Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6b74cf76
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6b74cf76
编写于
4月 11, 2023
作者:
W
wuhuachaocoding
提交者:
GitHub
4月 11, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
mp sync params & grads & opt states. (#51428)
上级
f80a0fe9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
238 addition
and
1 deletion
+238
-1
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+8
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+6
-0
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
...optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
+80
-1
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_mp_model.py
...ts/unittests/collective/fleet/hybrid_parallel_mp_model.py
+144
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
6b74cf76
...
...
@@ -50,11 +50,19 @@ message ShardingConfig {
optional
bool
enable_tuning
=
15
[
default
=
false
];
// incubate for auto parallel
}
// for dygraph
message
MpConfig
{
optional
bool
sync_param
=
1
[
default
=
false
];
optional
bool
sync_grad
=
2
[
default
=
false
];
optional
bool
sync_moment
=
3
[
default
=
false
];
}
message
HybridConfig
{
optional
int32
dp_degree
=
1
[
default
=
-
1
];
optional
int32
mp_degree
=
2
[
default
=
1
];
optional
int32
pp_degree
=
3
[
default
=
1
];
optional
int32
sharding_degree
=
4
[
default
=
1
];
optional
MpConfig
mp_configs
=
5
;
}
message
AMPConfig
{
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
6b74cf76
...
...
@@ -1696,6 +1696,12 @@ class DistributedStrategy:
check_configs_key
(
self
.
strategy
.
hybrid_configs
,
hybrid_config
,
"hybrid_configs"
)
if
"mp_configs"
in
configs
:
assign_configs_value
(
self
.
strategy
.
hybrid_configs
.
mp_configs
,
configs
[
"mp_configs"
]
)
configs
.
pop
(
"mp_configs"
)
assign_configs_value
(
self
.
strategy
.
hybrid_configs
,
configs
)
@
property
...
...
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py
浏览文件 @
6b74cf76
...
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
framework
from
paddle.autograd
import
no_grad
from
paddle.distributed
import
fleet
from
paddle.framework
import
core
from
paddle.nn
import
ClipGradByGlobalNorm
,
clip
...
...
@@ -292,6 +294,83 @@ class HybridParallelOptimizer:
self
.
_inner_opt
.
_grad_clip
,
hcg
)
def
_filter_fn
(
self
,
param
):
p_name
=
param
.
name
tar_param
=
[
"embedding"
,
"layer_norm"
,
".b_"
]
if
param
.
is_distributed
is
False
:
for
tar
in
tar_param
:
if
tar
in
p_name
:
return
True
return
False
def
_step
(
self
,
parameters_list
):
mp_group
=
self
.
_hcg
.
get_model_parallel_group
()
src_rank
=
self
.
_hcg
.
get_model_parallel_group_src_rank
()
params
=
None
mp_configs
=
None
if
mp_group
.
nranks
>
1
:
mp_configs
=
fleet
.
fleet
.
_user_defined_strategy
.
hybrid_configs
[
"mp_configs"
]
if
mp_configs
and
(
mp_configs
.
sync_param
or
mp_configs
.
sync_grad
or
mp_configs
.
sync_moment
):
params
=
sorted
(
[
p
for
p
in
parameters_list
if
self
.
_filter_fn
(
p
)],
key
=
lambda
p
:
p
.
name
,
)
if
mp_group
.
nranks
>
1
and
mp_configs
and
mp_configs
.
sync_grad
:
for
p
in
params
:
if
p
.
grad
is
None
:
continue
paddle
.
distributed
.
broadcast
(
p
.
grad
,
src
=
src_rank
,
group
=
mp_group
,
sync_op
=
True
)
self
.
_inner_opt
.
step
()
if
mp_group
.
nranks
>
1
and
mp_configs
and
mp_configs
.
sync_param
:
for
p
in
params
:
paddle
.
distributed
.
broadcast
(
p
,
src
=
src_rank
,
group
=
mp_group
,
sync_op
=
True
)
if
mp_group
.
nranks
>
1
and
mp_configs
and
mp_configs
.
sync_moment
:
for
p
in
params
:
# support opt state of adam and adamw to broadcast now.
if
isinstance
(
self
.
_inner_opt
,
(
paddle
.
optimizer
.
Adam
,
paddle
.
optimizer
.
AdamW
),
):
if
(
self
.
_inner_opt
.
_multi_precision
and
p
.
name
in
self
.
_master_weights
):
paddle
.
distributed
.
broadcast
(
self
.
_inner_opt
.
_master_weights
[
p
.
name
],
src
=
src_rank
,
group
=
mp_group
,
sync_op
=
True
,
)
moment1
=
self
.
_inner_opt
.
_get_accumulator
(
self
.
_inner_opt
.
_moment1_acc_str
,
p
)
moment2
=
self
.
_inner_opt
.
_get_accumulator
(
self
.
_inner_opt
.
_moment2_acc_str
,
p
)
paddle
.
distributed
.
broadcast
(
moment1
,
src
=
src_rank
,
group
=
mp_group
,
sync_op
=
True
)
paddle
.
distributed
.
broadcast
(
moment2
,
src
=
src_rank
,
group
=
mp_group
,
sync_op
=
True
)
@
no_grad
()
@
framework
.
dygraph_only
def
step
(
self
):
...
...
@@ -302,7 +381,7 @@ class HybridParallelOptimizer:
if
self
.
_dp_enable
:
fused_allreduce_gradients
(
list
(
parameters_list
),
self
.
_hcg
)
self
.
_
inner_opt
.
step
(
)
self
.
_
step
(
parameters_list
)
@
no_grad
()
def
minimize
(
...
...
python/paddle/fluid/tests/unittests/collective/fleet/hybrid_parallel_mp_model.py
浏览文件 @
6b74cf76
...
...
@@ -181,6 +181,150 @@ class SimpleDPNet(paddle.nn.Layer):
return
x
class
TestDistMPSyncTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
2
self
.
data_parallel_size
=
1
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
1
,
"mp_configs"
:
{
"sync_param"
:
False
,
"sync_grad"
:
False
,
"sync_moment"
:
False
,
},
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
build_model_optimizer_train
(
self
,
batchs
,
fp16
=
False
,
mp_sync_param
=
False
,
mp_sync_grad
=
False
,
mp_sync_moment
=
False
,
):
hcg
=
fleet
.
get_hybrid_communicate_group
()
word_size
=
hcg
.
get_model_parallel_world_size
()
mp_id
=
hcg
.
get_model_parallel_rank
()
dp_id
=
hcg
.
get_data_parallel_rank
()
rank_id
=
dist
.
get_rank
()
paddle
.
seed
(
2023
)
np
.
random
.
seed
(
2023
)
random
.
seed
(
2023
)
set_random_seed
(
1024
,
dp_id
,
rank_id
)
np_fc1
=
np
.
random
.
random_sample
((
hidden_size
,
inner_size
))
np_fc2
=
np
.
random
.
random_sample
((
inner_size
,
hidden_size
))
model
=
SimpleMPNet
(
vocab_size
,
hidden_size
,
inner_size
,
output_size
,
np_fc1
,
np_fc2
,
mp_id
,
)
optimizer
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
0.1
,
parameters
=
model
.
parameters
()
)
strategy
=
fleet
.
fleet
.
_user_defined_strategy
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
1
,
"mp_configs"
:
{
"sync_param"
:
mp_sync_param
,
"sync_grad"
:
mp_sync_grad
,
"sync_moment"
:
mp_sync_moment
,
},
}
model
=
fleet
.
distributed_model
(
model
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
return
self
.
train_batch
(
batchs
,
model
,
optimizer
,
fp16
)
def
train_batch
(
self
,
batchs
,
model
,
optimizer
,
fp16
=
False
):
losses
=
[]
if
fp16
:
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
1024
)
scaler
=
fleet
.
distributed_scaler
(
scaler
)
for
batch
in
batchs
:
with
paddle
.
amp
.
auto_cast
(
enable
=
fp16
,
level
=
'O1'
):
output
=
model
(
batch
)
loss
=
output
.
mean
()
losses
.
append
(
loss
.
numpy
())
if
fp16
:
scaled
=
scaler
.
scale
(
loss
)
scaled
.
backward
()
scaler
.
step
(
optimizer
)
scaler
.
update
()
else
:
loss
.
backward
()
optimizer
.
step
()
optimizer
.
clear_grad
()
return
losses
def
mp_sync_base
(
self
,
mp_sync_param
=
False
,
mp_sync_grad
=
False
,
mp_sync_moment
=
False
):
batchs
=
[]
for
_
in
range
(
5
):
np_data
=
np
.
random
.
randint
(
0
,
vocab_size
,
(
batch_size
,
seq_length
,
),
)
batchs
.
append
(
paddle
.
to_tensor
(
np_data
))
losses
=
self
.
build_model_optimizer_train
(
batchs
)
losses_sync
=
self
.
build_model_optimizer_train
(
batchs
,
mp_sync_param
=
mp_sync_param
,
mp_sync_grad
=
mp_sync_grad
,
mp_sync_moment
=
mp_sync_moment
,
)
for
i
in
range
(
len
(
losses
)):
np
.
testing
.
assert_allclose
(
losses
[
i
],
losses_sync
[
i
],
rtol
=
1e-6
)
# test fp16
losses_fp16
=
self
.
build_model_optimizer_train
(
batchs
,
fp16
=
True
)
losses_sync_fp16
=
self
.
build_model_optimizer_train
(
batchs
,
fp16
=
True
,
mp_sync_param
=
mp_sync_param
,
mp_sync_grad
=
mp_sync_grad
,
mp_sync_moment
=
mp_sync_moment
,
)
for
i
in
range
(
len
(
losses_fp16
)):
np
.
testing
.
assert_allclose
(
losses_fp16
[
i
],
losses_sync_fp16
[
i
],
rtol
=
1e-6
)
def
test_mp_sync_param
(
self
):
self
.
mp_sync_base
(
mp_sync_param
=
True
)
def
test_mp_sync_grad
(
self
):
self
.
mp_sync_base
(
mp_sync_grad
=
True
)
def
test_mp_sync_moment
(
self
):
self
.
mp_sync_base
(
mp_sync_moment
=
True
)
def
test_mp_sync_all
(
self
):
self
.
mp_sync_base
(
mp_sync_param
=
True
,
mp_sync_grad
=
True
,
mp_sync_moment
=
True
)
class
TestDistMPTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录