distributed_strategy.py 61.4 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

39

40 41 42 43 44 45 46 47 48 49 50 51 52
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
53 54 55
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
56 57 58 59 60 61 62 63 64 65 66 67
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
106 107
    __lock_attr = False

108
    def __init__(self):
109 110 111 112 113
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
114

115 116 117 118 119 120
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
121
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
122 123 124

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
125
        if _global_flags().is_public(key):
126
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
127
                _global_flags()[key])
128
        key = 'FLAGS_conv_workspace_size_limit'
129 130
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
131
        key = 'FLAGS_cudnn_exhaustive_search'
132 133
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
134
        key = 'FLAGS_sync_nccl_allreduce'
135 136
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
137

138 139 140 141 142 143 144
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
145

146
    def save_to_prototxt(self, output):
147 148 149 150
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
151

152
          .. code-block:: python
1
123malin 已提交
153

154
            import paddle.distributed.fleet as fleet
155 156 157
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
158
            strategy.recompute_configs = {"checkpoints": ["x"]}
159 160
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
161 162 163 164
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
165 166 167 168
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
169

170 171
          .. code-block:: python

172
            import paddle.distributed.fleet as fleet
173
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
174
            strategy.load_from_prototxt("dist_strategy.prototxt")
175 176 177 178 179 180 181 182 183 184 185
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
186

187 188
          .. code-block:: python

M
mapingshuo 已提交
189
            import paddle
1
123malin 已提交
190
            exe_strategy = paddle.static.ExecutionStrategy()
191 192 193 194
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

195
            strategy = paddle.distributed.fleet.DistributedStrategy()
196 197 198 199 200 201 202 203 204 205
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
206
    @is_strict_auto
207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
221

222 223
          .. code-block:: python

M
mapingshuo 已提交
224
            import paddle
1
123malin 已提交
225
            build_strategy = paddle.static.BuildStrategy()
226 227 228 229 230 231 232 233
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
234

235
            strategy = paddle.distributed.fleet.DistributedStrategy()
236 237 238 239 240 241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
247
    @is_strict_auto
248 249 250 251 252 253 254 255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
281
    def a_sync(self):
282 283 284 285 286 287 288
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
289

290 291
          .. code-block:: python

292
            import paddle.distributed.fleet as fleet
293 294 295 296
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
297
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
298

299 300 301
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
302
        return self.strategy.a_sync
303

D
Dong Daxiang 已提交
304
    @a_sync.setter
305
    @is_strict_auto
D
Dong Daxiang 已提交
306
    def a_sync(self, flag):
307
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
308
            self.strategy.a_sync = flag
309
            self.a_sync_configs = {"k_steps": 0}
310
        else:
311
            raise ValueError(
Z
zhangchunle 已提交
312
                "The type of `flag` is invalid, expected type is bool, but received {}".
313
                format(type(flag)))
314 315

    @property
D
Dong Daxiang 已提交
316
    def a_sync_configs(self):
317
        """
D
Dong Daxiang 已提交
318
        Set a_sync update configurations. In general, asynchronous parameter server
319 320
        training has serveral configurable settings that can be configured through
        a dict.
321

322
        **Notes**:
M
mapingshuo 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
336

337
        Examples:
1
123malin 已提交
338

339
          .. code-block:: python
340

341
            import paddle.distributed.fleet as fleet
342 343
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
344

345
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
346
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
347
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
348
            strategy.a_sync_configs = configs
349

350 351
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
352

353
        """
D
Dong Daxiang 已提交
354
        return get_msg_dict(self.strategy.a_sync_configs)
355

D
Dong Daxiang 已提交
356
    @a_sync_configs.setter
357
    @is_strict_auto
D
Dong Daxiang 已提交
358 359 360 361
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
362

363
    @property
364 365 366 367
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
368

369
        Examples:
1
123malin 已提交
370

371
          .. code-block:: python
372

373
            import paddle.distributed.fleet as fleet
374 375
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
376

377 378
        """
        return self.strategy.amp
379

380
    @amp.setter
381
    @is_strict_auto
382
    def amp(self, flag):
383
        if isinstance(flag, bool):
384
            self.strategy.amp = flag
385
        else:
386
            print("WARNING: amp should have value of bool type")
387 388

    @property
389
    def amp_configs(self):
390 391 392 393 394
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
410

411 412 413 414 415 416 417 418
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
419

420 421 422 423 424 425 426 427
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
428 429 430 431 432 433 434 435 436 437 438 439 440

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
441
        """
442
        return get_msg_dict(self.strategy.amp_configs)
443

444
    @amp_configs.setter
445
    @is_strict_auto
446 447 448
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

475
    @property
476 477 478 479 480 481
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
482

483 484
          .. code-block:: python

485
            import paddle.distributed.fleet as fleet
486 487 488 489 490 491
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
492

493 494
    @property
    def sync_nccl_allreduce(self):
495 496 497 498 499
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
500

501 502 503 504 505 506
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
507 508 509
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
510
    @is_strict_auto
511 512 513 514
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
515
            print("WARNING: sync_nccl_allreduce should have value of bool type")
516

517
    @property
518
    def use_hierarchical_allreduce(self):
519 520 521 522 523 524
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
525

526 527 528 529 530 531
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
532
        return self.strategy.use_hierarchical_allreduce
533

534
    @use_hierarchical_allreduce.setter
535
    @is_strict_auto
536
    def use_hierarchical_allreduce(self, flag):
537
        if isinstance(flag, bool):
538
            self.strategy.use_hierarchical_allreduce = flag
539 540
        else:
            print(
541
                "WARNING: use_hierarchical_allreduce should have value of bool type"
542 543 544
            )

    @property
545
    def hierarchical_allreduce_inter_nranks(self):
546 547 548 549 550
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
551

552 553 554 555 556 557
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
558
        return self.strategy.hierarchical_allreduce_inter_nranks
559

560
    @hierarchical_allreduce_inter_nranks.setter
561
    @is_strict_auto
562 563 564
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
565 566
        else:
            print(
567
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
568 569
            )

570
    @property
571
    def sync_batch_norm(self):
572 573
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
574

575 576 577
        Default value: False

        Examples:
1
123malin 已提交
578

579 580 581 582 583 584 585
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

586
        return self.strategy.sync_batch_norm
587

588
    @sync_batch_norm.setter
589
    @is_strict_auto
590
    def sync_batch_norm(self, flag):
591
        if isinstance(flag, bool):
592
            self.strategy.sync_batch_norm = flag
593
        else:
594
            print("WARNING: sync_batch_norm should have value of bool type")
595 596 597

    @property
    def fuse_all_reduce_ops(self):
598 599 600 601 602
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
603

604 605 606 607 608 609
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
610 611 612
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
613
    @is_strict_auto
614 615 616 617 618 619
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

620 621
    @property
    def fuse_grad_size_in_MB(self):
622 623 624 625 626 627
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
628

629
          .. code-block:: python
1
123malin 已提交
630

631 632 633 634
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
635 636 637
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
638
    @is_strict_auto
639 640 641 642 643 644
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

671 672 673 674 675 676
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

677
        Default value: False
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
                "WARNING: find_unused_parameters should have value of bool type")

699 700 701 702 703
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
704
    @is_strict_auto
705 706 707 708 709 710 711 712
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

713
    @property
714
    def nccl_comm_num(self):
715 716 717 718 719 720
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
721

722
          .. code-block:: python
1
123malin 已提交
723

724 725 726 727 728
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

729
        return self.strategy.nccl_comm_num
730

731
    @nccl_comm_num.setter
732
    @is_strict_auto
733
    def nccl_comm_num(self, value):
734
        if isinstance(value, int):
735
            self.strategy.nccl_comm_num = value
736
        else:
737
            print("WARNING: nccl_comm_num should have value of int type")
738

739
    @recompute.setter
740
    @is_strict_auto
741
    def recompute(self, flag):
742
        if isinstance(flag, bool):
743
            self.strategy.recompute = flag
744
        else:
745
            print("WARNING: recompute should have value of bool type")
746 747

    @property
748 749
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
764

765
        Examples:
1
123malin 已提交
766

767
          .. code-block:: python
1
123malin 已提交
768

769
            import paddle.distributed.fleet as fleet
770 771
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
772 773 774 775
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
776 777 778 779 780

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
781
    @is_strict_auto
782 783 784 785
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
786

787 788 789 790
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
791 792 793
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
794

795 796
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

797 798 799
        Default value: False

        Examples:
1
123malin 已提交
800

801
          .. code-block:: python
1
123malin 已提交
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
820
        Set sharding configurations. 
821 822

        **Note**:
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.

            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
848

849 850
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
851 852


853
        Examples:
1
123malin 已提交
854

855
          .. code-block:: python
1
123malin 已提交
856

857
            # sharding-DP, 2 nodes with 8 gpus per node
858 859 860
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
861
            strategy.sharding_configs = {
862 863 864
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
865
                "dp_degree": 2,
866 867
                "gradient_merge_acc_step": 4,
                }
868 869 870 871 872 873 874 875 876 877
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
                "WARNING: fuse_grad_size_in_num should have value of int32 type")

949
    @property
950 951 952 953 954 955 956 957
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
958

959
          .. code-block:: python
1
123malin 已提交
960

961
            import paddle.distributed.fleet as fleet
962 963 964 965 966
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
967

968
    @pipeline.setter
969
    @is_strict_auto
970
    def pipeline(self, flag):
971
        if isinstance(flag, bool):
972
            self.strategy.pipeline = flag
973
        else:
974
            print("WARNING: pipeline should have value of bool type")
975 976

    @property
977 978 979 980 981 982 983 984 985 986
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
987

988 989
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
990

991
            **micro_batch_size**: the number of small batches in each user defined batch
992

993
        Examples:
1
123malin 已提交
994

995
          .. code-block:: python
1
123malin 已提交
996

997
            import paddle.distributed.fleet as fleet
998 999
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1000
            strategy.pipeline_configs = {"micro_batch_size": 12}
1001

1002
        """
1003

1004
        return get_msg_dict(self.strategy.pipeline_configs)
1005

1006
    @pipeline_configs.setter
1007
    @is_strict_auto
1008 1009 1010 1011
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1012

L
lilong12 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1045 1046
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1047 1048 1049 1050 1051 1052 1053 1054

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1055 1056
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1102
    @property
1103
    def localsgd(self):
1104
        """
M
mapingshuo 已提交
1105 1106 1107
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1108 1109 1110


        Examples:
1
123malin 已提交
1111

1112 1113 1114 1115 1116 1117 1118
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1119
        return self.strategy.localsgd
1120

1121
    @localsgd.setter
1122
    @is_strict_auto
1123 1124 1125
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1126
        else:
1127
            print("WARNING: localsgd should have value of bool type")
1128 1129

    @property
1130
    def localsgd_configs(self):
1131 1132 1133 1134 1135
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1136
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1137
            begin_step(int) The step of begining training by localsgd. Default 1.
1138 1139

        Examples:
1
123malin 已提交
1140

1141 1142 1143 1144 1145
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1146 1147
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1148 1149
        """

1150
        return get_msg_dict(self.strategy.localsgd_configs)
1151

1152
    @localsgd_configs.setter
1153
    @is_strict_auto
1154 1155 1156 1157
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1168

1169 1170 1171 1172 1173 1174 1175
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1176
        return self.strategy.adaptive_localsgd
1177 1178 1179 1180 1181

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1182
            self.strategy.adaptive_localsgd = flag
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
            begin_step(int) The step of begining training by adaptive localsgd. Default 1.

        Examples:
1
123malin 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1218
    @property
1219
    def dgc(self):
1220 1221 1222 1223 1224 1225 1226
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1227

1228 1229 1230 1231 1232 1233 1234
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1235
        return self.strategy.dgc
1236

1237
    @dgc.setter
1238
    @is_strict_auto
1239 1240 1241
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1242
        else:
1243
            print("WARNING: dgc should have value of bool type")
1244 1245

    @property
1246
    def dgc_configs(self):
1247
        r"""
1248 1249 1250 1251
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1262 1263

        Examples:
1
123malin 已提交
1264

1265 1266 1267 1268 1269 1270 1271
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1272
        return get_msg_dict(self.strategy.dgc_configs)
1273

1274
    @dgc_configs.setter
1275
    @is_strict_auto
1276 1277 1278
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1279

1280 1281 1282 1283 1284 1285 1286
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1304
    @property
1305
    def gradient_merge(self):
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1317

M
mapingshuo 已提交
1318 1319
          .. code-block:: python

1320
            import paddle.distributed.fleet as fleet
1321 1322 1323 1324
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1325
        return self.strategy.gradient_merge
1326

1327
    @gradient_merge.setter
1328
    @is_strict_auto
1329
    def gradient_merge(self, flag):
1330
        if isinstance(flag, bool):
1331
            self.strategy.gradient_merge = flag
1332
        else:
1333 1334 1335 1336
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1337 1338
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1339 1340 1341 1342 1343 1344 1345

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1346

M
mapingshuo 已提交
1347 1348
          .. code-block:: python

1349
            import paddle.distributed.fleet as fleet
1350 1351 1352 1353
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1354 1355 1356
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1357
    @is_strict_auto
1358 1359 1360 1361
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1362 1363

    @property
1364
    def lars(self):
1365 1366 1367 1368 1369 1370 1371 1372
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1373

1374 1375 1376 1377 1378 1379
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1380
        return self.strategy.lars
1381

1382
    @lars.setter
1383
    @is_strict_auto
1384
    def lars(self, flag):
1385
        if isinstance(flag, bool):
1386
            self.strategy.lars = flag
1387
        else:
1388
            print("WARNING: lars should have value of bool type")
1389

1390 1391
    @property
    def lars_configs(self):
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1404

1405
          .. code-block:: python
M
mapingshuo 已提交
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1417 1418 1419
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1420
    @is_strict_auto
1421 1422 1423 1424
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1425
    @property
1426
    def lamb(self):
1427 1428 1429 1430 1431 1432 1433
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1434

1435
        Examples:
1
123malin 已提交
1436

1437 1438 1439 1440 1441 1442 1443
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1444
        return self.strategy.lamb
1445

1446
    @lamb.setter
1447
    @is_strict_auto
1448
    def lamb(self, flag):
1449
        if isinstance(flag, bool):
1450
            self.strategy.lamb = flag
1451
        else:
1452
            print("WARNING: lamb should have value of bool type")
1453

1454 1455
    @property
    def lamb_configs(self):
1456 1457 1458 1459 1460 1461 1462 1463 1464
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1465

1466
          .. code-block:: python
M
mapingshuo 已提交
1467

1468 1469 1470 1471 1472 1473 1474 1475
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1476 1477 1478
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1479
    @is_strict_auto
1480 1481 1482 1483
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1484 1485
    @property
    def elastic(self):
1486 1487 1488 1489
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1490 1491 1492
        return self.strategy.elastic

    @elastic.setter
1493
    @is_strict_auto
1494 1495 1496 1497 1498 1499 1500 1501
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1502 1503 1504 1505 1506 1507 1508 1509 1510
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1511

1512 1513 1514
          .. code-block:: python

            import paddle
1515
            paddle.enable_static()
1
123malin 已提交
1516
            import paddle.distributed.fleet as fleet
1517

1518 1519
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1520 1521
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1522 1523 1524 1525

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1526 1527 1528 1529 1530 1531 1532 1533 1534
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1535 1536
    @property
    def cudnn_exhaustive_search(self):
1537 1538 1539 1540 1541 1542 1543 1544
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1545

1546 1547
          .. code-block:: python

1
123malin 已提交
1548 1549
            import paddle
            paddle.enable_static()
1550 1551 1552 1553 1554 1555 1556
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1557 1558 1559
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
1560
    @is_strict_auto
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
1571 1572 1573 1574 1575 1576 1577 1578
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
1579

1580 1581
          .. code-block:: python

1
123malin 已提交
1582 1583
            import paddle
            paddle.enable_static()
1584 1585 1586 1587 1588 1589
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
1590

1591
        """
1592 1593 1594
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
1595
    @is_strict_auto
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
1606 1607 1608 1609 1610 1611
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
1612

1613 1614
          .. code-block:: python

1
123malin 已提交
1615 1616
            import paddle
            paddle.enable_static()
1617 1618 1619 1620 1621 1622 1623 1624
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
1625 1626 1627
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
1628
    @is_strict_auto
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
1657 1658
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
1659

1660 1661 1662 1663 1664 1665
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

1666
    def __repr__(self):
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
1685
        fields = self.strategy.DESCRIPTOR.fields
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
1700
                                "{}=True <-> {}_configs".format(f.name, f.name))
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
1738
        for f in fields:
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res