Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
976fe6f9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
976fe6f9
编写于
4月 25, 2021
作者:
L
lilong12
提交者:
GitHub
4月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix the bug in mp (#31996)
* update
上级
78eff521
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
885 addition
and
39 deletion
+885
-39
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+6
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+173
-39
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+52
-0
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py
...ibuted/fleet/meta_optimizers/tensor_parallel_optimizer.py
+231
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/static_model_parallel_by_col.py
...dle/fluid/tests/unittests/static_model_parallel_by_col.py
+119
-0
python/paddle/fluid/tests/unittests/static_model_parallel_by_row.py
...dle/fluid/tests/unittests/static_model_parallel_by_row.py
+119
-0
python/paddle/fluid/tests/unittests/static_model_parallel_embedding.py
.../fluid/tests/unittests/static_model_parallel_embedding.py
+119
-0
python/paddle/fluid/tests/unittests/test_static_model_parallel.py
...addle/fluid/tests/unittests/test_static_model_parallel.py
+63
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
100755 → 100644
浏览文件 @
976fe6f9
...
...
@@ -139,6 +139,10 @@ message PipelineConfig {
optional
string
schedule_mode
=
3
[
default
=
'1F1B'
];
}
message
TensorParallelConfig
{
optional
int32
tensor_parallel_degree
=
1
[
default
=
1
];
}
message
DistributedStrategy
{
// bool options
optional
Mode
mode
=
1
[
default
=
COLLECTIVE
];
...
...
@@ -169,6 +173,7 @@ message DistributedStrategy {
optional
bool
sharding
=
26
[
default
=
false
];
optional
float
last_comm_group_size_MB
=
27
[
default
=
1
];
optional
bool
find_unused_parameters
=
28
[
default
=
true
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
@@ -182,6 +187,7 @@ message DistributedStrategy {
optional
AdaptiveLocalSGDConfig
adaptive_localsgd_configs
=
110
;
optional
ShardingConfig
sharding_configs
=
111
;
optional
HybridConfig
hybrid_configs
=
112
;
optional
TensorParallelConfig
tensor_parallel_configs
=
113
;
optional
BuildStrategy
build_strategy
=
201
;
optional
ExecutionStrategy
execution_strategy
=
202
;
}
...
...
python/paddle/distributed/collective.py
浏览文件 @
976fe6f9
...
...
@@ -692,6 +692,79 @@ def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
})
def
_c_identity
(
tensor
,
group
=
0
):
"""
Return a copy of the tensor, mainly used with model parallel.
Args:
tensor (Tensor): The input Tensor. Its data type
should be float16, float32, float64, int32 or int64.
group (int): The id of the process group to work on.
Returns:
Tensor.
"""
op_type
=
'c_identity'
helper
=
LayerHelper
(
op_type
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
tensor
.
dtype
)
if
in_dygraph_mode
():
return
core
.
ops
.
c_identity
(
out
,
tensor
,
'use_calc_stream'
,
True
,
'ring_id'
,
group
,
'use_model_parallel'
,
True
)
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'_c_identity'
)
if
not
isinstance
(
group
,
int
):
raise
ValueError
(
"The type of 'group' for _c_identity should be int."
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
tensor
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
group
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
,
})
return
out
def
_c_split
(
tensor
,
rank
,
nranks
,
group
=
0
):
"""
Split tensor evenly among all members, mainly used with model parallel.
Args:
tensor (Tensor): The input Tensor. Its data type
should be float16, float32, float64, int32 or int64.
rank (int): The rank of the current process.
group (int): The id of the process group to work on.
Returns:
Tensor.
"""
op_type
=
'c_split'
helper
=
LayerHelper
(
op_type
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
tensor
.
dtype
)
if
in_dygraph_mode
():
return
core
.
ops
.
c_split
(
out
,
tensor
,
'use_calc_stream'
,
True
,
'ring_id'
,
group
,
'rank'
,
rank
,
'use_model_parallel'
,
True
)
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'_c_split'
)
if
not
isinstance
(
group
,
int
):
raise
ValueError
(
"The type of 'group' for _identity should be int."
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
tensor
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
group
,
'use_calc_stream'
:
True
,
'rank'
:
rank
,
'nranks'
:
nranks
,
'use_model_parallel'
:
True
,
})
return
out
def
barrier
(
group
=
None
):
"""
...
...
@@ -732,15 +805,27 @@ def barrier(group=None):
attrs
=
{
'ring_id'
:
ring_id
})
def
_parallel_linear
(
x
,
num_rows
,
num_cols
,
axis
,
param_attr
,
bias_attr
,
gather_out
,
inner_rank
,
name
):
def
_parallel_linear
(
x
,
num_rows
,
num_cols
,
axis
,
param_attr
,
bias_attr
,
gather_out
,
inner_rank
,
nranks
,
split_tensor
,
name
,
group
=
0
):
"""
Parallel Linear
"""
if
not
name
:
name
=
"fc_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
"fc_by_col_rank_%d"
%
inner_rank
if
axis
==
0
:
if
split_tensor
:
x
=
_c_split
(
x
,
inner_rank
,
nranks
,
group
=
group
)
else
:
name
=
name
+
"_by_row_rank_%d"
%
inner_rank
if
axis
==
0
else
name
+
"_by_col_rank_%d"
%
inner_rank
x
=
_c_identity
(
x
,
group
=
group
)
linear
=
paddle
.
nn
.
Linear
(
num_rows
,
num_cols
,
...
...
@@ -748,34 +833,60 @@ def _parallel_linear(x, num_rows, num_cols, axis, param_attr, bias_attr,
bias_attr
=
bias_attr
,
name
=
name
)
weight
=
linear
.
weight
weight
.
is_distributed
=
True
linear_out
=
linear
(
x
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
weight
.
name
].
is_distributed
=
True
if
gather_out
:
if
axis
==
0
:
paddle
.
distributed
.
all_reduce
(
linear_out
)
else
:
output
=
[]
paddle
.
distributed
.
all_gather
(
output
,
linear_out
)
linear_out
=
paddle
.
concat
(
output
,
axis
=
len
(
linear_out
.
shape
)
-
1
)
return
linear_out
startup_block
.
vars
[
linear
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
linear
.
weight
.
name
].
is_distributed
=
True
if
not
gather_out
:
return
linear_out
op_type
=
'c_allreduce_sum'
if
axis
==
0
else
'c_concat'
out_shape
=
list
(
linear_out
.
shape
)
out_shape
[
0
]
*=
1
if
axis
==
0
else
nranks
out
=
main_block
.
create_var
(
shape
=
out_shape
,
dtype
=
linear_out
.
dtype
,
type
=
linear_out
.
type
,
lod_level
=
linear_out
.
lod_level
,
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
linear_out
.
desc
.
need_check_feed
())
if
axis
==
0
:
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
linear_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
group
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
else
:
main_block
.
append_op
(
type
=
'c_concat'
,
inputs
=
{
'X'
:
linear_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
group
,
'nranks'
:
nranks
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
return
out
def
_parallel_embedding
(
x
,
per_part_embeddings
,
origin_size
,
param_attr
,
inner_rank
,
num_partitions
,
name
):
def
_parallel_embedding
(
x
,
per_part_embeddings
,
origin_size
,
param_attr
,
inner_rank
,
num_partitions
,
name
,
group
=
0
):
"""
Parallel Embedding
"""
if
not
name
:
name
=
"emb_rank_%d"
%
inner_rank
else
:
name
=
name
+
"_rank_%d"
%
inner_rank
origin_num_embeddings
=
origin_size
[
0
]
embedding
=
paddle
.
nn
.
Embedding
(
per_part_embeddings
,
...
...
@@ -795,15 +906,29 @@ def _parallel_embedding(x, per_part_embeddings, origin_size, param_attr,
inner_rank
,
per_part_embeddings
-
1
)
if
len
(
origin_input_shape
)
==
2
:
x_shard
=
paddle
.
squeeze
(
x_shard
,
axis
=-
1
)
embedding
.
weight
.
is_distributed
=
True
emb_out
=
embedding
(
x_shard
)
startup_block
=
paddle
.
static
.
default_startup_program
().
global_block
()
main_block
=
paddle
.
static
.
default_main_program
().
global_block
()
startup_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
main_block
.
vars
[
embedding
.
weight
.
name
].
is_distributed
=
True
paddle
.
distributed
.
all_reduce
(
emb_out
,
group
=
None
)
return
emb_out
out
=
main_block
.
create_var
(
shape
=
emb_out
.
shape
,
dtype
=
emb_out
.
dtype
,
type
=
emb_out
.
type
,
lod_level
=
emb_out
.
lod_level
,
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
emb_out
.
desc
.
need_check_feed
())
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
emb_out
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'ring_id'
:
group
,
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
return
out
def
split
(
x
,
...
...
@@ -896,8 +1021,10 @@ def split(x,
"paddle.distributed.split must be one of {}."
.
format
(
supported_operations
))
if
in_dygraph_mode
():
rank
=
paddle
.
distributed
.
get_rank
()
nranks
=
paddle
.
distributed
.
get_world_size
()
raise
ValueError
(
"paddle.distributed.split cannot be used in dynamic "
"graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
"ParallelColumnLinear instead."
)
else
:
assert
fleet
.
_role_maker
,
(
"To use paddle.distributed.split, "
"you must call fleet.init() firstly."
)
...
...
@@ -915,10 +1042,18 @@ def split(x,
if
inner_rank
==
num_partitions
-
1
:
per_part_size
=
last_part_size
per_part_size
+=
1
# make the last row as the padding index
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
size
,
weight_attr
,
inner_rank
,
num_partitions
,
name
)
emb_out
=
_parallel_embedding
(
x
,
per_part_size
,
size
,
weight_attr
,
inner_rank
,
num_partitions
,
name
,
group
=
0
)
return
emb_out
else
:
should_split
=
False
if
axis
==
0
:
assert
size
[
0
]
%
num_partitions
==
0
,
(
"Number of rows of the weight for linear ({}) must be"
...
...
@@ -926,11 +1061,7 @@ def split(x,
num_partitions
))
per_part_size
=
size
[
0
]
//
num_partitions
linear_size
=
(
per_part_size
,
size
[
1
])
assert
x
.
shape
[
-
1
]
==
per_part_size
,
(
"The width ({}) of the input "
"x must be equal to the height ({}) of the weight. Maybe you "
"should split the input x using paddle.split."
.
format
(
x
.
shape
[
-
1
],
per_part_size
))
if
x
.
shape
[
-
1
]
==
size
[
0
]:
should_split
=
True
elif
axis
==
1
:
assert
size
[
1
]
%
num_partitions
==
0
,
(
...
...
@@ -952,5 +1083,8 @@ def split(x,
bias_attr
,
gather_out
,
inner_rank
,
name
=
name
)
num_partitions
,
should_split
,
name
=
name
,
group
=
0
)
return
linear_out
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
976fe6f9
...
...
@@ -891,6 +891,58 @@ class DistributedStrategy(object):
"pipeline_configs"
)
assign_configs_value
(
self
.
strategy
.
pipeline_configs
,
configs
)
@
property
def
tensor_parallel
(
self
):
"""
Indicating whether we are using tensor parallel for distributed training.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.tensor_parallel = True
"""
return
self
.
strategy
.
tensor_parallel
@
tensor_parallel
.
setter
@
is_strict_auto
def
tensor_parallel
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
tensor_parallel
=
flag
else
:
print
(
"WARNING: tensor_parallel should have value of bool type"
)
@
property
def
tensor_parallel_configs
(
self
):
"""
Set tensor_parallel configurations.
**Notes**:
**Detailed arguments for tensor_parallel_configs**
**tensor_parallel_degree**: degree of tensor parallel
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.tensor_parallel = True
strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4}
"""
return
get_msg_dict
(
self
.
strategy
.
tensor_parallel_configs
)
@
tensor_parallel_configs
.
setter
@
is_strict_auto
def
tensor_parallel_configs
(
self
,
configs
):
check_configs_key
(
self
.
strategy
.
tensor_parallel_configs
,
configs
,
"tensor_parallel_configs"
)
assign_configs_value
(
self
.
strategy
.
tensor_parallel_configs
,
configs
)
@
property
def
hybrid_configs
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
976fe6f9
...
...
@@ -27,3 +27,4 @@ from .fp16_allreduce_optimizer import FP16AllReduceOptimizer
from
.sharding_optimizer
import
ShardingOptimizer
from
.dygraph_optimizer
import
HybridParallelOptimizer
from
.dygraph_optimizer
import
HybridParallelGradScaler
from
.tensor_parallel_optimizer
import
TensorParallelOptimizer
python/paddle/distributed/fleet/meta_optimizers/tensor_parallel_optimizer.py
0 → 100644
浏览文件 @
976fe6f9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
__future__
import
print_function
from
__future__
import
division
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
class
TensorParallelOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
TensorParallelOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
self
.
meta_optimizers_white_list
=
[
"RecomputeOptimizer"
,
"AMPOptimizer"
,
"LarsOptimizer"
,
"LambOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"GraphExecutionOptimizer"
,
]
self
.
mp_ring_id
=
0
self
.
global_ring_id
=
1
self
.
dp_ring_id
=
2
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
TensorParallelOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
mp_degree
=
user_defined_strategy
.
tensor_parallel_configs
[
'tensor_parallel_degree'
]
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
if
self
.
user_defined_strategy
.
tensor_parallel
==
True
:
return
True
return
False
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
tensor_parallel
=
False
dist_strategy
.
tensor_parallel_configs
=
{}
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
tensor_parallel
=
True
dist_strategy
.
tensor_parallel_configs
=
{
"tensor_parallel_degree"
:
1
,
}
def
_broadcast_params
(
self
,
ring_id
,
mp_mode
):
block
=
self
.
startup_program
.
global_block
()
param
=
None
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
and
mp_mode
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
if
not
param
:
return
# no parameter on this device
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
def
_get_process_group_info
(
self
):
# global ring info
self
.
global_endpoints
=
self
.
endpoints
self
.
global_rank
=
self
.
rank
self
.
global_nranks
=
self
.
nranks
# model parallel ring info
self
.
mp_rank
=
self
.
rank
%
self
.
mp_degree
self
.
mp_nranks
=
self
.
mp_degree
mp_group
=
self
.
rank
//
self
.
mp_degree
self
.
mp_endpoints
=
[
self
.
endpoints
[
i
]
for
i
in
range
(
self
.
global_nranks
)
if
i
//
self
.
mp_degree
==
mp_group
]
# data parallel ring info
if
self
.
nranks
>
self
.
mp_degree
:
self
.
dp_rank
=
self
.
rank
//
self
.
mp_degree
self
.
dp_nranks
=
self
.
nranks
//
self
.
mp_degree
start_index
=
self
.
rank
%
self
.
mp_degree
self
.
dp_endpoints
=
[
self
.
endpoints
[
start_index
+
i
*
self
.
mp_degree
]
for
i
in
range
(
self
.
dp_nranks
)
]
def
_init_process_group
(
self
):
self
.
_get_process_group_info
()
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
wait_port
=
False
)
# Create global ring for all gpus
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
global_endpoints
,
self
.
global_rank
,
self
.
global_ring_id
,
True
,
self
.
global_ring_id
,
True
)
# Create model parallel ring for all gpus
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
mp_endpoints
,
self
.
mp_rank
,
self
.
mp_ring_id
,
True
,
self
.
global_ring_id
,
True
)
#self._broadcast_params(self.mp_ring_id, mp_mode=True)
# Create dp rings
if
self
.
nranks
>
self
.
mp_degree
:
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
dp_endpoints
,
self
.
dp_rank
,
self
.
dp_ring_id
,
True
,
self
.
global_ring_id
,
True
)
self
.
_broadcast_params
(
self
.
dp_ring_id
,
mp_mode
=
False
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
self
.
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
self
.
current_endpoint
=
self
.
endpoints
[
self
.
role_maker
.
_worker_index
()]
self
.
startup_program
=
startup_program
if
startup_program
is
None
:
self
.
startup_program
=
fluid
.
default_startup_program
()
optimize_ops
,
params_grads
=
self
.
inner_opt
.
minimize
(
loss
,
self
.
startup_program
,
parameter_list
,
no_grad_set
)
self
.
main_program
=
loss
.
block
.
program
self
.
nranks
=
len
(
self
.
endpoints
)
self
.
rank
=
self
.
role_maker
.
_worker_index
()
self
.
_init_process_group
()
assert
self
.
nranks
%
self
.
mp_degree
==
0
if
self
.
nranks
>
self
.
mp_degree
:
# data parallelism
dp_degree
=
self
.
nranks
//
self
.
mp_degree
self
.
_transpile_main_program
(
loss
,
dp_degree
)
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
,
loss
,
dp_degree
):
self
.
_insert_loss_grad_ops
(
loss
,
dp_degree
)
self
.
_insert_allreduce_ops
(
loss
,
self
.
dp_ring_id
)
def
_insert_loss_grad_ops
(
self
,
loss
,
dp_degree
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
loss
.
block
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
block
.
_insert_op
(
idx
+
1
,
type
=
'scale'
,
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
1.0
/
dp_degree
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
def
_insert_allreduce_ops
(
self
,
loss
,
ring_id
):
block
=
loss
.
block
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
=
block
.
vars
[
op_role_var
[
i
]]
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
if
offset
==
idx
:
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
grad
is
None
:
return
for
idx
,
op
in
list
(
enumerate
(
block
.
ops
)):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
976fe6f9
...
...
@@ -11,6 +11,7 @@ endif()
string
(
REPLACE
".py"
""
DIST_TEST_OPS
"
${
DIST_TEST_OPS
}
"
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_mnist
)
list
(
APPEND DIST_TEST_OPS test_pipeline
)
list
(
APPEND DIST_TEST_OPS test_static_model_parallel
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_se_resnext
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
...
...
@@ -869,6 +870,7 @@ if((WITH_ROCM OR WITH_GPU) AND NOT WIN32)
set_tests_properties
(
test_new_group_api PROPERTIES TIMEOUT 120
)
if
(
WITH_DISTRIBUTE
)
set_tests_properties
(
test_pipeline PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_static_model_parallel PROPERTIES TIMEOUT 240
)
endif
()
set_tests_properties
(
test_reducescatter_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_broadcast PROPERTIES TIMEOUT 120
)
...
...
python/paddle/fluid/tests/unittests/static_model_parallel_by_col.py
0 → 100644
浏览文件 @
976fe6f9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
paddle
.
enable_static
()
DTYPE
=
"float32"
MODEL_PARALLEL_SIZE
=
2
IN_SIZE
=
2
*
MODEL_PARALLEL_SIZE
OUT_SIZE
=
2
*
MODEL_PARALLEL_SIZE
# Fix seed for test
#fluid.default_startup_program().random_seed = 1
#fluid.default_main_program().random_seed = 1
def
create_model
(
data
,
rank
):
np
.
random
.
seed
(
2021
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
if
rank
is
not
None
:
start_col
=
0
if
rank
==
0
else
OUT_SIZE
//
2
np_weight_part
=
np_weight
[:,
start_col
:
start_col
+
OUT_SIZE
//
2
]
result
=
paddle
.
distributed
.
split
(
data
,
size
=
(
IN_SIZE
,
OUT_SIZE
),
operation
=
'linear'
,
axis
=
1
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight_part
)),
bias_attr
=
False
,
)
else
:
result
=
fluid
.
layers
.
fc
(
data
,
size
=
OUT_SIZE
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
bias_attr
=
False
,
)
predict
=
paddle
.
sum
(
result
)
return
predict
class
TestModelParallel
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
,
use_dgc
=
False
,
dist_strategy
=
None
):
# Input data
data_in
=
fluid
.
data
(
name
=
'data_in'
,
shape
=
[
batch_size
,
IN_SIZE
],
dtype
=
DTYPE
)
if
dist_strategy
:
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data_in
],
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
if
dist_strategy
:
fleet
.
init
(
is_collective
=
True
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
tensor_parallel
=
True
strategy
.
tensor_parallel_configs
=
{
'tensor_parallel_degree'
:
2
}
rank
=
fleet
.
worker_index
()
if
dist_strategy
else
None
avg_cost
=
create_model
(
data_in
,
rank
)
opt
=
fluid
.
optimizer
.
SGD
(
0.1
)
if
dist_strategy
:
dist_opt
=
fleet
.
distributed_optimizer
(
optimizer
=
opt
,
strategy
=
strategy
)
dist_opt
.
minimize
(
avg_cost
)
else
:
opt
.
minimize
(
avg_cost
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
while
True
:
data
=
[
np
.
random
.
random
([
IN_SIZE
]).
astype
(
DTYPE
)]
yield
data
train_reader
=
paddle
.
batch
(
gen_data
,
batch_size
=
batch_size
)
if
dist_strategy
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
,
data_loader
else
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
if
__name__
==
"__main__"
:
runtime_main
(
TestModelParallel
)
python/paddle/fluid/tests/unittests/static_model_parallel_by_row.py
0 → 100644
浏览文件 @
976fe6f9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
paddle
.
enable_static
()
DTYPE
=
"float32"
MODEL_PARALLEL_SIZE
=
2
IN_SIZE
=
2
*
MODEL_PARALLEL_SIZE
OUT_SIZE
=
2
*
MODEL_PARALLEL_SIZE
# Fix seed for test
#fluid.default_startup_program().random_seed = 1
#fluid.default_main_program().random_seed = 1
def
create_model
(
data
,
rank
):
np
.
random
.
seed
(
2021
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
if
rank
is
not
None
:
start_row
=
0
if
rank
==
0
else
IN_SIZE
//
2
np_weight_part
=
np_weight
[
start_row
:
start_row
+
IN_SIZE
//
2
,
:]
result
=
paddle
.
distributed
.
split
(
data
,
size
=
(
IN_SIZE
,
OUT_SIZE
),
operation
=
'linear'
,
axis
=
0
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight_part
)),
bias_attr
=
False
,
)
else
:
result
=
fluid
.
layers
.
fc
(
data
,
size
=
OUT_SIZE
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
bias_attr
=
False
,
)
predict
=
paddle
.
sum
(
result
)
return
predict
class
TestModelParallel
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
,
use_dgc
=
False
,
dist_strategy
=
None
):
# Input data
data_in
=
fluid
.
data
(
name
=
'data_in'
,
shape
=
[
batch_size
,
IN_SIZE
],
dtype
=
DTYPE
)
if
dist_strategy
:
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data_in
],
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
if
dist_strategy
:
fleet
.
init
(
is_collective
=
True
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
tensor_parallel
=
True
strategy
.
tensor_parallel_configs
=
{
'tensor_parallel_degree'
:
2
}
rank
=
fleet
.
worker_index
()
if
dist_strategy
else
None
avg_cost
=
create_model
(
data_in
,
rank
)
opt
=
fluid
.
optimizer
.
SGD
(
0.1
)
if
dist_strategy
:
dist_opt
=
fleet
.
distributed_optimizer
(
optimizer
=
opt
,
strategy
=
strategy
)
dist_opt
.
minimize
(
avg_cost
)
else
:
opt
.
minimize
(
avg_cost
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
while
True
:
data
=
[
np
.
random
.
random
([
IN_SIZE
]).
astype
(
DTYPE
)]
yield
data
train_reader
=
paddle
.
batch
(
gen_data
,
batch_size
=
batch_size
)
if
dist_strategy
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
,
data_loader
else
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
if
__name__
==
"__main__"
:
runtime_main
(
TestModelParallel
)
python/paddle/fluid/tests/unittests/static_model_parallel_embedding.py
0 → 100644
浏览文件 @
976fe6f9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
from
functools
import
reduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
import
paddle.distributed.fleet
as
fleet
paddle
.
enable_static
()
DTYPE
=
"float32"
MODEL_PARALLEL_SIZE
=
2
IN_SIZE
=
2
*
MODEL_PARALLEL_SIZE
OUT_SIZE
=
2
*
MODEL_PARALLEL_SIZE
# Fix seed for test
#fluid.default_startup_program().random_seed = 1
#fluid.default_main_program().random_seed = 1
def
create_model
(
data
,
rank
):
np
.
random
.
seed
(
2021
)
np_weight
=
np
.
random
.
uniform
(
-
1
,
1
,
size
=
(
IN_SIZE
,
OUT_SIZE
)).
astype
(
DTYPE
)
if
rank
is
not
None
:
start_row
=
0
if
rank
==
0
else
IN_SIZE
//
2
np_weight_part
=
np_weight
[
start_row
:
start_row
+
IN_SIZE
//
2
,
:]
result
=
paddle
.
distributed
.
split
(
data
,
size
=
(
IN_SIZE
,
OUT_SIZE
),
operation
=
'linear'
,
axis
=
0
,
num_partitions
=
MODEL_PARALLEL_SIZE
,
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight_part
)),
bias_attr
=
False
,
)
else
:
result
=
fluid
.
layers
.
fc
(
data
,
size
=
OUT_SIZE
,
param_attr
=
paddle
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
np_weight
)),
bias_attr
=
False
,
)
predict
=
paddle
.
sum
(
result
)
return
predict
class
TestModelParallel
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
,
use_dgc
=
False
,
dist_strategy
=
None
):
# Input data
data_in
=
fluid
.
data
(
name
=
'data_in'
,
shape
=
[
batch_size
,
IN_SIZE
],
dtype
=
DTYPE
)
if
dist_strategy
:
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data_in
],
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
if
dist_strategy
:
fleet
.
init
(
is_collective
=
True
)
strategy
=
fleet
.
DistributedStrategy
()
strategy
.
tensor_parallel
=
True
strategy
.
tensor_parallel_configs
=
{
'tensor_parallel_degree'
:
2
}
rank
=
fleet
.
worker_index
()
if
dist_strategy
else
None
avg_cost
=
create_model
(
data_in
,
rank
)
opt
=
fluid
.
optimizer
.
SGD
(
0.1
)
if
dist_strategy
:
dist_opt
=
fleet
.
distributed_optimizer
(
optimizer
=
opt
,
strategy
=
strategy
)
dist_opt
.
minimize
(
avg_cost
)
else
:
opt
.
minimize
(
avg_cost
)
def
gen_data
():
np
.
random
.
seed
(
2021
)
while
True
:
data
=
[
np
.
random
.
random
([
IN_SIZE
]).
astype
(
DTYPE
)]
yield
data
train_reader
=
paddle
.
batch
(
gen_data
,
batch_size
=
batch_size
)
if
dist_strategy
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
,
data_loader
else
:
return
None
,
avg_cost
,
train_reader
,
None
,
None
,
None
if
__name__
==
"__main__"
:
runtime_main
(
TestModelParallel
)
python/paddle/fluid/tests/unittests/test_static_model_parallel.py
0 → 100644
浏览文件 @
976fe6f9
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_dist_base
import
TestDistBase
import
os
import
paddle
paddle
.
enable_static
()
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
class
TestStaticModelParallel
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
self
.
_use_reader_alloc
=
False
self
.
_nccl_comm_num
=
1
self
.
_pipeline_mode
=
True
def
test_dist_static_model_parallel
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"static_model_parallel_by_row.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
def
test_dist_static_model_parallel2
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"static_model_parallel_by_col.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
def
test_dist_static_model_parallel3
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"static_model_parallel_embedding.py"
,
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录