Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
003b4616
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
003b4616
编写于
6月 10, 2021
作者:
B
Baibaifan
提交者:
GitHub
6月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
dp c_allreduce_sum_fusion op (#33169)
上级
1410d722
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
447 addition
and
9 deletion
+447
-9
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
paddle/fluid/operators/coalesce_tensor_op.cc
paddle/fluid/operators/coalesce_tensor_op.cc
+26
-1
paddle/fluid/platform/device_memory_aligment.cc
paddle/fluid/platform/device_memory_aligment.cc
+3
-1
paddle/fluid/platform/device_memory_aligment.h
paddle/fluid/platform/device_memory_aligment.h
+2
-0
python/paddle/distributed/fleet/ascend_utils.py
python/paddle/distributed/fleet/ascend_utils.py
+3
-2
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+21
-0
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+269
-2
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+12
-3
python/paddle/fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
.../fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
+110
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
003b4616
...
...
@@ -176,6 +176,7 @@ message DistributedStrategy {
optional
bool
find_unused_parameters
=
28
[
default
=
false
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
paddle/fluid/operators/coalesce_tensor_op.cc
浏览文件 @
003b4616
...
...
@@ -120,6 +120,7 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
:
len
;
}
}
else
if
(
context
.
Attr
<
bool
>
(
"set_constant"
))
{
// TODO(Liu yuang) ADD NPU SET_CONSTANT FUNCTION.
math
::
SetConstant
<
DeviceContext
,
T
>
set_constant
;
set_constant
(
dev_ctx
,
fused_tensor
,
static_cast
<
T
>
(
context
.
Attr
<
float
>
(
"constant"
)));
...
...
@@ -145,6 +146,14 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
offset
=
0
;
std
::
stringstream
ss
;
ss
<<
"alloc_space_for_vars: "
;
#if defined(PADDLE_WITH_ASCEND_CL)
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
platform
::
NPUMemsetAsync
(
static_cast
<
void
*>
(
fused_tensor
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
())),
0.0
,
fused_tensor
->
numel
()
*
sizeof
(
T
),
stream
);
#endif
for
(
size_t
i
=
0
;
i
<
out_tensors
.
size
();
++
i
)
{
size_t
len
=
static_cast
<
size_t
>
(
out_tensors
[
i
]
->
numel
());
auto
dim
=
out_tensors
[
i
]
->
dims
();
...
...
@@ -160,6 +169,12 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
ss
<<
"output("
<<
out_var_names
[
i
]
<<
") dim:("
<<
dim
<<
")"
<<
" address: "
<<
out_tensors
[
i
]
->
data
<
void
>
()
<<
", "
;
}
PADDLE_ENFORCE_EQ
(
(
int64_t
)
offset
,
fused_tensor
->
numel
(),
platform
::
errors
::
InvalidArgument
(
"The alloc_space_for_vars's offset: %s is unequal with "
"fused_tensor's numel: %s."
,
offset
,
fused_tensor
->
numel
()));
VLOG
(
10
)
<<
ss
.
str
();
}
...
...
@@ -191,13 +206,13 @@ class CoalesceTensorOpKernel : public framework::OpKernel<T> {
ss
<<
"input("
<<
var_names
[
i
]
<<
") dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
") "
<<
" addres:"
<<
lod_tensors
[
i
]
->
data
<
void
>
()
<<
", "
;
*
numel
+=
use_align
?
platform
::
Alignment
(
static_cast
<
size_t
>
(
size
)
*
size_of_dtype
,
place
)
/
size_of_dtype
:
static_cast
<
size_t
>
(
size
);
}
VLOG
(
10
)
<<
ss
.
str
();
}
};
...
...
@@ -309,6 +324,16 @@ REGISTER_OP_XPU_KERNEL(
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
XPUDeviceContext
,
double
>
);
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL
(
coalesce_tensor
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
plat
::
float16
>
,
ops
::
CoalesceTensorOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
#endif
REGISTER_OP_VERSION
(
coalesce_tensor
)
.
AddCheckpoint
(
R"ROC(
...
...
paddle/fluid/platform/device_memory_aligment.cc
浏览文件 @
003b4616
...
...
@@ -26,9 +26,11 @@ size_t Alignment(size_t size, const platform::Place &place) {
#elif defined(PADDLE_WITH_XPU)
// TODO(wangxi): add XpuMinChunkSize
alignment
=
alignment
;
#elif defined(PADDLE_WITH_ASCEND_CL)
alignment
=
NPUMinChunkSize
();
#else
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Fluid is not compiled with CUDA."
));
"Fluid is not compiled with CUDA
or NPU
."
));
#endif
}
size_t
remaining
=
size
%
alignment
;
...
...
paddle/fluid/platform/device_memory_aligment.h
浏览文件 @
003b4616
...
...
@@ -19,6 +19,8 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/gpu_info.h"
#elif defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/npu_info.h"
#endif
namespace
paddle
{
...
...
python/paddle/distributed/fleet/ascend_utils.py
浏览文件 @
003b4616
...
...
@@ -80,8 +80,9 @@ def _get_ascend_rankfile(rank_table_file_path):
nodes
=
os
.
getenv
(
"DLS_TASK_NUMBER"
,
None
)
assert
nodes
is
not
None
,
"DLS_TASK_NUMBER didn't set!"
for
node
in
range
(
int
(
nodes
)):
node_ip
=
os
.
getenv
(
f
"VC_CUSTOM
{
node
}
_HOSTS"
,
None
)
assert
node_ip
is
not
None
,
f
"VC_CUSTOM
{
node
}
_HOSTS didn't set!"
node_ip
=
os
.
getenv
(
"VC_CUSTOM{}_HOSTS"
.
format
(
node
),
None
)
assert
node_ip
is
not
None
,
"VC_CUSTOM{}_HOSTS didn't set!"
.
format
(
node
)
node_ips
.
append
(
node_ip
)
return
node_ips
,
device_count
node_ips
.
append
(
server
[
'server_id'
])
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
003b4616
...
...
@@ -853,6 +853,27 @@ class DistributedStrategy(object):
"WARNING: without_graph_optimization should have value of bool type"
)
@
property
def
fuse_grad_size_in_num
(
self
):
"""
This based on raw_program_optimizer program and allreduce the num of the fused op
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.fuse_grad_size_in_num = 2
"""
return
self
.
strategy
.
fuse_grad_size_in_num
@
fuse_grad_size_in_num
.
setter
@
is_strict_auto
def
fuse_grad_size_in_num
(
self
,
num
):
if
isinstance
(
num
,
int
):
self
.
strategy
.
fuse_grad_size_in_num
=
num
else
:
print
(
"WARNING: fuse_grad_size_in_num should have value of int32 type"
)
@
property
def
pipeline
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
浏览文件 @
003b4616
# Copyright (c) 20
19
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
21
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -14,9 +14,12 @@
from
__future__
import
print_function
from
__future__
import
division
import
os
import
collections
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
paddle.fluid.dygraph
import
Layer
,
LayerList
from
..base.private_helper_function
import
wait_server_ready
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
...
...
@@ -38,6 +41,9 @@ class RawProgramOptimizer(MetaOptimizerBase):
super
(
RawProgramOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
without_graph_optimization
=
user_defined_strategy
.
without_graph_optimization
self
.
fuse_all_reduce_ops
=
user_defined_strategy
.
fuse_all_reduce_ops
if
self
.
fuse_all_reduce_ops
:
self
.
fuse_grad_size_in_num
=
user_defined_strategy
.
fuse_grad_size_in_num
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
...
...
@@ -124,7 +130,11 @@ class RawProgramOptimizer(MetaOptimizerBase):
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
)
self
.
_insert_allreduce_ops
()
if
self
.
fuse_all_reduce_ops
and
core
.
is_compiled_with_npu
():
self
.
_calc_stream
=
True
self
.
_allreduce_fusion_program
()
else
:
self
.
_insert_allreduce_ops
()
def
_insert_loss_grad_ops
(
self
,
loss
):
"""
...
...
@@ -195,3 +205,260 @@ class RawProgramOptimizer(MetaOptimizerBase):
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
# TODO(Liu yuang): ADD CUDA allreduce_fusion fuction.
# This function helps reduce the input of allreduce by integrating can save communication time.
def
_allreduce_fusion_program
(
self
):
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
record_idx
,
allreduce_input_vars
,
allreduce_output_vars
=
[],
[],
[]
block_ops
=
len
(
list
(
enumerate
(
block
.
ops
)))
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
param
=
block
.
var
(
param_name
)
grad_name
=
op_role_var
[
i
+
1
]
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
continue
if
".cast_fp16@GRAD"
in
grad_name
:
param_name
=
param_name
+
".cast_fp16"
if
not
block
.
has_var
(
param_name
):
raise
ValueError
(
"op cast name error {}"
.
format
(
op
.
type
))
else
:
param
=
block
.
var
(
param_name
)
if
len
(
allreduce_output_vars
)
==
0
:
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
if
self
.
fuse_grad_size_in_num
==
1
:
record_idx
.
append
([
idx
,
idx
])
continue
record_idx
.
append
([
-
2
,
idx
])
elif
len
(
allreduce_output_vars
[
-
1
])
==
self
.
fuse_grad_size_in_num
:
allreduce_output_vars
.
append
([
grad
])
allreduce_input_vars
.
append
([
param
])
if
self
.
fuse_grad_size_in_num
==
1
:
record_idx
.
append
([
idx
,
idx
])
continue
if
idx
!=
block_ops
-
1
:
record_idx
.
append
([
-
2
,
idx
])
else
:
allreduce_output_vars
[
-
1
].
append
(
grad
)
allreduce_input_vars
[
-
1
].
append
(
param
)
record_idx
[
-
1
][
0
]
=
idx
if
record_idx
[
-
1
][
0
]
==
-
2
:
record_idx
[
-
1
][
0
]
=
record_idx
[
-
1
][
1
]
assert
len
(
allreduce_output_vars
)
==
len
(
record_idx
),
"It has different lens between the allreduce_output_vars and record_idx."
if
not
allreduce_output_vars
or
not
allreduce_input_vars
:
return
self
.
vars
=
collections
.
OrderedDict
()
index
,
offset_pos
,
pos
,
offset
=
0
,
0
,
0
,
0
start
,
end
=
record_idx
[
index
]
men_list
=
[
end
,
start
]
# Here we need to explain the flag. When integrating OP, we will encounter different groups of the same Op.
# Because we insert coalesce tensor in reverse ops,
# we need to use flag to record whether the current OP has been inserted into coalesce tensor。
# For example:
# [(3, 2), (2, 2), (1, 0)], (3, 2), (2, 2) using same op, but in different groups.
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
idx
==
start
:
pos
=
0
flag
=
True
if
end
==
men_list
[
-
1
]
else
False
offset
=
offset_pos
if
flag
else
0
done_output_vars
,
done_input_vars
=
self
.
_split_fuction
(
allreduce_output_vars
[
index
],
allreduce_input_vars
[
index
])
for
id_
,
done_output_var
in
enumerate
(
done_output_vars
):
if
flag
:
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)),
dtype
=
done_output_var
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
=
tmp_var
block
.
_insert_op
(
idx
+
id_
+
offset
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
outputs
=
{
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
False
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
})
pos
+=
1
else
:
tmp_var
=
block
.
create_var
(
name
=
unique_name
.
generate
(
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)),
dtype
=
done_output_var
[
0
].
dtype
,
persistable
=
False
,
stop_gradient
=
True
)
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
=
tmp_var
block
.
_insert_op
(
idx
+
id_
,
type
=
"coalesce_tensor"
,
inputs
=
{
"Input"
:
done_input_vars
[
id_
]},
outputs
=
{
"Output"
:
done_output_var
,
"FusedOutput"
:
tmp_var
},
attrs
=
{
"copy_data"
:
False
,
"use_align"
:
True
,
"dtype"
:
done_output_var
[
0
].
dtype
})
pos
+=
1
offset_pos
=
pos
# TODO(Liu yuang): ADD CUDA and NPU's EVENT and c_allreduce_sum.
for
id_
in
range
(
len
(
done_output_vars
)):
if
flag
:
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
},
outputs
=
{
'Out'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
+
offset
)]
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
if
self
.
_calc_stream
else
False
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
else
:
block
.
_insert_op
(
end
+
id_
+
pos
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
},
outputs
=
{
'Out'
:
self
.
vars
[
'FusedOutput_{}_{}'
.
format
(
start
,
id_
)]
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
if
self
.
_calc_stream
else
False
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
index
+=
1
men_list
.
append
(
end
)
men_list
.
append
(
start
)
if
len
(
record_idx
)
==
index
:
start
=
end
=
-
1
continue
start
,
end
=
record_idx
[
index
]
if
not
self
.
_calc_stream
:
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
block
.
create_var
()},
outputs
=
{
'Out'
:
block
.
create_var
()},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
# Integrate grads of the same type to form a combination. If skip_comb is selected, will return grads of the same group.
# For example:[(fp16, fp16), (fp32), (fp16)] -> [(fp16, fp16, fp16), (fp32)]
def
_split_fuction
(
self
,
allreduce_output_vars
,
allreduce_input_vars
,
skip_comb
=
True
):
input_vars
,
final_input_vars
,
output_vars
,
final_output_vars
=
[],
[],
[],
[]
if
len
(
allreduce_output_vars
)
-
1
==
0
:
final_output_vars
.
append
(
allreduce_output_vars
)
final_input_vars
.
append
(
allreduce_input_vars
)
return
final_output_vars
,
final_input_vars
for
idx
in
range
(
len
(
allreduce_input_vars
)
-
1
):
if
allreduce_input_vars
[
idx
].
dtype
==
allreduce_input_vars
[
idx
+
1
].
dtype
:
input_vars
.
append
(
allreduce_input_vars
[
idx
])
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
else
:
input_vars
.
append
(
allreduce_input_vars
[
idx
])
final_input_vars
.
append
(
input_vars
)
input_vars
=
[]
if
idx
==
len
(
allreduce_input_vars
)
-
2
:
input_vars
.
append
(
allreduce_input_vars
[
idx
+
1
])
final_input_vars
.
append
(
input_vars
)
for
idx
in
range
(
len
(
allreduce_output_vars
)
-
1
):
if
allreduce_output_vars
[
idx
].
dtype
==
allreduce_output_vars
[
idx
+
1
].
dtype
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
else
:
output_vars
.
append
(
allreduce_output_vars
[
idx
])
final_output_vars
.
append
(
output_vars
)
output_vars
=
[]
if
idx
==
len
(
allreduce_output_vars
)
-
2
:
output_vars
.
append
(
allreduce_output_vars
[
idx
+
1
])
final_output_vars
.
append
(
output_vars
)
if
skip_comb
:
input_fp16_vars
,
input_fp32_vars
,
output_fp16_vars
,
output_fp32_vars
=
[],
[],
[],
[]
for
final_input_var
in
final_input_vars
:
if
final_input_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
input_fp16_vars
.
extend
(
final_input_var
)
else
:
input_fp32_vars
.
extend
(
final_input_var
)
for
final_output_var
in
final_output_vars
:
if
final_output_var
[
0
].
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
output_fp16_vars
.
extend
(
final_output_var
)
else
:
output_fp32_vars
.
extend
(
final_output_var
)
final_output_vars
,
final_input_vars
=
[],
[]
if
output_fp16_vars
:
final_output_vars
.
append
(
output_fp16_vars
)
if
output_fp32_vars
:
final_output_vars
.
append
(
output_fp32_vars
)
if
input_fp16_vars
:
final_input_vars
.
append
(
input_fp16_vars
)
if
input_fp32_vars
:
final_input_vars
.
append
(
input_fp32_vars
)
return
final_output_vars
,
final_input_vars
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
003b4616
...
...
@@ -303,14 +303,23 @@ class OptimizerWithMixedPrecision(object):
if
self
.
_is_distributed
:
# if distributed, split check_finite_and_unscale to overlap
# unscale with communication
for
p
,
g
in
params_grads
:
with
self
.
_train_program
.
_optimized_guard
(
[
p
,
g
]
):
if
core
.
is_compiled_with_npu
()
:
with
self
.
_train_program
.
_optimized_guard
(
grads
):
_
,
found_inf
=
check_finite_and_unscale
(
[
g
,
]
,
grads
,
self
.
_loss_scaling
,
name
=
"find_infinite_scale"
,
float_status
=
self
.
_float_status
)
found_infs
.
append
(
found_inf
)
else
:
for
p
,
g
in
params_grads
:
with
self
.
_train_program
.
_optimized_guard
([
p
,
g
]):
_
,
found_inf
=
check_finite_and_unscale
(
[
g
,
],
self
.
_loss_scaling
,
name
=
"find_infinite_scale"
,
float_status
=
self
.
_float_status
)
found_infs
.
append
(
found_inf
)
elif
self
.
_use_pure_fp16
:
if
fp32_grads
:
with
self
.
_train_program
.
_optimized_guard
(
fp32_grads
):
...
...
python/paddle/fluid/tests/unittests/npu/test_coalesce_tensor_op_npu.py
0 → 100644
浏览文件 @
003b4616
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
paddle
.
enable_static
()
SEED
=
2021
alignment
=
512
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestAllocContinuousSpace
(
OpTest
):
def
setUp
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
op_type
=
"coalesce_tensor"
self
.
dtype
,
self
.
fluid_dtype
=
self
.
init_dtype
()
attrs
=
self
.
init_attr
()
self
.
copy_data
=
attrs
[
"copy_data"
]
self
.
constant
=
attrs
[
"constant"
]
self
.
set_constant
=
attrs
[
"set_constant"
]
self
.
Inputs
=
self
.
init_input
()
self
.
Outputs
,
self
.
FusedOutput
=
self
.
init_output
(
self
.
Inputs
,
self
.
set_constant
,
self
.
constant
)
self
.
inputs
=
{
'Input'
:
self
.
Inputs
}
self
.
attrs
=
attrs
self
.
outputs
=
{
'Output'
:
self
.
Outputs
,
'FusedOutput'
:
self
.
FusedOutput
}
def
init_dtype
(
self
):
return
np
.
float32
,
int
(
core
.
VarDesc
.
VarType
.
FP32
)
def
init_input
(
self
):
inputs
=
[]
inputs
.
append
((
"x1"
,
np
.
zeros
([
20
,
3
]).
astype
(
self
.
dtype
)))
inputs
.
append
((
"x2"
,
np
.
zeros
([
20
,
3
]).
astype
(
self
.
dtype
)))
return
inputs
def
init_attr
(
self
):
return
{
"copy_data"
:
False
,
"set_constant"
:
False
,
"constant"
:
0.0
,
"use_align"
:
True
,
"dtype"
:
self
.
fluid_dtype
}
def
init_output
(
self
,
input_list
,
set_constant
,
constant
):
inputs
=
[]
outputs
=
input_list
for
input
in
input_list
:
length
=
len
(
input
[
1
].
flatten
())
aligned_len
=
(
length
+
alignment
)
/
alignment
*
alignment
out
=
np
.
zeros
(
int
(
aligned_len
),
dtype
=
self
.
dtype
)
out
[
0
:
length
]
=
input
[
1
].
flatten
()
inputs
.
append
(
out
)
coalesce_tensor_var
=
np
.
concatenate
([
input
for
input
in
inputs
])
return
outputs
,
coalesce_tensor_var
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
=
paddle
.
NPUPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestAllocContinuousSpace2
(
TestAllocContinuousSpace
):
def
init_attr
(
self
):
return
{
"copy_data"
:
True
,
"set_constant"
:
False
,
"constant"
:
0.5
,
"use_align"
:
True
,
"dtype"
:
self
.
fluid_dtype
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
=
paddle
.
NPUPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
,
check_dygraph
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录