Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c1c18b08
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c1c18b08
编写于
5月 08, 2021
作者:
L
lilong12
提交者:
GitHub
5月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add raw program meta optimizer (#32597)
* add raw program, test=develop
上级
a77ade0e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
279 addition
and
0 deletion
+279
-0
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+26
-0
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
...istributed/fleet/meta_optimizers/raw_program_optimizer.py
+196
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/test_fleet_raw_program_meta_optimizer.py
.../tests/unittests/test_fleet_raw_program_meta_optimizer.py
+53
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
c1c18b08
...
...
@@ -174,6 +174,7 @@ message DistributedStrategy {
optional
float
last_comm_group_size_MB
=
27
[
default
=
1
];
optional
bool
find_unused_parameters
=
28
[
default
=
true
];
optional
bool
tensor_parallel
=
29
[
default
=
false
];
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
c1c18b08
...
...
@@ -827,6 +827,32 @@ class DistributedStrategy(object):
"sharding_configs"
)
assign_configs_value
(
self
.
strategy
.
sharding_configs
,
configs
)
@
property
def
without_graph_optimization
(
self
):
"""
Run program using Executor other than ParallelExecutor.
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.without_graph_optimization = True
"""
return
self
.
strategy
.
without_graph_optimization
@
without_graph_optimization
.
setter
@
is_strict_auto
def
without_graph_optimization
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
without_graph_optimization
=
flag
else
:
print
(
"WARNING: without_graph_optimization should have value of bool type"
)
@
property
def
pipeline
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
c1c18b08
...
...
@@ -28,3 +28,4 @@ from .sharding_optimizer import ShardingOptimizer
from
.dygraph_optimizer
import
HybridParallelOptimizer
from
.dygraph_optimizer
import
HybridParallelGradScaler
from
.tensor_parallel_optimizer
import
TensorParallelOptimizer
from
.raw_program_optimizer
import
RawProgramOptimizer
python/paddle/distributed/fleet/meta_optimizers/raw_program_optimizer.py
0 → 100755
浏览文件 @
c1c18b08
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
__future__
import
print_function
from
__future__
import
division
import
os
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
,
unique_name
from
..base.private_helper_function
import
wait_server_ready
from
.meta_optimizer_base
import
MetaOptimizerBase
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
class
RawProgramOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
RawProgramOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
self
.
meta_optimizers_white_list
=
[
"RecomputeOptimizer"
,
"AMPOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"GraphExecutionOptimizer"
,
]
self
.
global_ring_id
=
0
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
RawProgramOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
without_graph_optimization
=
user_defined_strategy
.
without_graph_optimization
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
if
self
.
without_graph_optimization
==
True
:
return
True
return
False
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
without_graph_optimization
=
False
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
without_graph_optimization
=
True
def
_broadcast_params
(
self
,
ring_id
):
block
=
self
.
startup_program
.
global_block
()
param
=
None
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
if
not
param
:
return
# no parameter on this device
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
def
_get_process_group_info
(
self
):
# global ring info
self
.
global_endpoints
=
self
.
endpoints
self
.
global_rank
=
self
.
rank
self
.
global_nranks
=
self
.
nranks
def
_init_process_group
(
self
):
self
.
_get_process_group_info
()
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
wait_port
=
False
)
# Create global ring for all gpus (ring_id = 0)
collective_helper
.
_init_communicator
(
self
.
startup_program
,
self
.
current_endpoint
,
self
.
global_endpoints
,
self
.
global_rank
,
self
.
global_ring_id
,
True
,
self
.
global_ring_id
,
True
)
self
.
_broadcast_params
(
self
.
global_ring_id
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
self
.
endpoints
=
self
.
role_maker
.
_get_trainer_endpoints
()
self
.
current_endpoint
=
self
.
endpoints
[
self
.
role_maker
.
_worker_index
()]
self
.
rank
=
self
.
role_maker
.
_worker_index
()
self
.
nranks
=
self
.
role_maker
.
_worker_num
()
if
startup_program
is
None
:
startup_program
=
fluid
.
default_startup_program
()
self
.
startup_program
=
startup_program
block
=
loss
.
block
program
=
block
.
program
self
.
main_program
=
program
optimize_ops
,
params_grads
=
self
.
inner_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
self
.
_init_process_group
()
self
.
main_program
=
program
if
self
.
nranks
>
1
:
self
.
_transpile_main_program
(
loss
)
return
optimize_ops
,
params_grads
def
_transpile_main_program
(
self
,
loss
):
self
.
_insert_loss_grad_ops
(
loss
)
self
.
_insert_allreduce_ops
()
def
_insert_loss_grad_ops
(
self
,
loss
):
"""
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
"""
block
=
self
.
main_program
.
global_block
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
block
.
_insert_op
(
idx
+
1
,
type
=
'scale'
,
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
1.0
/
self
.
nranks
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
def
_insert_allreduce_ops
(
self
):
block
=
self
.
main_program
.
global_block
()
ring_id
=
self
.
global_ring_id
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
attr
(
OP_ROLE_VAR_KEY
)
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
1
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param_name
=
op_role_var
[
i
]
param
=
block
.
var
(
param_name
)
grad_name
=
op_role_var
[
i
+
1
]
grad
=
block
.
var
(
grad_name
)
if
param
.
is_distributed
:
continue
block
.
_insert_op
(
idx
+
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
,
})
offset
+=
1
block
.
_insert_op
(
idx
+
offset
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
grad
is
None
:
return
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
block
.
_insert_op
(
idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
c1c18b08
...
...
@@ -17,6 +17,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_sparse_embedding_over_height
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_transformer
)
list
(
APPEND DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_raw_program_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer
)
list
(
APPEND DIST_TEST_OPS test_gen_nccl_id_op
)
list
(
APPEND DIST_TEST_OPS test_parallel_dygraph_unused_variables
)
...
...
@@ -53,6 +54,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_base_2)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_base_3
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_recompute_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_pipeline_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_raw_program_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_amp_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_amp_init
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_raw_program_meta_optimizer.py
0 → 100644
浏览文件 @
c1c18b08
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
paddle
.
enable_static
()
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002"
def
test_pipeline_optimizer
(
self
):
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
without_graph_optimization
=
True
optimizer
=
paddle
.
fluid
.
optimizer
.
Adam
(
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录