distributed_strategy.py 80.7 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

39

40 41 42 43 44 45 46 47 48 49 50 51 52
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
53 54 55
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
56 57 58 59 60 61 62 63 64 65 66 67
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


105 106 107 108
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


109
class DistributedStrategy(object):
110 111
    __lock_attr = False

112
    def __init__(self):
113 114 115 116 117
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
118

119 120 121 122 123 124
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
125
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
126 127 128

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
129
        if _global_flags().is_public(key):
130
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
131
                _global_flags()[key])
132
        key = 'FLAGS_conv_workspace_size_limit'
133 134
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
135
        key = 'FLAGS_cudnn_exhaustive_search'
136 137
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
138
        key = 'FLAGS_sync_nccl_allreduce'
139 140
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
141

142 143 144 145 146 147 148
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
149

150
    def save_to_prototxt(self, output):
151 152 153 154
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
155

156
          .. code-block:: python
1
123malin 已提交
157

158
            import paddle.distributed.fleet as fleet
159 160 161
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
162
            strategy.recompute_configs = {"checkpoints": ["x"]}
163 164
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
165 166 167 168
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
169 170 171 172
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
173

174 175
          .. code-block:: python

176
            import paddle.distributed.fleet as fleet
177
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
178
            strategy.load_from_prototxt("dist_strategy.prototxt")
179 180 181 182 183 184 185 186 187 188 189
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
190

191 192
          .. code-block:: python

M
mapingshuo 已提交
193
            import paddle
1
123malin 已提交
194
            exe_strategy = paddle.static.ExecutionStrategy()
195 196 197 198
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

199
            strategy = paddle.distributed.fleet.DistributedStrategy()
200 201 202 203 204 205 206 207 208 209
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
210
    @is_strict_auto
211 212 213 214 215 216 217 218 219 220 221 222 223 224
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
225

226 227
          .. code-block:: python

M
mapingshuo 已提交
228
            import paddle
1
123malin 已提交
229
            build_strategy = paddle.static.BuildStrategy()
230 231 232 233 234 235 236 237
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
238

239
            strategy = paddle.distributed.fleet.DistributedStrategy()
240 241 242 243 244 245
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
246 247 248 249
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
250 251 252
        return build_strategy

    @build_strategy.setter
253
    @is_strict_auto
254 255 256 257
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
258 259 260 261
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
262 263 264 265 266
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
289
    def a_sync(self):
290 291 292 293 294 295 296
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
297

298 299
          .. code-block:: python

300
            import paddle.distributed.fleet as fleet
301 302 303 304
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
305
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
306

307 308 309
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
310
        return self.strategy.a_sync
311

D
Dong Daxiang 已提交
312
    @a_sync.setter
313
    @is_strict_auto
D
Dong Daxiang 已提交
314
    def a_sync(self, flag):
315
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
316
            self.strategy.a_sync = flag
317
            self.a_sync_configs = {"k_steps": 0}
318
        else:
319
            raise ValueError(
Z
zhangchunle 已提交
320
                "The type of `flag` is invalid, expected type is bool, but received {}".
321
                format(type(flag)))
322 323

    @property
D
Dong Daxiang 已提交
324
    def a_sync_configs(self):
325
        """
D
Dong Daxiang 已提交
326
        Set a_sync update configurations. In general, asynchronous parameter server
327 328
        training has serveral configurable settings that can be configured through
        a dict.
329

330
        **Notes**:
M
mapingshuo 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
344

345
        Examples:
1
123malin 已提交
346

347
          .. code-block:: python
348

349
            import paddle.distributed.fleet as fleet
350 351
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
352

353
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
354
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
355
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
356
            strategy.a_sync_configs = configs
357

358 359
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
360

361
        """
D
Dong Daxiang 已提交
362
        return get_msg_dict(self.strategy.a_sync_configs)
363

D
Dong Daxiang 已提交
364
    @a_sync_configs.setter
365
    @is_strict_auto
D
Dong Daxiang 已提交
366 367 368 369
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

403 404 405 406
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
407
        Default value: False
408 409 410 411 412 413 414 415 416 417

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
418
            strategy.adam_d2sum = True  # by default this is False
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
                "The type of `flag` is invalid, expected type is bool, but received {}".
                format(type(flag)))

435 436 437 438 439 440 441
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    @property
    def fs_client_param(self):
        """
        Set fs client configurations. 
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
            hadoop_bin(str): 
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

481
        def set_table_config(msg, config_name, configs, index=0):
482 483 484
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
485
                    # print("message:", name)
486 487 488 489
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
490
                        # print("message num:", name, num)
491 492 493 494 495 496
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
                        set_table_config(
                            getattr(msg, field.name), name, configs)
497
                else:
498
                    # print("not message:", name)
499 500 501 502 503
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
504 505 506 507
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
508

509 510 511
        if not configs:
            print("table configs is empty")
        else:
512 513 514 515 516
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
                set_table_config(table_data, "table_parameters." + table_name,
                                 configs[table_name])
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_fea_dim', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold',
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate']
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
            'DownpourSparseValueAccessor', 'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor',
            'DownpourDoubleUnitAccessor'
        ]
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

        def sparse_optimizer_config(sgd, strategy, prefix):
            optimizer_name = strategy.get(prefix + "sparse_optimizer",
                                          "adagrad")
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.naive.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
            table_class = config.get("sparse_table_class",
                                     "DownpourSparseTable")
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
                    % (table_class))
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)

            accessor_class = config.get("sparse_accessor_class",
                                        "DownpourCtrAccessor")
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
614
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
615 616
                    % (accessor_class))

617 618
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
619
            else:
620 621 622
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
623 624 625 626 627 628 629
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
                'sparse_embedx_threshold', 10)

630 631 632 633 634
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
                'sparse_nonclk_coeff', 0.1)
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
                'sparse_click_coeff', 1)
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
                'sparse_base_threshold', 1.5)
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
                'sparse_delta_threshold', 0.25)
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
                'sparse_delta_keep_days', 16)
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = config.get(
                'sparse_show_click_decay_rate', 0.98)
            table_data.accessor.ctr_accessor_param.delete_threshold = config.get(
                'sparse_delete_threshold', 0.8)
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = config.get(
                'sparse_delete_after_unseen_days', 30)
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = config.get(
                'sparse_ssd_unseenday_threshold', 1)
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

            if accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, '')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, '')
            else:
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, 'embed_')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, 'embedx_')

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
                if table_name == 'dense_table' or table_name == 'datanorm_table':
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

689
    @property
690 691 692 693
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
694

695
        Examples:
1
123malin 已提交
696

697
          .. code-block:: python
698

699
            import paddle.distributed.fleet as fleet
700 701
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
702

703 704
        """
        return self.strategy.amp
705

706
    @amp.setter
707
    @is_strict_auto
708
    def amp(self, flag):
709
        if isinstance(flag, bool):
710
            self.strategy.amp = flag
711
        else:
712
            print("WARNING: amp should have value of bool type")
713 714

    @property
715
    def amp_configs(self):
716 717 718 719 720
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
736

737 738 739 740 741 742 743 744
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
745

746 747 748 749 750 751 752 753
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
754 755 756 757 758 759 760 761 762 763 764 765 766

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
767
        """
768
        return get_msg_dict(self.strategy.amp_configs)
769

770
    @amp_configs.setter
771
    @is_strict_auto
772 773 774
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

801
    @property
802 803 804 805 806 807
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
808

809 810
          .. code-block:: python

811
            import paddle.distributed.fleet as fleet
812 813 814 815 816 817
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
818

819 820
    @property
    def sync_nccl_allreduce(self):
821 822 823 824 825
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
826

827 828 829 830 831 832
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
833 834 835
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
836
    @is_strict_auto
837 838 839 840
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
841
            print("WARNING: sync_nccl_allreduce should have value of bool type")
842

843
    @property
844
    def use_hierarchical_allreduce(self):
845 846 847 848 849 850
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
851

852 853 854 855 856 857
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
858
        return self.strategy.use_hierarchical_allreduce
859

860
    @use_hierarchical_allreduce.setter
861
    @is_strict_auto
862
    def use_hierarchical_allreduce(self, flag):
863
        if isinstance(flag, bool):
864
            self.strategy.use_hierarchical_allreduce = flag
865 866
        else:
            print(
867
                "WARNING: use_hierarchical_allreduce should have value of bool type"
868 869 870
            )

    @property
871
    def hierarchical_allreduce_inter_nranks(self):
872 873 874 875 876
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
877

878 879 880 881 882 883
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
884
        return self.strategy.hierarchical_allreduce_inter_nranks
885

886
    @hierarchical_allreduce_inter_nranks.setter
887
    @is_strict_auto
888 889 890
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
891 892
        else:
            print(
893
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
894 895
            )

896
    @property
897
    def sync_batch_norm(self):
898 899
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
900

901 902 903
        Default value: False

        Examples:
1
123malin 已提交
904

905 906 907 908 909 910 911
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

912
        return self.strategy.sync_batch_norm
913

914
    @sync_batch_norm.setter
915
    @is_strict_auto
916
    def sync_batch_norm(self, flag):
917
        if isinstance(flag, bool):
918
            self.strategy.sync_batch_norm = flag
919
        else:
920
            print("WARNING: sync_batch_norm should have value of bool type")
921 922 923

    @property
    def fuse_all_reduce_ops(self):
924 925 926 927 928
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
929

930 931 932 933 934 935
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
936 937 938
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
939
    @is_strict_auto
940 941 942 943 944 945
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

946 947
    @property
    def fuse_grad_size_in_MB(self):
948 949 950 951 952 953
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
954

955
          .. code-block:: python
1
123malin 已提交
956

957 958 959 960
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
961 962 963
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
964
    @is_strict_auto
965 966 967 968 969 970
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

997 998 999 1000 1001 1002
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

1003
        Default value: False
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
                "WARNING: find_unused_parameters should have value of bool type")

1025 1026 1027 1028 1029
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1030
    @is_strict_auto
1031 1032 1033 1034 1035 1036 1037 1038
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1039
    @property
1040
    def nccl_comm_num(self):
1041 1042 1043 1044 1045 1046
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1047

1048
          .. code-block:: python
1
123malin 已提交
1049

1050 1051 1052 1053 1054
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1055
        return self.strategy.nccl_comm_num
1056

1057
    @nccl_comm_num.setter
1058
    @is_strict_auto
1059
    def nccl_comm_num(self, value):
1060
        if isinstance(value, int):
1061
            self.strategy.nccl_comm_num = value
1062
        else:
1063
            print("WARNING: nccl_comm_num should have value of int type")
1064

1065
    @recompute.setter
1066
    @is_strict_auto
1067
    def recompute(self, flag):
1068
        if isinstance(flag, bool):
1069
            self.strategy.recompute = flag
1070
        else:
1071
            print("WARNING: recompute should have value of bool type")
1072 1073

    @property
1074 1075
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
1090

1091
        Examples:
1
123malin 已提交
1092

1093
          .. code-block:: python
1
123malin 已提交
1094

1095
            import paddle.distributed.fleet as fleet
1096 1097
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1098 1099 1100 1101
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1102 1103 1104 1105 1106

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1107
    @is_strict_auto
1108 1109 1110 1111
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
1112

1113 1114 1115 1116
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
1117 1118 1119
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1120

1121 1122
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1123 1124 1125
        Default value: False

        Examples:
1
123malin 已提交
1126

1127
          .. code-block:: python
1
123malin 已提交
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
1146
        Set sharding configurations. 
1147 1148

        **Note**:
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1171
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1172

1173
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1174

1175 1176
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1177

1178 1179 1180
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1181

1182
        Examples:
1
123malin 已提交
1183

1184
          .. code-block:: python
1
123malin 已提交
1185

1186
            # sharding-DP, 2 nodes with 8 gpus per node
1187 1188 1189
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1190
            strategy.sharding_configs = {
1191 1192 1193
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1194
                "dp_degree": 2,
1195 1196
                "gradient_merge_acc_step": 4,
                }
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
                "WARNING: fuse_grad_size_in_num should have value of int32 type")

1300
    @property
1301 1302 1303 1304 1305 1306 1307 1308
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1309

1310
          .. code-block:: python
1
123malin 已提交
1311

1312
            import paddle.distributed.fleet as fleet
1313 1314 1315 1316 1317
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1318

1319
    @pipeline.setter
1320
    @is_strict_auto
1321
    def pipeline(self, flag):
1322
        if isinstance(flag, bool):
1323
            self.strategy.pipeline = flag
1324
        else:
1325
            print("WARNING: pipeline should have value of bool type")
1326 1327

    @property
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1338

1339 1340
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1341

1342
            **micro_batch_size**: the number of small batches in each user defined batch
1343

1344
        Examples:
1
123malin 已提交
1345

1346
          .. code-block:: python
1
123malin 已提交
1347

1348
            import paddle.distributed.fleet as fleet
1349 1350
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1351
            strategy.pipeline_configs = {"micro_batch_size": 12}
1352

1353
        """
1354

1355
        return get_msg_dict(self.strategy.pipeline_configs)
1356

1357
    @pipeline_configs.setter
1358
    @is_strict_auto
1359 1360 1361 1362
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1363

L
lilong12 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1396 1397
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1398 1399 1400 1401 1402 1403 1404 1405

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1406 1407
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1453
    @property
1454
    def localsgd(self):
1455
        """
M
mapingshuo 已提交
1456 1457 1458
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1459 1460 1461


        Examples:
1
123malin 已提交
1462

1463 1464 1465 1466 1467 1468 1469
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1470
        return self.strategy.localsgd
1471

1472
    @localsgd.setter
1473
    @is_strict_auto
1474 1475 1476
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1477
        else:
1478
            print("WARNING: localsgd should have value of bool type")
1479 1480

    @property
1481
    def localsgd_configs(self):
1482 1483 1484 1485 1486
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1487
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1488
            begin_step(int) The step of beginning training by localsgd. Default 1.
1489 1490

        Examples:
1
123malin 已提交
1491

1492 1493 1494 1495 1496
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1497 1498
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1499 1500
        """

1501
        return get_msg_dict(self.strategy.localsgd_configs)
1502

1503
    @localsgd_configs.setter
1504
    @is_strict_auto
1505 1506 1507 1508
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1519

1520 1521 1522 1523 1524 1525 1526
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1527
        return self.strategy.adaptive_localsgd
1528 1529 1530 1531 1532

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1533
            self.strategy.adaptive_localsgd = flag
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1547
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1548 1549

        Examples:
1
123malin 已提交
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1569
    @property
1570
    def dgc(self):
1571 1572 1573 1574 1575 1576 1577
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1578

1579 1580 1581 1582 1583 1584 1585
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1586
        return self.strategy.dgc
1587

1588
    @dgc.setter
1589
    @is_strict_auto
1590 1591 1592
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1593
        else:
1594
            print("WARNING: dgc should have value of bool type")
1595 1596

    @property
1597
    def dgc_configs(self):
1598
        r"""
1599 1600 1601 1602
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1613 1614

        Examples:
1
123malin 已提交
1615

1616 1617 1618 1619 1620 1621 1622
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1623
        return get_msg_dict(self.strategy.dgc_configs)
1624

1625
    @dgc_configs.setter
1626
    @is_strict_auto
1627 1628 1629
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1630

1631 1632 1633 1634 1635 1636 1637
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1655
    @property
1656
    def gradient_merge(self):
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1668

M
mapingshuo 已提交
1669 1670
          .. code-block:: python

1671
            import paddle.distributed.fleet as fleet
1672 1673 1674 1675
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1676
        return self.strategy.gradient_merge
1677

1678
    @gradient_merge.setter
1679
    @is_strict_auto
1680
    def gradient_merge(self, flag):
1681
        if isinstance(flag, bool):
1682
            self.strategy.gradient_merge = flag
1683
        else:
1684 1685 1686 1687
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1688 1689
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1690 1691 1692 1693 1694 1695 1696

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1697

M
mapingshuo 已提交
1698 1699
          .. code-block:: python

1700
            import paddle.distributed.fleet as fleet
1701 1702 1703 1704
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1705 1706 1707
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1708
    @is_strict_auto
1709 1710 1711 1712
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1713 1714

    @property
1715
    def lars(self):
1716 1717 1718 1719 1720 1721 1722 1723
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1724

1725 1726 1727 1728 1729 1730
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1731
        return self.strategy.lars
1732

1733
    @lars.setter
1734
    @is_strict_auto
1735
    def lars(self, flag):
1736
        if isinstance(flag, bool):
1737
            self.strategy.lars = flag
1738
        else:
1739
            print("WARNING: lars should have value of bool type")
1740

1741 1742
    @property
    def lars_configs(self):
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1755

1756
          .. code-block:: python
M
mapingshuo 已提交
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1768 1769 1770
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1771
    @is_strict_auto
1772 1773 1774 1775
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1776
    @property
1777
    def lamb(self):
1778 1779 1780 1781 1782 1783 1784
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1785

1786
        Examples:
1
123malin 已提交
1787

1788 1789 1790 1791 1792 1793 1794
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1795
        return self.strategy.lamb
1796

1797
    @lamb.setter
1798
    @is_strict_auto
1799
    def lamb(self, flag):
1800
        if isinstance(flag, bool):
1801
            self.strategy.lamb = flag
1802
        else:
1803
            print("WARNING: lamb should have value of bool type")
1804

1805 1806
    @property
    def lamb_configs(self):
1807 1808 1809 1810 1811 1812 1813 1814 1815
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1816

1817
          .. code-block:: python
M
mapingshuo 已提交
1818

1819 1820 1821 1822 1823 1824 1825 1826
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1827 1828 1829
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1830
    @is_strict_auto
1831 1832 1833 1834
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1835 1836
    @property
    def elastic(self):
1837 1838 1839 1840
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1841 1842 1843
        return self.strategy.elastic

    @elastic.setter
1844
    @is_strict_auto
1845 1846 1847 1848 1849 1850 1851 1852
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1853 1854 1855 1856 1857 1858 1859 1860 1861
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1862

1863 1864 1865
          .. code-block:: python

            import paddle
1866
            paddle.enable_static()
1
123malin 已提交
1867
            import paddle.distributed.fleet as fleet
1868

1869 1870
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1871 1872
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1873 1874 1875 1876

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1877 1878 1879 1880 1881 1882 1883 1884 1885
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

K
kuizhiqing 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

1975 1976
    @property
    def cudnn_exhaustive_search(self):
1977 1978 1979 1980 1981 1982 1983 1984
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1985

1986 1987
          .. code-block:: python

1
123malin 已提交
1988 1989
            import paddle
            paddle.enable_static()
1990 1991 1992 1993 1994 1995 1996
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1997 1998 1999
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2000
    @is_strict_auto
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2011 2012 2013 2014 2015 2016 2017 2018
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2019

2020 2021
          .. code-block:: python

1
123malin 已提交
2022 2023
            import paddle
            paddle.enable_static()
2024 2025 2026 2027 2028 2029
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2030

2031
        """
2032 2033 2034
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2035
    @is_strict_auto
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2046 2047 2048 2049 2050 2051
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2052

2053 2054
          .. code-block:: python

1
123malin 已提交
2055 2056
            import paddle
            paddle.enable_static()
2057 2058 2059 2060 2061 2062 2063 2064
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2065 2066 2067
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2068
    @is_strict_auto
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2097 2098
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2099

2100 2101 2102 2103 2104 2105
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2106
    def __repr__(self):
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2125
        fields = self.strategy.DESCRIPTOR.fields
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
2140
                                "{}=True <-> {}_configs".format(f.name, f.name))
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2178
        for f in fields:
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res