Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1514eec6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
1514eec6
编写于
11月 30, 2021
作者:
Z
zhaocaibei123
提交者:
GitHub
11月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pscore global shuffle&default accessor config (#37626)
上级
2f4c089b
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
323 addition
and
95 deletion
+323
-95
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+56
-25
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+20
-4
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+1
-1
python/paddle/distributed/fleet/runtime/the_one_ps.py
python/paddle/distributed/fleet/runtime/the_one_ps.py
+127
-57
python/paddle/fluid/dataset.py
python/paddle/fluid/dataset.py
+24
-6
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
+52
-1
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
+35
-0
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
.../fluid/tests/unittests/test_fleet_distributed_strategy.py
+8
-1
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
1514eec6
...
...
@@ -181,7 +181,7 @@ enum TableType {
message
TableParameter
{
optional
uint64
table_id
=
1
;
optional
string
table_class
=
2
;
optional
uint64
shard_num
=
3
;
optional
uint64
shard_num
=
3
[
default
=
1000
]
;
optional
TableType
type
=
4
;
optional
TableAccessorParameter
accessor
=
5
;
}
...
...
@@ -190,42 +190,73 @@ message TableAccessorParameter {
optional
string
accessor_class
=
1
;
optional
SGDParameter
embed_sgd_param
=
2
;
optional
SGDParameter
embedx_sgd_param
=
3
;
optional
uint32
fea_dim
=
4
;
// for sparse table, this means field size of one
// value; for dense table, this means total value
// num
optional
uint32
embedx_dim
=
5
;
// embedx feature size
optional
uint32
embedx_threshold
=
6
;
// embedx feature create threshold
optional
uint32
fea_dim
=
4
[
default
=
11
];
// field size of one value
optional
uint32
embedx_dim
=
5
[
default
=
8
];
// embedx feature size
optional
uint32
embedx_threshold
=
6
[
default
=
10
];
// embedx feature create threshold
optional
CtrAccessorParameter
ctr_accessor_param
=
7
;
repeated
TableAccessorSaveParameter
table_accessor_save_param
=
8
;
}
// TODO(guanqun): add NaiveSGD/Adam...
message
SGDParameter
{
optional
string
name
=
1
;
optional
SGDRuleParameter
adagrad
=
2
;
optional
SparseNaiveSGDRuleParameter
naive
=
2
;
optional
SparseAdagradSGDRuleParameter
adagrad
=
3
;
optional
SparseAdamSGDParameter
adam
=
4
;
}
message
SGDRuleParameter
{
optional
double
learning_rate
=
1
;
optional
double
initial_g2sum
=
2
;
optional
double
initial_range
=
3
[
default
=
0
];
message
SparseNaiveSGDRuleParameter
{
// SparseNaiveSGDRule
optional
double
learning_rate
=
1
[
default
=
0.05
];
optional
double
initial_range
=
2
[
default
=
0.0001
];
repeated
float
weight_bounds
=
3
;
}
message
SparseAdagradSGDRuleParameter
{
// SparseAdaGradSGDRule|StdAdaGradSGDRule
optional
double
learning_rate
=
1
[
default
=
0.05
];
optional
double
initial_g2sum
=
2
[
default
=
3.0
];
optional
double
initial_range
=
3
[
default
=
0.0001
];
repeated
float
weight_bounds
=
4
;
}
message
SparseAdamSGDParameter
{
// SparseAdamSGDRule
optional
double
learning_rate
=
1
[
default
=
0.001
];
optional
double
initial_range
=
2
[
default
=
0.0001
];
optional
double
beta1_decay_rate
=
3
[
default
=
0.9
];
optional
double
beta2_decay_rate
=
4
[
default
=
0.999
];
optional
double
ada_epsilon
=
5
[
default
=
1e-08
];
repeated
float
weight_bounds
=
6
;
}
message
CtrAccessorParameter
{
optional
float
nonclk_coeff
=
1
;
// to calculate show_click_score
optional
float
click_coeff
=
2
;
// to calculate show_click_score
optional
float
base_threshold
=
3
;
// show_click_score > base_threshold, this feature can be saved
optional
float
delta_threshold
=
4
;
// delta_score > delta_threshold, this feature can be saved
optional
float
delta_keep_days
=
5
;
// unseen_day < delta_keep_days, this feature can be saved
optional
float
show_click_decay_rate
=
6
;
// show/click will update to
// show/click *
// show_click_decay_rate after a day
optional
float
delete_threshold
=
7
;
// threshold to shrink a feasign
optional
float
delete_after_unseen_days
=
8
;
optional
int32
ssd_unseenday_threshold
=
9
;
optional
float
nonclk_coeff
=
1
[
default
=
0.1
];
// to calculate show_click_score
optional
float
click_coeff
=
2
[
default
=
1
];
// to calculate show_click_score
optional
float
base_threshold
=
3
[
default
=
1.5
];
// show_click_score > base_threshold, this feature can be saved
optional
float
delta_threshold
=
4
[
default
=
0.25
];
// delta_score > delta_threshold, this feature can be saved
optional
float
delta_keep_days
=
5
[
default
=
16
];
// unseen_day < delta_keep_days, this feature can be saved
optional
float
show_click_decay_rate
=
6
[
default
=
0.98
];
// show/click will update to
// show/click *
// show_click_decay_rate after a day
optional
float
delete_threshold
=
7
[
default
=
0.8
];
// threshold to shrink a feasign
optional
float
delete_after_unseen_days
=
8
[
default
=
30
];
optional
int32
ssd_unseenday_threshold
=
9
[
default
=
1
];
}
message
TableAccessorSaveParameter
{
optional
uint32
param
=
1
;
optional
string
converter
=
2
;
optional
string
deconverter
=
3
;
}
message
FsClientParameter
{
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
1514eec6
...
...
@@ -470,12 +470,22 @@ class DistributedStrategy(object):
from
google.protobuf.descriptor
import
FieldDescriptor
table_param
=
self
.
strategy
.
downpour_table_param
def
set_table_config
(
msg
,
config_name
,
configs
):
def
set_table_config
(
msg
,
config_name
,
configs
,
index
=
0
):
for
field
in
msg
.
DESCRIPTOR
.
fields
:
name
=
config_name
+
"."
+
field
.
name
if
field
.
type
==
FieldDescriptor
.
TYPE_MESSAGE
:
print
(
"message:"
,
name
)
set_table_config
(
getattr
(
msg
,
field
.
name
),
name
,
configs
)
if
field
.
label
==
FieldDescriptor
.
LABEL_REPEATED
:
if
name
+
".num"
not
in
configs
:
continue
num
=
configs
[
name
+
".num"
]
print
(
"message num:"
,
name
,
num
)
for
i
in
range
(
num
):
data
=
getattr
(
msg
,
field
.
name
).
add
()
set_table_config
(
data
,
name
,
configs
,
i
)
else
:
set_table_config
(
getattr
(
msg
,
field
.
name
),
name
,
configs
)
else
:
print
(
"not message:"
,
name
)
if
name
not
in
configs
:
...
...
@@ -483,9 +493,15 @@ class DistributedStrategy(object):
if
field
.
label
==
FieldDescriptor
.
LABEL_REPEATED
:
getattr
(
msg
,
field
.
name
).
extend
(
configs
[
name
])
else
:
setattr
(
msg
,
field
.
name
,
configs
[
name
])
if
type
(
configs
[
name
])
==
list
:
setattr
(
msg
,
field
.
name
,
configs
[
name
][
index
])
else
:
setattr
(
msg
,
field
.
name
,
configs
[
name
])
set_table_config
(
table_param
,
"table_parameters"
,
configs
)
if
not
configs
:
print
(
"table configs is empty"
)
else
:
set_table_config
(
table_param
,
"table_parameters"
,
configs
)
@
property
def
amp
(
self
):
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
1514eec6
...
...
@@ -823,7 +823,7 @@ class Fleet(object):
self
.
_runtime_handle
.
_save_persistables
(
executor
,
dirname
,
main_program
,
mode
)
def
shrink
(
self
,
threshold
):
def
shrink
(
self
,
threshold
=
None
):
self
.
_runtime_handle
.
_shrink
(
threshold
)
def
distributed_optimizer
(
self
,
optimizer
,
strategy
=
None
):
...
...
python/paddle/distributed/fleet/runtime/the_one_ps.py
浏览文件 @
1514eec6
...
...
@@ -24,7 +24,6 @@ from paddle.fluid.parallel_executor import ParallelExecutor
from
paddle.fluid.framework
import
Variable
,
Parameter
from
.runtime_base
import
RuntimeBase
from
..base.private_helper_function
import
wait_server_ready
import
paddle.distributed.fleet
as
fleet
__all__
=
[]
...
...
@@ -53,6 +52,70 @@ def parse_table_class(varname, o_main_program):
return
"MemorySparseTable"
def
get_default_accessor_proto
(
accessor
,
varname
,
o_main_program
):
embedding_dim
=
0
for
var
in
o_main_program
.
list_vars
():
if
var
.
name
==
varname
:
print
(
"var:"
,
var
)
print
(
"var.shape:"
,
var
.
shape
)
embedding_dim
=
var
.
shape
[
1
]
print
(
"sparse dim:"
,
embedding_dim
)
break
accessor
.
accessor_class
=
"CtrCommonAccessor"
accessor
.
fea_dim
=
embedding_dim
+
2
accessor
.
embedx_dim
=
embedding_dim
-
1
accessor
.
embedx_threshold
=
0
ctr_accessor_param
=
accessor
.
ctr_accessor_param
ctr_accessor_param
.
nonclk_coeff
=
0.1
ctr_accessor_param
.
click_coeff
=
1.0
ctr_accessor_param
.
base_threshold
=
0
ctr_accessor_param
.
delta_threshold
=
0
ctr_accessor_param
.
delta_keep_days
=
16
ctr_accessor_param
.
show_click_decay_rate
=
1
ctr_accessor_param
.
delete_threshold
=
0
ctr_accessor_param
.
delete_after_unseen_days
=
30
ctr_accessor_param
.
ssd_unseenday_threshold
=
1
embed_sgd_param
=
accessor
.
embed_sgd_param
embed_sgd_param
.
name
=
"SparseAdaGradSGDRule"
embed_sgd_param
.
adagrad
.
learning_rate
=
0.05
embed_sgd_param
.
adagrad
.
initial_g2sum
=
3.0
embed_sgd_param
.
adagrad
.
initial_range
=
0.0001
embed_sgd_param
.
adagrad
.
weight_bounds
.
append
(
-
10.0
)
embed_sgd_param
.
adagrad
.
weight_bounds
.
append
(
10.0
)
embedx_sgd_param
=
accessor
.
embedx_sgd_param
embedx_sgd_param
.
name
=
"SparseAdaGradSGDRule"
embedx_sgd_param
.
adagrad
.
learning_rate
=
0.05
embedx_sgd_param
.
adagrad
.
initial_g2sum
=
3.0
embedx_sgd_param
.
adagrad
.
initial_range
=
0.0001
embedx_sgd_param
.
adagrad
.
weight_bounds
.
append
(
-
10.0
)
embedx_sgd_param
.
adagrad
.
weight_bounds
.
append
(
10.0
)
def
check_embedding_dim
(
accessor
,
varname
,
o_main_program
):
embedding_dim
=
0
for
var
in
o_main_program
.
list_vars
():
if
var
.
name
==
varname
:
print
(
"var:"
,
var
)
print
(
"var.shape:"
,
var
.
shape
)
embedding_dim
=
var
.
shape
[
1
]
print
(
"sparse dim:"
,
embedding_dim
)
break
fea_dim
=
accessor
.
fea_dim
if
fea_dim
!=
embedding_dim
+
2
:
raise
ValueError
(
"The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
.
format
(
embedding_dim
+
2
,
fea_dim
))
embedx_dim
=
accessor
.
embedx_dim
if
embedx_dim
!=
embedding_dim
-
1
:
raise
ValueError
(
"The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
.
format
(
embedding_dim
-
1
,
embedx_dim
))
class
Accessor
:
def
__init__
(
self
):
self
.
accessor_class
=
""
...
...
@@ -344,6 +407,11 @@ class Table:
self
.
accessor_proto
=
None
def
to_string
(
self
,
indent
):
# if self.id == 1:
# proto_txt = ''
# with open('./sparse_table.prototxt') as f:
# proto_txt = f.read()
# return proto_txt
table_str
=
"{}downpour_table_param {{{}
\n
{}}}"
attrs
=
""
...
...
@@ -586,6 +654,8 @@ class TheOnePSRuntime(RuntimeBase):
return
kwargs
proto_txt
=
str
(
worker
)
+
"
\n
"
+
str
(
server
)
with
open
(
'proto_txt'
,
'w'
)
as
f
:
f
.
write
(
proto_txt
)
debug
=
bool
(
int
(
os
.
getenv
(
"PSERVER_DEBUG"
,
"0"
)))
...
...
@@ -847,54 +917,54 @@ class TheOnePSRuntime(RuntimeBase):
if
self
.
compiled_strategy
.
is_geo_mode
():
table
.
table_class
=
"SparseGeoTable"
else
:
table
.
table_class
=
parse_table_class
(
common
.
table_name
,
self
.
origin_main_program
)
table_proto
=
self
.
context
[
"user_defined_strategy"
].
sparse_table_configs
table
.
shard_num
=
table_proto
.
shard_num
import
copy
table_proto
=
copy
.
deepcopy
(
self
.
context
[
"user_defined_strategy"
].
sparse_table_configs
)
print
(
'table proto:'
,
table_proto
)
print
(
'table_class:'
,
table_proto
.
table_class
)
print
(
'shard_num:'
,
table_proto
.
shard_num
)
print
(
'table_proto.accessor:'
,
table_proto
.
accessor
)
print
(
'accessor.IsInitialized'
,
table_proto
.
accessor
.
IsInitialized
())
print
(
'accessor.ByteSize'
,
table_proto
.
accessor
.
ByteSize
())
if
table_proto
.
table_class
:
print
(
'table_proto.table_class is true'
)
table
.
table_class
=
table_proto
.
table_class
else
:
table
.
table_class
=
parse_table_class
(
common
.
table_name
,
self
.
origin_main_program
)
if
table
.
table_class
!=
'MemorySparseTable'
:
table
.
table_class
=
'MemorySparseTable'
warnings
.
warn
(
"The PS mode must use MemorySparseTable."
)
if
table_proto
.
shard_num
:
print
(
'table_proto.shard_num is true'
)
table
.
shard_num
=
table_proto
.
shard_num
else
:
table
.
shard_num
=
1000
warnings
.
warn
(
"The shard_num of sparse table is not set, use default value 1000."
)
if
table_proto
.
accessor
.
ByteSize
()
==
0
:
print
(
'table_proto.accessor is false'
)
get_default_accessor_proto
(
table_proto
.
accessor
,
common
.
table_name
,
self
.
origin_main_program
)
warnings
.
warn
(
"The accessor of sparse table is not set, use default value."
)
check_embedding_dim
(
table_proto
.
accessor
,
common
.
table_name
,
self
.
origin_main_program
)
print
(
'accessor.ByteSize'
,
table_proto
.
accessor
.
ByteSize
())
from
google.protobuf
import
text_format
table
.
accessor_proto
=
text_format
.
MessageToString
(
table_proto
.
accessor
)
print
(
'table proto:'
,
table_proto
)
if
table
.
table_class
==
'MemorySparseTable'
and
table
.
accessor_proto
==
''
:
emb_dim
=
ctx
.
sections
()[
1
]
table
.
shard_num
=
1950
table
.
accessor_proto
=
'accessor_class: "CtrCommonAccessor"
\n
'
\
'embed_sgd_param {
\n
'
\
' name: "SparseAdaGradSGDRule"
\n
'
\
' adagrad {
\n
'
\
' learning_rate: 0.05
\n
'
\
' initial_g2sum: 3.0
\n
'
\
' initial_range: 0.0001
\n
'
\
' weight_bounds: -10.0
\n
'
\
' weight_bounds: 10.0
\n
'
\
' }
\n
'
\
'}
\n
'
\
'embedx_sgd_param {
\n
'
\
' name: "SparseAdaGradSGDRule"
\n
'
\
' adagrad {
\n
'
\
' learning_rate: 0.05
\n
'
\
' initial_g2sum: 3.0
\n
'
\
' initial_range: 0.0001
\n
'
\
' weight_bounds: -10.0
\n
'
\
' weight_bounds: 10.0
\n
'
\
' }
\n
'
\
'}
\n
'
\
'fea_dim: '
+
str
(
emb_dim
+
2
)
+
'
\n
'
\
'embedx_dim: '
+
str
(
emb_dim
-
1
)
+
'
\n
'
\
'embedx_threshold: 10
\n
'
\
'ctr_accessor_param {
\n
'
\
' nonclk_coeff: 0.1
\n
'
\
' click_coeff: 1.0
\n
'
\
' base_threshold: 1.5
\n
'
\
' delta_threshold: 0.25
\n
'
\
' delta_keep_days: 16.0
\n
'
\
' show_click_decay_rate: 0.98
\n
'
\
' delete_threshold: 0.8
\n
'
\
' delete_after_unseen_days: 30.0
\n
'
\
' ssd_unseenday_threshold: 1
\n
'
\
'}'
print
(
"the_one_ps table_proto:"
,
table
.
accessor_proto
)
else
:
table
.
type
=
"PS_DENSE_TABLE"
table
.
table_class
=
"CommonDenseTable"
...
...
@@ -916,7 +986,6 @@ class TheOnePSRuntime(RuntimeBase):
common
.
sync
=
"true"
else
:
common
.
sync
=
"false"
table
.
common
=
common
if
table
.
table_class
!=
'MemorySparseTable'
:
...
...
@@ -1108,8 +1177,6 @@ class TheOnePSRuntime(RuntimeBase):
TheOnePSRuntime
.
__exclude_vars
(
saved_varnames
),
main_program
.
list_vars
()))
self
.
_communicator
.
pull_dense
(
denses
)
import
paddle
for
var
in
remaining_vars
:
# if var.name not in recv_dense_varnames:
...
...
@@ -1209,9 +1276,8 @@ class TheOnePSRuntime(RuntimeBase):
split_dense_table
=
self
.
role_maker
.
_is_heter_parameter_server_mode
,
use_origin_program
=
True
)
print
(
"the one ps sparses:"
,
sparses
)
sparse_names
=
[]
for
id
,
name
in
sparses
.
items
():
sparse_names
.
extend
(
name
)
sparse_names
=
self
.
_save_sparse_params
(
executor
,
dirname
,
sparses
,
main_program
,
mode
)
print
(
"the one ps sparse names:"
,
sparse_names
)
denses
=
self
.
compiled_strategy
.
get_the_one_recv_context
(
...
...
@@ -1225,7 +1291,7 @@ class TheOnePSRuntime(RuntimeBase):
generate_vars
=
[
var
for
var
in
generate_vars
]
remaining_vars
=
list
(
filter
(
TheOnePSRuntime
.
__exclude_vars
(
generate_vars
+
sparse_names
),
TheOnePSRuntime
.
__exclude_vars
(
sparse_names
),
infer_program
.
list_vars
()))
print
(
"remain_vars:"
,
[
var
.
name
for
var
in
remaining_vars
])
for
var
in
remaining_vars
:
...
...
@@ -1235,9 +1301,6 @@ class TheOnePSRuntime(RuntimeBase):
os
.
path
.
join
(
model_path
,
var
.
name
),
use_binary_format
=
True
)
self
.
_ps_inference_save_persistables
(
executor
,
dirname
,
infer_program
,
mode
)
def
_save_inference_model
(
self
,
*
args
,
**
kwargs
):
self
.
_ps_inference_save_inference_model
(
*
args
,
**
kwargs
)
...
...
@@ -1314,8 +1377,15 @@ class TheOnePSRuntime(RuntimeBase):
self
.
_load_distributed_persistables
(
path
,
mode
)
else
:
self
.
_ps_inference_load_inference_model
(
path
,
mode
)
# self._load_distributed_persistables(path, mode=mode)
def
_shrink
(
self
,
threshold
):
def
_shrink
(
self
,
threshold
=
None
):
if
threshold
is
not
None
:
warnings
.
warn
(
"The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
)
else
:
threshold
=
0
import
paddle.distributed.fleet
as
fleet
fleet
.
util
.
barrier
()
if
self
.
role_maker
.
_is_first_worker
():
...
...
python/paddle/fluid/dataset.py
浏览文件 @
1514eec6
...
...
@@ -862,8 +862,12 @@ class InMemoryDataset(DatasetBase):
thread_num(int): shuffle thread num. Default is 12.
"""
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
PSLib
if
fleet
is
not
None
:
fleet
.
_role_maker
.
barrier_worker
()
if
not
isinstance
(
fleet
,
PSLib
):
fleet
.
barrier_worker
()
else
:
fleet
.
_role_maker
.
barrier_worker
()
if
self
.
trainer_num
==
-
1
:
self
.
trainer_num
=
fleet
.
worker_num
()
if
self
.
fleet_send_batch_size
is
None
:
...
...
@@ -875,14 +879,23 @@ class InMemoryDataset(DatasetBase):
self
.
dataset
.
set_fleet_send_batch_size
(
self
.
fleet_send_batch_size
)
self
.
dataset
.
set_fleet_send_sleep_seconds
(
self
.
fleet_send_sleep_seconds
)
if
fleet
is
not
None
:
fleet
.
_role_maker
.
barrier_worker
()
if
not
isinstance
(
fleet
,
PSLib
):
fleet
.
barrier_worker
()
else
:
fleet
.
_role_maker
.
barrier_worker
()
self
.
dataset
.
global_shuffle
(
thread_num
)
if
fleet
is
not
None
:
fleet
.
_role_maker
.
barrier_worker
()
if
not
isinstance
(
fleet
,
PSLib
):
fleet
.
barrier_worker
()
else
:
fleet
.
_role_maker
.
barrier_worker
()
if
self
.
merge_by_lineid
:
self
.
dataset
.
merge_by_lineid
()
if
fleet
is
not
None
:
fleet
.
_role_maker
.
barrier_worker
()
if
not
isinstance
(
fleet
,
PSLib
):
fleet
.
barrier_worker
()
else
:
fleet
.
_role_maker
.
barrier_worker
()
@
deprecated
(
since
=
"2.0.0"
,
...
...
@@ -1011,10 +1024,15 @@ class InMemoryDataset(DatasetBase):
import
numpy
as
np
local_data_size
=
self
.
dataset
.
get_shuffle_data_size
()
local_data_size
=
np
.
array
([
local_data_size
])
print
(
'global shuffle local_data_size: '
,
local_data_size
)
if
fleet
is
not
None
:
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
PSLib
global_data_size
=
local_data_size
*
0
fleet
.
_role_maker
.
all_reduce_worker
(
local_data_size
,
global_data_size
)
if
not
isinstance
(
fleet
,
PSLib
):
global_data_size
=
fleet
.
util
.
all_reduce
(
local_data_size
)
else
:
fleet
.
_role_maker
.
all_reduce_worker
(
local_data_size
,
global_data_size
)
return
global_data_size
[
0
]
return
local_data_size
[
0
]
...
...
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
浏览文件 @
1514eec6
...
...
@@ -241,7 +241,7 @@ class TestDistCTR2x2(FleetDistRunnerBase):
self
.
check_model_right
(
model_dir
)
shutil
.
rmtree
(
model_dir
)
def
do_dataset_training
(
self
,
fleet
):
def
do_dataset_training
_queuedataset
(
self
,
fleet
):
train_file_list
=
ctr_dataset_reader
.
prepare_fake_data
()
exe
=
self
.
get_executor
()
...
...
@@ -288,5 +288,56 @@ class TestDistCTR2x2(FleetDistRunnerBase):
if
dirname
:
fleet
.
save_persistables
(
exe
,
dirname
=
dirname
)
def
do_dataset_training
(
self
,
fleet
):
train_file_list
=
ctr_dataset_reader
.
prepare_fake_data
()
exe
=
self
.
get_executor
()
exe
.
run
(
fluid
.
default_startup_program
())
fleet
.
init_worker
()
thread_num
=
2
batch_size
=
128
filelist
=
train_file_list
# config dataset
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
"InMemoryDataset"
)
dataset
.
set_use_var
(
self
.
feeds
)
dataset
.
set_batch_size
(
128
)
dataset
.
set_thread
(
2
)
dataset
.
set_filelist
(
filelist
)
dataset
.
set_pipe_command
(
'python ctr_dataset_reader.py'
)
dataset
.
load_into_memory
()
dataset
.
global_shuffle
(
fleet
,
12
)
##TODO: thread configure
shuffle_data_size
=
dataset
.
get_shuffle_data_size
(
fleet
)
local_data_size
=
dataset
.
get_shuffle_data_size
()
data_size_list
=
fleet
.
util
.
all_gather
(
local_data_size
)
print
(
'after global_shuffle data_size_list: '
,
data_size_list
)
print
(
'after global_shuffle data_size: '
,
shuffle_data_size
)
for
epoch_id
in
range
(
1
):
pass_start
=
time
.
time
()
exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
[
self
.
avg_cost
],
fetch_info
=
[
"cost"
],
print_period
=
2
,
debug
=
int
(
os
.
getenv
(
"Debug"
,
"0"
)))
pass_time
=
time
.
time
()
-
pass_start
dataset
.
release_memory
()
if
os
.
getenv
(
"SAVE_MODEL"
)
==
"1"
:
model_dir
=
tempfile
.
mkdtemp
()
fleet
.
save_inference_model
(
exe
,
model_dir
,
[
feed
.
name
for
feed
in
self
.
feeds
],
self
.
avg_cost
)
self
.
check_model_right
(
model_dir
)
shutil
.
rmtree
(
model_dir
)
dirname
=
os
.
getenv
(
"SAVE_DIRNAME"
,
None
)
if
dirname
:
fleet
.
save_persistables
(
exe
,
dirname
=
dirname
)
if
__name__
==
"__main__"
:
runtime_main
(
TestDistCTR2x2
)
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
浏览文件 @
1514eec6
...
...
@@ -20,6 +20,41 @@ import tempfile
from
test_dist_fleet_base
import
TestFleetBase
class
TestDistMnistAsyncInMemoryDataset2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_mode
=
"async"
#self._reader = "pyreader"
self
.
_reader
=
"dataset"
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"5000"
,
# 5sec to fail fast
"http_proxy"
:
""
,
"CPU_NUM"
:
"2"
,
"LOG_DIRNAME"
:
"/tmp"
,
"LOG_PREFIX"
:
self
.
__class__
.
__name__
,
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_fleet_ctr.py"
,
delta
=
1e-5
,
check_error_log
=
False
)
class
TestDistMnistAsync2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_mode
=
"async"
...
...
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
浏览文件 @
1514eec6
...
...
@@ -259,11 +259,18 @@ class TestStrategyConfig(unittest.TestCase):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
configs
=
{
"table_parameters.accessor.embed_sgd_param.adagrad.learning_rate"
:
0.05
0.05
,
"table_parameters.accessor.table_accessor_save_param.num"
:
2
,
"table_parameters.accessor.table_accessor_save_param.param"
:
[
1
,
2
]
}
strategy
.
sparse_table_configs
=
configs
self
.
assertEqual
(
strategy
.
sparse_table_configs
.
accessor
.
embed_sgd_param
.
adagrad
.
learning_rate
,
0.05
)
self
.
assertEqual
(
strategy
.
sparse_table_configs
.
accessor
.
table_accessor_save_param
[
0
].
param
,
1
)
strategy
.
adam_d2sum
=
True
self
.
assertEqual
(
strategy
.
adam_d2sum
,
True
)
strategy
.
fs_client_param
=
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录