._tasks.clear()
self._grads.clear()
self._init_step_dict()
self._params_checked_in = 0
self._coalesced_grads_and_grad_vars.clear()
@property
def _all_params_checked_in(self):
return (
len(self._params) == self._params_checked_in
and len(self._params_step_dict) == 0
)
def add_grad(self, param):
assert param.name in self._params_step_dict
if self._params_step_dict[param.name] == 0:
if getattr(param, "main_grad", None) is not None:
assert param.grad is None
self._grads.append(param.main_grad)
else:
self._grads.append(param.grad)
self._params_step_dict[param.name] += 1
if self._params_step_dict[param.name] == self._acc_steps:
self._params_checked_in += 1
self._params_step_dict.pop(param.name)
if self._all_params_checked_in:
self._fused_allreduce_grads()
def _fused_allreduce_grads(self):
assert self._all_params_checked_in
flattened_vars = []
g_var_shapes = []
for g_var in self._grads:
g_var_shapes.append(g_var.shape)
flattened_vars.append(
paddle.reshape(x=g_var, shape=[np.prod(g_var.shape)])
)
coalesced_grad = paddle.concat(flattened_vars)
self._coalesced_grads_and_grad_vars.append(
[coalesced_grad, self._grads, g_var_shapes]
)
for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars:
self._tasks.append(
paddle.distributed.all_reduce(
coalesced_grad, group=self._comm_group, sync_op=False
)
)
def scale_and_split_grads(self):
for task in self._tasks:
task.wait()
scale_factor = 1.0 / self._comm_group.nranks
for coalesced_grad, _, _ in self._coalesced_grads_and_grad_vars:
coalesced_grad.scale_(scale_factor)
_split_tensors(self._coalesced_grads_and_grad_vars)
self._reset_params_checked_in()
def assign_group_by_size(parameters, group_size=128 * 1024 * 1024):
group_idx = 0
memory_counter = 0
var_groups = OrderedDict()
dtype = parameters[0].dtype
for var in parameters:
bytes = np.prod(var.shape) * core.size_of_dtype(var.dtype)
if memory_counter < group_size and dtype == var.dtype:
memory_counter += bytes
else:
memory_counter = bytes
dtype = var.dtype
group_idx += 1
var_groups.setdefault(group_idx, []).append(var)
return var_groups
......@@ -22,6 +22,7 @@ import paddle
from . import log_util # noqa: F401
from . import hybrid_parallel_util # noqa: F401
from . import tensor_parallel_utils # noqa: F401
from . import mix_precision_utils # noqa: F401
__all__ = ["LocalFS", "recompute", "DistributedInfer", "HDFSClient"] # noqa
......
......@@ -232,10 +232,18 @@ def sharding_reduce_gradients(parameter_list, hcg):
sharding_nrank = hcg.get_sharding_parallel_group().nranks
for param in parameter_list:
g_var = None
if param.trainable and (param._grad_ivar() is not None):
param.grad.scale_(1.0 / sharding_nrank)
g_var = param._grad_ivar()
if param.trainable and hasattr(param, "main_grad"):
assert (
param._grad_ivar() is None
), "param.grad should be None when using main_grad"
g_var = param.main_grad
if g_var is not None:
g_var.scale_(1.0 / sharding_nrank)
paddle.distributed.all_reduce(
param.grad,
g_var,
group=hcg.get_sharding_parallel_group(),
sync_op=True,
)
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from types import MethodType
import numpy as np
import paddle
from paddle import _legacy_C_ops, nn
from paddle.distributed import fleet
from paddle.fluid import framework
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.dygraph import to_variable
from paddle.framework import core
class MixPrecisionLayer(nn.Layer):
def __init__(self, layers, dtype="float16"):
super().__init__(layers.full_name() + "_mix_precision")
self._layers = layers
self._dtype = dtype
assert self._dtype in ["float16", "bfloat16"]
for param in self._layers.parameters():
if not hasattr(param, "main_grad"):
param.main_grad = None
param._register_grad_hook(self._update_main_grad_hook(param))
def _update_main_grad_hook(self, param):
"""Create the update_main_grad hook for backprop."""
# Hook used for back-prop and grad-merge.
@paddle.autograd.no_grad()
def param_hook(tmp_grad):
assert (
param.grad is None
), "In main_grad node, param.grad should be None, but find param[{}] has grad.".format(
param.name
)
if param.main_grad is None:
param.main_grad = core.eager.Tensor(
value=tmp_grad.cast(paddle.float32).value(),
place=tmp_grad.place,
name="main_grad@" + param.name,
)
else:
param.main_grad.add_(tmp_grad.cast(paddle.float32))
tmp_grad._clear_data()
return None
return param_hook
def forward(self, *inputs, **kwargs):
outputs = self._layers(*inputs, **kwargs)
return outputs
def state_dict(
self,
destination=None,
include_sublayers=True,
structured_name_prefix="",
):
return self._layers.state_dict(
destination=destination,
include_sublayers=include_sublayers,
structured_name_prefix=structured_name_prefix,
)
@framework.deprecate_stat_dict
def set_state_dict(self, state_dict, use_structured_name=True):
self._layers.set_state_dict(
state_dict, use_structured_name=use_structured_name
)
class MixPrecisionOptimizer:
def __init__(self, optimizer):
self._inner_opt = optimizer
self._parameter_list = self._obtain_optimizer_parameters_list()
def _obtain_optimizer_parameters_list(self):
if getattr(self._inner_opt, '_param_groups', None) and isinstance(
self._inner_opt._param_groups[0], dict
):
parameters_list = []
for group in self._inner_opt._param_groups:
for param in group['params']:
parameters_list.append(param)
else:
parameters_list = list(self._inner_opt._parameter_list)
return parameters_list
@imperative_base.no_grad
@framework.dygraph_only
def step(self):
if not isinstance(self._parameter_list[0], dict):
params_grads = []
for param in self._parameter_list:
if param.stop_gradient:
continue
grad_var = param.main_grad
if framework.in_dygraph_mode():
if (
hasattr(grad_var, "is_selected_rows")
and grad_var.is_selected_rows()
and self._inner_opt.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else:
if (
hasattr(grad_var, "_is_sparse")
and grad_var._is_sparse()
and self._inner_opt.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads.append((param, grad_var))
optimize_ops = self._inner_opt._apply_optimize(
loss=None, startup_program=None, params_grads=params_grads
)
else:
# optimize parameters in groups
for param_group in self._inner_opt._param_groups:
params_grads = defaultdict(lambda: [])
for param in param_group['params']:
if param.stop_gradient:
continue
grad_var = param.main_grad
if framework.in_dygraph_mode():
if (
hasattr(grad_var, "is_selected_rows")
and grad_var.is_selected_rows()
and self._inner_opt.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else:
if (
hasattr(grad_var, "_is_sparse")
and grad_var._is_sparse()
and self._inner_opt.regularization is not None
):
raise RuntimeError(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads['params'].append((param, grad_var))
params_grads.update(
{k: v for k, v in param_group.items() if k != 'params'}
)
self._apply_optimize(
loss=None, startup_program=None, params_grads=params_grads
)
@framework.dygraph_only
def clear_grad(self, set_to_zero=True):
param_list = []
if self._parameter_list is None or not isinstance(
self._parameter_list[0], dict
):
for p in self._parameter_list:
if not p.stop_gradient:
param_list.append(p)
else:
for param_group in self._param_groups:
for p in param_group['params']:
if not p.stop_gradient:
param_list.append(p)
for p in param_list:
if hasattr(p, "main_grad") and p.main_grad is not None:
if set_to_zero:
p.main_grad.zero_()
else:
p.main_grad._clear()
p.main_grad = None
elif not hasattr(p, "main_grad"):
p.clear_gradient(set_to_zero)
def __getattr__(self, item):
return getattr(self._inner_opt, item)
def unscale_method(self, optimizer):
if not self._enable:
return
param_grads = []
if getattr(optimizer, '_param_groups', None) and isinstance(
optimizer._param_groups[0], dict
):
for group in optimizer._param_groups:
for param in group['params']:
if param.main_grad is not None:
assert param.main_grad.dtype == core.VarDesc.VarType.FP32
param_grads.append(param.main_grad)
else:
for param in optimizer._parameter_list:
if param.main_grad is not None:
assert param.main_grad.dtype == core.VarDesc.VarType.FP32
param_grads.append(param.main_grad)
temp_found_inf = to_variable(np.array([0]).astype(np.bool_))
if len(param_grads):
_legacy_C_ops.check_finite_and_unscale(
param_grads,
self._scale,
param_grads,
temp_found_inf,
)
self._found_inf = 1 if temp_found_inf else 0
hcg = fleet.get_hybrid_communicate_group()
if hcg is not None and hcg.nranks > hcg.get_data_parallel_world_size():
is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32")
paddle.distributed.all_reduce(
is_found_inf, op=paddle.distributed.ReduceOp.MAX, group=None
)
self._found_inf = is_found_inf.numpy()[0]
class MixPrecisionScaler:
def __init__(self, scaler):
self._inner_scaler = scaler
self._inner_scaler._unscale = MethodType(unscale_method, scaler)
def __getattr__(self, item):
return getattr(self._inner_scaler, item)
......@@ -21,6 +21,10 @@ from hybrid_parallel_pp_layer import AlexNet, AlexNetPipeDesc
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from paddle.distributed.fleet.utils.mix_precision_utils import (
MixPrecisionLayer,
MixPrecisionOptimizer,
)
def set_random_seed(seed, dp_id, rank_id):
......@@ -60,6 +64,9 @@ class TestDistPPTraning(unittest.TestCase):
)
return scheduler, optimizer
def wrapper_mix_precision(self, model, optimizer):
return model, optimizer
def test_pp_model(self):
hcg = fleet.get_hybrid_communicate_group()
word_size = hcg.get_model_parallel_world_size()
......@@ -81,6 +88,7 @@ class TestDistPPTraning(unittest.TestCase):
# construct model b
model_b = AlexNetPipeDesc(num_stages=self.pipeline_parallel_size)
scheduler_b, optimizer_b = self.build_optimizer(model_b)
model_b, optimizer_b = self.wrapper_mix_precision(model_b, optimizer_b)
model_b = fleet.distributed_model(model_b)
optimizer_b = fleet.distributed_optimizer(optimizer_b)
......@@ -125,5 +133,44 @@ class TestDistPPTraning(unittest.TestCase):
)
class TestDistPPDelayScaleLoss(TestDistPPTraning):
def setUp(self):
strategy = fleet.DistributedStrategy()
self.model_parallel_size = 1
self.data_parallel_size = 1
self.pipeline_parallel_size = 2
strategy.hybrid_configs = {
"dp_degree": self.data_parallel_size,
"mp_degree": self.model_parallel_size,
"pp_degree": self.pipeline_parallel_size,
"pp_configs": {
"delay_scale_loss": True,
},
}
strategy.pipeline_configs = {
"accumulate_steps": batch_size // micro_batch_size,
"micro_batch_size": micro_batch_size,
}
fleet.init(is_collective=True, strategy=strategy)
class TestDistPPMainGrad(TestDistPPTraning):
def wrapper_mix_precision(self, model, optimizer):
model = MixPrecisionLayer(model, dtype="float16")
optimizer = MixPrecisionOptimizer(optimizer)
return model._layers, optimizer
def build_optimizer(self, model):
scheduler = paddle.optimizer.lr.PiecewiseDecay(
boundaries=[2], values=[0.001, 0.002], verbose=True
)
optimizer = paddle.optimizer.SGD(
learning_rate=scheduler,
parameters=model.parameters(),
grad_clip=paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0),
)
return scheduler, optimizer
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册