Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0abdcff6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0abdcff6
编写于
4月 17, 2023
作者:
H
Haohongxiang
提交者:
GitHub
4月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dygraph] Support delaying div loss by accumulate_steps in PipelineLayer (#52848)
上级
118a7415
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
519 addition
and
22 deletion
+519
-22
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+6
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+6
-0
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
...optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
+22
-18
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+60
-2
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
.../paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
+113
-0
python/paddle/distributed/fleet/utils/__init__.py
python/paddle/distributed/fleet/utils/__init__.py
+1
-0
python/paddle/distributed/fleet/utils/hybrid_parallel_util.py
...on/paddle/distributed/fleet/utils/hybrid_parallel_util.py
+10
-2
python/paddle/distributed/fleet/utils/mix_precision_utils.py
python/paddle/distributed/fleet/utils/mix_precision_utils.py
+254
-0
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_alexnet.py
...addle/fluid/tests/unittests/hybrid_parallel_pp_alexnet.py
+47
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
0abdcff6
...
...
@@ -57,12 +57,18 @@ message MpConfig {
optional
bool
sync_moment
=
3
[
default
=
false
];
}
message
PpConfig
{
optional
bool
dp_comm_overlap
=
1
[
default
=
false
];
optional
bool
delay_scale_loss
=
2
[
default
=
false
];
}
message
HybridConfig
{
optional
int32
dp_degree
=
1
[
default
=
-
1
];
optional
int32
mp_degree
=
2
[
default
=
1
];
optional
int32
pp_degree
=
3
[
default
=
1
];
optional
int32
sharding_degree
=
4
[
default
=
1
];
optional
MpConfig
mp_configs
=
5
;
optional
PpConfig
pp_configs
=
6
;
}
message
AMPConfig
{
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
0abdcff6
...
...
@@ -1702,6 +1702,12 @@ class DistributedStrategy:
self
.
strategy
.
hybrid_configs
.
mp_configs
,
configs
[
"mp_configs"
]
)
configs
.
pop
(
"mp_configs"
)
if
"pp_configs"
in
configs
:
assign_configs_value
(
self
.
strategy
.
hybrid_configs
.
pp_configs
,
configs
[
"pp_configs"
]
)
configs
.
pop
(
"pp_configs"
)
assign_configs_value
(
self
.
strategy
.
hybrid_configs
,
configs
)
@
property
...
...
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
浏览文件 @
0abdcff6
...
...
@@ -26,6 +26,7 @@ from ...utils.hybrid_parallel_util import (
sharding_reduce_gradients
,
)
from
...utils.log_util
import
logger
from
...utils.mix_precision_utils
import
MixPrecisionOptimizer
__all__
=
[]
...
...
@@ -260,38 +261,41 @@ class HybridParallelOptimizer:
"or Sharding, the grad clip of original optimizer will be changed."
)
if
self
.
_sharding_enable
:
# change sharding inner_optimizer's _grad_clip
self
.
_inner_opt
.
_inner_optimizer
.
_grad_clip
=
(
HybridParallelClipGrad
(
self
.
_inner_opt
.
_grad_clip
,
hcg
)
)
elif
(
self
.
_inner_opt
.
_parameter_list
and
not
isinstance
(
self
.
_inner_opt
.
_parameter_list
[
0
],
dict
)
inner_opt
=
(
self
.
_inner_opt
.
_inner_optimizer
if
self
.
_sharding_enable
else
self
.
_inner_opt
)
if
isinstance
(
inner_opt
,
MixPrecisionOptimizer
):
inner_opt
=
inner_opt
.
_inner_opt
if
(
inner_opt
.
_parameter_list
and
not
isinstance
(
inner_opt
.
_parameter_list
[
0
],
dict
)
and
len
(
[
p
for
p
in
self
.
_
inner_opt
.
_parameter_list
for
p
in
inner_opt
.
_parameter_list
if
hasattr
(
p
,
"main_grad"
)
]
)
>
0
):
self
.
_inner_opt
.
_inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
self
.
_inner_opt
.
_inner_opt
.
_grad_clip
,
hcg
inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
inner_opt
.
_grad_clip
,
hcg
)
else
:
self
.
_
inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
self
.
_
inner_opt
.
_grad_clip
,
hcg
inner_opt
.
_grad_clip
=
HybridParallelClipGrad
(
inner_opt
.
_grad_clip
,
hcg
)
if
self
.
_
inner_opt
.
_parameter_list
and
isinstance
(
self
.
_
inner_opt
.
_parameter_list
[
0
],
dict
if
inner_opt
.
_parameter_list
and
isinstance
(
inner_opt
.
_parameter_list
[
0
],
dict
):
for
item
in
self
.
_
inner_opt
.
_param_groups
:
for
item
in
inner_opt
.
_param_groups
:
if
"grad_clip"
in
item
.
keys
():
item
[
"grad_clip"
]
=
HybridParallelClipGrad
(
self
.
_
inner_opt
.
_grad_clip
,
hcg
inner_opt
.
_grad_clip
,
hcg
)
def
_filter_fn
(
self
,
param
):
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
0abdcff6
...
...
@@ -24,6 +24,7 @@ from ..utils.log_util import logger
from
.meta_parallel_base
import
MetaParallelBase
from
.parallel_layers.pp_layers
import
PipelineLayer
from
.pp_utils
import
p2p_communication
as
p2p
from
.pp_utils.utils
import
FusedAllReduceBuffer
,
assign_group_by_size
__all__
=
[]
...
...
@@ -59,12 +60,21 @@ class PipelineParallel(MetaParallelBase):
self
.
num_stages
=
self
.
_hcg
.
get_pipe_parallel_world_size
()
self
.
stage_id
=
self
.
_hcg
.
get_stage_id
()
self
.
pp_group
=
self
.
_hcg
.
get_pipe_parallel_group
()
self
.
dp_group
=
self
.
_hcg
.
get_data_parallel_group
()
self
.
_virtual_pp_world_size
=
None
self
.
_virtual_pp_rank
=
None
self
.
_real_pp_world_size
=
self
.
num_stages
self
.
_real_pp_rank
=
self
.
stage_id
self
.
_delay_scale_loss
=
self
.
_strategy
.
hybrid_configs
[
"pp_configs"
].
delay_scale_loss
self
.
_dp_comm_overlap
=
self
.
_strategy
.
hybrid_configs
[
"pp_configs"
].
dp_comm_overlap
self
.
_dp_comm_buffers
=
[]
p2p
.
initialize_p2p_groups
(
hcg
,
self
.
_using_cache
,
self
.
_enable_partial_send_recv
)
...
...
@@ -92,6 +102,11 @@ class PipelineParallel(MetaParallelBase):
logger
.
info
(
"start broadcast dp parameters"
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
if
self
.
_dp_comm_overlap
:
self
.
register_allreduce_overlap_hook
(
self
.
_layers
,
self
.
dp_group
,
self
.
accumulate_steps
)
def
is_pipeline_first_stage
(
self
,
ignore_virtual
=
False
):
if
not
ignore_virtual
:
if
self
.
_virtual_pp_world_size
is
not
None
:
...
...
@@ -114,6 +129,27 @@ class PipelineParallel(MetaParallelBase):
def
set_virtual_pipeline_rank
(
self
,
rank
):
self
.
_virtual_pp_rank
=
rank
def
bw_hook_func
(
self
,
buffer
,
param
):
@
paddle
.
autograd
.
no_grad
()
def
fused_allreduce
(
*
_
):
buffer
.
add_grad
(
param
)
return
fused_allreduce
def
register_allreduce_overlap_hook
(
self
,
model
,
comm_group
,
acc_steps
):
parameter_list
=
[
p
for
p
in
model
.
parameters
()
if
not
p
.
stop_gradient
]
if
len
(
parameter_list
)
<
1
:
return
var_groups
=
assign_group_by_size
(
parameter_list
)
for
group_idx
,
parameters
in
var_groups
.
items
():
buffer
=
FusedAllReduceBuffer
(
group_idx
,
parameters
,
comm_group
,
acc_steps
)
self
.
_dp_comm_buffers
.
append
(
buffer
)
for
param
in
parameters
:
param
.
_register_backward_hook
(
self
.
bw_hook_func
(
buffer
,
param
))
def
forward_backward_pipeline
(
self
,
data
,
scaler
=
None
):
# use the 1f1b scheduling strategy.
# this strategy is inspired by:
...
...
@@ -192,6 +228,11 @@ class PipelineParallel(MetaParallelBase):
)
p2p
.
send_backward
(
input_tensor_grad
,
self
.
is_pipeline_first_stage
())
if
self
.
_dp_comm_overlap
:
assert
len
(
self
.
_dp_comm_buffers
)
>
0
for
buffer
in
self
.
_dp_comm_buffers
:
buffer
.
scale_and_split_grads
()
self
.
_layers
.
allreduce_shared_weight_gradients
()
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
train_loss
=
self
.
_broadcast_final_loss
()
...
...
@@ -310,7 +351,7 @@ class PipelineParallel(MetaParallelBase):
),
"Currently, loss_fn should obtain Paddle.Tensor dtype"
with
paddle
.
amp
.
auto_cast
(
enable
=
False
):
if
self
.
accumulate_steps
>
1
:
if
self
.
accumulate_steps
>
1
and
not
self
.
_delay_scale_loss
:
output_tensor
=
output_tensor
/
self
.
accumulate_steps
if
self
.
total_loss
is
None
:
...
...
@@ -413,7 +454,11 @@ class PipelineParallel(MetaParallelBase):
assert
(
self
.
total_loss
is
not
None
),
"train_batch() in last stage should obtain vaild loss"
loss
=
self
.
total_loss
.
detach
()
loss
=
(
self
.
total_loss
.
detach
()
if
not
self
.
_delay_scale_loss
else
self
.
total_loss
/
self
.
accumulate_steps
)
is_fp32
=
(
paddle
.
full
([],
1
,
'int64'
)
if
loss
.
dtype
==
paddle
.
float32
...
...
@@ -447,6 +492,14 @@ class PipelineParallel(MetaParallelBase):
return
loss
def
_optimizer_step
(
self
):
if
self
.
_delay_scale_loss
:
for
p
in
self
.
_layers
.
parameters
():
if
hasattr
(
p
,
"main_grad"
)
and
p
.
main_grad
is
not
None
:
assert
p
.
grad
is
None
p
.
main_grad
=
p
.
main_grad
.
scale
(
1.0
/
self
.
accumulate_steps
)
elif
p
.
grad
is
not
None
:
p
.
grad
=
p
.
grad
.
scale
(
1.0
/
self
.
accumulate_steps
)
if
self
.
scaler
:
self
.
scaler
.
step
(
self
.
optimizer
)
self
.
scaler
.
update
()
...
...
@@ -746,6 +799,11 @@ class PipelineParallelWithInterleave(PipelineParallel):
)
)
if
self
.
_dp_comm_overlap
:
assert
len
(
self
.
_dp_comm_buffers
)
>
0
for
buffer
in
self
.
_dp_comm_buffers
:
buffer
.
scale_and_split_grads
()
self
.
_layers
.
allreduce_shared_weight_gradients
()
if
compute_loss
:
...
...
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
浏览文件 @
0abdcff6
...
...
@@ -12,8 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
OrderedDict
import
numpy
as
np
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle.distributed.parallel
import
_split_tensors
from
paddle.fluid
import
core
__all__
=
[]
...
...
@@ -105,3 +111,110 @@ def _all_gather(tensor, group=None, use_calc_stream=True):
'nranks'
,
nranks
,
)
class
FusedAllReduceBuffer
:
def
__init__
(
self
,
id
,
params
,
comm_group
,
acc_steps
=
1
):
self
.
_id
=
id
self
.
_params
=
params
self
.
_acc_steps
=
acc_steps
self
.
_comm_group
=
comm_group
self
.
_tasks
=
[]
self
.
_grads
=
[]
self
.
_params_step_dict
=
{}
self
.
_params_checked_in
=
0
self
.
_coalesced_grads_and_grad_vars
=
[]
self
.
_init_step_dict
()
def
_init_step_dict
(
self
):
for
p
in
self
.
_params
:
self
.
_params_step_dict
[
p
.
name
]
=
0
def
_reset_params_checked_in
(
self
):
self
.
_tasks
.
clear
()
self
.
_grads
.
clear
()
self
.
_init_step_dict
()
self
.
_params_checked_in
=
0
self
.
_coalesced_grads_and_grad_vars
.
clear
()
@
property
def
_all_params_checked_in
(
self
):
return
(
len
(
self
.
_params
)
==
self
.
_params_checked_in
and
len
(
self
.
_params_step_dict
)
==
0
)
def
add_grad
(
self
,
param
):
assert
param
.
name
in
self
.
_params_step_dict
if
self
.
_params_step_dict
[
param
.
name
]
==
0
:
if
getattr
(
param
,
"main_grad"
,
None
)
is
not
None
:
assert
param
.
grad
is
None
self
.
_grads
.
append
(
param
.
main_grad
)
else
:
self
.
_grads
.
append
(
param
.
grad
)
self
.
_params_step_dict
[
param
.
name
]
+=
1
if
self
.
_params_step_dict
[
param
.
name
]
==
self
.
_acc_steps
:
self
.
_params_checked_in
+=
1
self
.
_params_step_dict
.
pop
(
param
.
name
)
if
self
.
_all_params_checked_in
:
self
.
_fused_allreduce_grads
()
def
_fused_allreduce_grads
(
self
):
assert
self
.
_all_params_checked_in
flattened_vars
=
[]
g_var_shapes
=
[]
for
g_var
in
self
.
_grads
:
g_var_shapes
.
append
(
g_var
.
shape
)
flattened_vars
.
append
(
paddle
.
reshape
(
x
=
g_var
,
shape
=
[
np
.
prod
(
g_var
.
shape
)])
)
coalesced_grad
=
paddle
.
concat
(
flattened_vars
)
self
.
_coalesced_grads_and_grad_vars
.
append
(
[
coalesced_grad
,
self
.
_grads
,
g_var_shapes
]
)
for
coalesced_grad
,
_
,
_
in
self
.
_coalesced_grads_and_grad_vars
:
self
.
_tasks
.
append
(
paddle
.
distributed
.
all_reduce
(
coalesced_grad
,
group
=
self
.
_comm_group
,
sync_op
=
False
)
)
def
scale_and_split_grads
(
self
):
for
task
in
self
.
_tasks
:
task
.
wait
()
scale_factor
=
1.0
/
self
.
_comm_group
.
nranks
for
coalesced_grad
,
_
,
_
in
self
.
_coalesced_grads_and_grad_vars
:
coalesced_grad
.
scale_
(
scale_factor
)
_split_tensors
(
self
.
_coalesced_grads_and_grad_vars
)
self
.
_reset_params_checked_in
()
def
assign_group_by_size
(
parameters
,
group_size
=
128
*
1024
*
1024
):
group_idx
=
0
memory_counter
=
0
var_groups
=
OrderedDict
()
dtype
=
parameters
[
0
].
dtype
for
var
in
parameters
:
bytes
=
np
.
prod
(
var
.
shape
)
*
core
.
size_of_dtype
(
var
.
dtype
)
if
memory_counter
<
group_size
and
dtype
==
var
.
dtype
:
memory_counter
+=
bytes
else
:
memory_counter
=
bytes
dtype
=
var
.
dtype
group_idx
+=
1
var_groups
.
setdefault
(
group_idx
,
[]).
append
(
var
)
return
var_groups
python/paddle/distributed/fleet/utils/__init__.py
浏览文件 @
0abdcff6
...
...
@@ -22,6 +22,7 @@ import paddle
from
.
import
log_util
# noqa: F401
from
.
import
hybrid_parallel_util
# noqa: F401
from
.
import
tensor_parallel_utils
# noqa: F401
from
.
import
mix_precision_utils
# noqa: F401
__all__
=
[
"LocalFS"
,
"recompute"
,
"DistributedInfer"
,
"HDFSClient"
]
# noqa
...
...
python/paddle/distributed/fleet/utils/hybrid_parallel_util.py
浏览文件 @
0abdcff6
...
...
@@ -232,10 +232,18 @@ def sharding_reduce_gradients(parameter_list, hcg):
sharding_nrank
=
hcg
.
get_sharding_parallel_group
().
nranks
for
param
in
parameter_list
:
g_var
=
None
if
param
.
trainable
and
(
param
.
_grad_ivar
()
is
not
None
):
param
.
grad
.
scale_
(
1.0
/
sharding_nrank
)
g_var
=
param
.
_grad_ivar
()
if
param
.
trainable
and
hasattr
(
param
,
"main_grad"
):
assert
(
param
.
_grad_ivar
()
is
None
),
"param.grad should be None when using main_grad"
g_var
=
param
.
main_grad
if
g_var
is
not
None
:
g_var
.
scale_
(
1.0
/
sharding_nrank
)
paddle
.
distributed
.
all_reduce
(
param
.
grad
,
g_var
,
group
=
hcg
.
get_sharding_parallel_group
(),
sync_op
=
True
,
)
...
...
python/paddle/distributed/fleet/utils/mix_precision_utils.py
0 → 100644
浏览文件 @
0abdcff6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
defaultdict
from
types
import
MethodType
import
numpy
as
np
import
paddle
from
paddle
import
_legacy_C_ops
,
nn
from
paddle.distributed
import
fleet
from
paddle.fluid
import
framework
from
paddle.fluid.dygraph
import
base
as
imperative_base
from
paddle.fluid.dygraph
import
to_variable
from
paddle.framework
import
core
class
MixPrecisionLayer
(
nn
.
Layer
):
def
__init__
(
self
,
layers
,
dtype
=
"float16"
):
super
().
__init__
(
layers
.
full_name
()
+
"_mix_precision"
)
self
.
_layers
=
layers
self
.
_dtype
=
dtype
assert
self
.
_dtype
in
[
"float16"
,
"bfloat16"
]
for
param
in
self
.
_layers
.
parameters
():
if
not
hasattr
(
param
,
"main_grad"
):
param
.
main_grad
=
None
param
.
_register_grad_hook
(
self
.
_update_main_grad_hook
(
param
))
def
_update_main_grad_hook
(
self
,
param
):
"""Create the update_main_grad hook for backprop."""
# Hook used for back-prop and grad-merge.
@
paddle
.
autograd
.
no_grad
()
def
param_hook
(
tmp_grad
):
assert
(
param
.
grad
is
None
),
"In main_grad node, param.grad should be None, but find param[{}] has grad."
.
format
(
param
.
name
)
if
param
.
main_grad
is
None
:
param
.
main_grad
=
core
.
eager
.
Tensor
(
value
=
tmp_grad
.
cast
(
paddle
.
float32
).
value
(),
place
=
tmp_grad
.
place
,
name
=
"main_grad@"
+
param
.
name
,
)
else
:
param
.
main_grad
.
add_
(
tmp_grad
.
cast
(
paddle
.
float32
))
tmp_grad
.
_clear_data
()
return
None
return
param_hook
def
forward
(
self
,
*
inputs
,
**
kwargs
):
outputs
=
self
.
_layers
(
*
inputs
,
**
kwargs
)
return
outputs
def
state_dict
(
self
,
destination
=
None
,
include_sublayers
=
True
,
structured_name_prefix
=
""
,
):
return
self
.
_layers
.
state_dict
(
destination
=
destination
,
include_sublayers
=
include_sublayers
,
structured_name_prefix
=
structured_name_prefix
,
)
@
framework
.
deprecate_stat_dict
def
set_state_dict
(
self
,
state_dict
,
use_structured_name
=
True
):
self
.
_layers
.
set_state_dict
(
state_dict
,
use_structured_name
=
use_structured_name
)
class
MixPrecisionOptimizer
:
def
__init__
(
self
,
optimizer
):
self
.
_inner_opt
=
optimizer
self
.
_parameter_list
=
self
.
_obtain_optimizer_parameters_list
()
def
_obtain_optimizer_parameters_list
(
self
):
if
getattr
(
self
.
_inner_opt
,
'_param_groups'
,
None
)
and
isinstance
(
self
.
_inner_opt
.
_param_groups
[
0
],
dict
):
parameters_list
=
[]
for
group
in
self
.
_inner_opt
.
_param_groups
:
for
param
in
group
[
'params'
]:
parameters_list
.
append
(
param
)
else
:
parameters_list
=
list
(
self
.
_inner_opt
.
_parameter_list
)
return
parameters_list
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
def
step
(
self
):
if
not
isinstance
(
self
.
_parameter_list
[
0
],
dict
):
params_grads
=
[]
for
param
in
self
.
_parameter_list
:
if
param
.
stop_gradient
:
continue
grad_var
=
param
.
main_grad
if
framework
.
in_dygraph_mode
():
if
(
hasattr
(
grad_var
,
"is_selected_rows"
)
and
grad_var
.
is_selected_rows
()
and
self
.
_inner_opt
.
regularization
is
not
None
):
raise
RuntimeError
(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else
:
if
(
hasattr
(
grad_var
,
"_is_sparse"
)
and
grad_var
.
_is_sparse
()
and
self
.
_inner_opt
.
regularization
is
not
None
):
raise
RuntimeError
(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads
.
append
((
param
,
grad_var
))
optimize_ops
=
self
.
_inner_opt
.
_apply_optimize
(
loss
=
None
,
startup_program
=
None
,
params_grads
=
params_grads
)
else
:
# optimize parameters in groups
for
param_group
in
self
.
_inner_opt
.
_param_groups
:
params_grads
=
defaultdict
(
lambda
:
[])
for
param
in
param_group
[
'params'
]:
if
param
.
stop_gradient
:
continue
grad_var
=
param
.
main_grad
if
framework
.
in_dygraph_mode
():
if
(
hasattr
(
grad_var
,
"is_selected_rows"
)
and
grad_var
.
is_selected_rows
()
and
self
.
_inner_opt
.
regularization
is
not
None
):
raise
RuntimeError
(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
else
:
if
(
hasattr
(
grad_var
,
"_is_sparse"
)
and
grad_var
.
_is_sparse
()
and
self
.
_inner_opt
.
regularization
is
not
None
):
raise
RuntimeError
(
"AdamW don't support weight_decay with sparse parameters, please set it to None."
)
params_grads
[
'params'
].
append
((
param
,
grad_var
))
params_grads
.
update
(
{
k
:
v
for
k
,
v
in
param_group
.
items
()
if
k
!=
'params'
}
)
self
.
_apply_optimize
(
loss
=
None
,
startup_program
=
None
,
params_grads
=
params_grads
)
@
framework
.
dygraph_only
def
clear_grad
(
self
,
set_to_zero
=
True
):
param_list
=
[]
if
self
.
_parameter_list
is
None
or
not
isinstance
(
self
.
_parameter_list
[
0
],
dict
):
for
p
in
self
.
_parameter_list
:
if
not
p
.
stop_gradient
:
param_list
.
append
(
p
)
else
:
for
param_group
in
self
.
_param_groups
:
for
p
in
param_group
[
'params'
]:
if
not
p
.
stop_gradient
:
param_list
.
append
(
p
)
for
p
in
param_list
:
if
hasattr
(
p
,
"main_grad"
)
and
p
.
main_grad
is
not
None
:
if
set_to_zero
:
p
.
main_grad
.
zero_
()
else
:
p
.
main_grad
.
_clear
()
p
.
main_grad
=
None
elif
not
hasattr
(
p
,
"main_grad"
):
p
.
clear_gradient
(
set_to_zero
)
def
__getattr__
(
self
,
item
):
return
getattr
(
self
.
_inner_opt
,
item
)
def
unscale_method
(
self
,
optimizer
):
if
not
self
.
_enable
:
return
param_grads
=
[]
if
getattr
(
optimizer
,
'_param_groups'
,
None
)
and
isinstance
(
optimizer
.
_param_groups
[
0
],
dict
):
for
group
in
optimizer
.
_param_groups
:
for
param
in
group
[
'params'
]:
if
param
.
main_grad
is
not
None
:
assert
param
.
main_grad
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
param_grads
.
append
(
param
.
main_grad
)
else
:
for
param
in
optimizer
.
_parameter_list
:
if
param
.
main_grad
is
not
None
:
assert
param
.
main_grad
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
param_grads
.
append
(
param
.
main_grad
)
temp_found_inf
=
to_variable
(
np
.
array
([
0
]).
astype
(
np
.
bool_
))
if
len
(
param_grads
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads
,
self
.
_scale
,
param_grads
,
temp_found_inf
,
)
self
.
_found_inf
=
1
if
temp_found_inf
else
0
hcg
=
fleet
.
get_hybrid_communicate_group
()
if
hcg
is
not
None
and
hcg
.
nranks
>
hcg
.
get_data_parallel_world_size
():
is_found_inf
=
paddle
.
to_tensor
([
self
.
_found_inf
],
dtype
=
"int32"
)
paddle
.
distributed
.
all_reduce
(
is_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
MAX
,
group
=
None
)
self
.
_found_inf
=
is_found_inf
.
numpy
()[
0
]
class
MixPrecisionScaler
:
def
__init__
(
self
,
scaler
):
self
.
_inner_scaler
=
scaler
self
.
_inner_scaler
.
_unscale
=
MethodType
(
unscale_method
,
scaler
)
def
__getattr__
(
self
,
item
):
return
getattr
(
self
.
_inner_scaler
,
item
)
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_alexnet.py
浏览文件 @
0abdcff6
...
...
@@ -21,6 +21,10 @@ from hybrid_parallel_pp_layer import AlexNet, AlexNetPipeDesc
import
paddle
import
paddle.distributed
as
dist
from
paddle.distributed
import
fleet
from
paddle.distributed.fleet.utils.mix_precision_utils
import
(
MixPrecisionLayer
,
MixPrecisionOptimizer
,
)
def
set_random_seed
(
seed
,
dp_id
,
rank_id
):
...
...
@@ -60,6 +64,9 @@ class TestDistPPTraning(unittest.TestCase):
)
return
scheduler
,
optimizer
def
wrapper_mix_precision
(
self
,
model
,
optimizer
):
return
model
,
optimizer
def
test_pp_model
(
self
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
...
...
@@ -81,6 +88,7 @@ class TestDistPPTraning(unittest.TestCase):
# construct model b
model_b
=
AlexNetPipeDesc
(
num_stages
=
self
.
pipeline_parallel_size
)
scheduler_b
,
optimizer_b
=
self
.
build_optimizer
(
model_b
)
model_b
,
optimizer_b
=
self
.
wrapper_mix_precision
(
model_b
,
optimizer_b
)
model_b
=
fleet
.
distributed_model
(
model_b
)
optimizer_b
=
fleet
.
distributed_optimizer
(
optimizer_b
)
...
...
@@ -125,5 +133,44 @@ class TestDistPPTraning(unittest.TestCase):
)
class
TestDistPPDelayScaleLoss
(
TestDistPPTraning
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
1
self
.
data_parallel_size
=
1
self
.
pipeline_parallel_size
=
2
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
self
.
pipeline_parallel_size
,
"pp_configs"
:
{
"delay_scale_loss"
:
True
,
},
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
batch_size
//
micro_batch_size
,
"micro_batch_size"
:
micro_batch_size
,
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
class
TestDistPPMainGrad
(
TestDistPPTraning
):
def
wrapper_mix_precision
(
self
,
model
,
optimizer
):
model
=
MixPrecisionLayer
(
model
,
dtype
=
"float16"
)
optimizer
=
MixPrecisionOptimizer
(
optimizer
)
return
model
.
_layers
,
optimizer
def
build_optimizer
(
self
,
model
):
scheduler
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
[
2
],
values
=
[
0.001
,
0.002
],
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
scheduler
,
parameters
=
model
.
parameters
(),
grad_clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
),
)
return
scheduler
,
optimizer
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录