distributed_strategy.py 89.0 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import copy

18 19 20
import google.protobuf
import google.protobuf.text_format

21
import paddle
22
from paddle.distributed.fleet.proto import distributed_strategy_pb2
23
from paddle.distributed.fleet.utils.log_util import logger
24
from paddle.fluid.framework import _global_flags
25
from paddle.fluid.wrapped_decorator import wrap_decorator
26

R
risemeup1 已提交
27 28
protobuf_version = google.protobuf.__version__
if protobuf_version >= "4.21.0":
29
    from google._upb import _message
R
risemeup1 已提交
30
else:
31
    from google.protobuf.pyext import _message
R
risemeup1 已提交
32

33
__all__ = []
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

49

50 51 52 53 54 55 56 57 58 59 60 61 62
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
63 64 65
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
66
                if f.label == 3:
S
sneaxiy 已提交
67 68
                    if config[f.name] is not None:
                        getattr(msg, f.name).extend(config[f.name])
69 70 71 72 73 74 75
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
76
        assert key in key_list, f"key:{key} not in {field_name}"
77 78


79
class DistributedJobInfo:
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


116 117 118
ReduceStrategyFleet = int


119
class DistributedStrategy:
120 121
    __lock_attr = False

122
    def __init__(self):
123
        """
124

125 126
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
127
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
128
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
129

130 131
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

132
        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
133 134 135
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
136
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
137 138 139

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
140
        if _global_flags().is_public(key):
141
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
142 143
                _global_flags()[key]
            )
144
        key = 'FLAGS_conv_workspace_size_limit'
145 146
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
147
        key = 'FLAGS_cudnn_exhaustive_search'
148 149
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
150
        key = 'FLAGS_sync_nccl_allreduce'
151 152
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
153

154
        self.hybrid_parallel_order = ['dp', 'pp', 'sharding', 'mp']
155
        self.__lock_attr = True
156
        logger.info("distributed strategy initialized")
157 158 159

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
160
            raise TypeError(
161
                f"{key} is not a attribute of {self.__class__.__name__}"
162
            )
163
        object.__setattr__(self, key, value)
164

165
    def save_to_prototxt(self, output):
166
        """
167

168 169 170
        Serialize current DistributedStrategy to string and save to output file

        Examples:
171
            .. code-block:: python
1
123malin 已提交
172

173 174 175 176 177 178
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.recompute = True
                strategy.recompute_configs = {"checkpoints": ["x"]}
                strategy.save_to_prototxt("dist_strategy.prototxt")
1
123malin 已提交
179

180
        """
181 182 183 184
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
185
        """
186

187 188 189
        Load from prototxt file for DistributedStrategy initialization

        Examples:
190
            .. code-block:: python
1
123malin 已提交
191

192 193 194
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.load_from_prototxt("dist_strategy.prototxt")
195 196 197 198

        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
199 200
                str(f.read()), self.strategy
            )
201 202 203 204 205 206 207

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
208
            .. code-block:: python
1
123malin 已提交
209

210 211 212 213 214
                import paddle
                exe_strategy = paddle.static.ExecutionStrategy()
                exe_strategy.num_threads = 10
                exe_strategy.num_iteration_per_drop_scope = 10
                exe_strategy.num_iteration_per_run = 10
215

216 217
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.execution_strategy = exe_strategy
218 219

        """
W
wangxiaoning 已提交
220
        execution_strategy = paddle.static.ExecutionStrategy()
221 222
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
223 224 225 226 227
            setattr(
                execution_strategy,
                f.name,
                getattr(self.strategy.execution_strategy, f.name),
            )
228 229 230
        return execution_strategy

    @execution_strategy.setter
231
    @is_strict_auto
232 233 234
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
235 236 237 238 239
            setattr(
                self.strategy.execution_strategy,
                f.name,
                getattr(strategy, f.name),
            )
240 241 242 243

    @property
    def build_strategy(self):
        """
244

245 246 247 248 249
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
250
            .. code-block:: python
1
123malin 已提交
251

252 253 254 255 256 257 258 259 260 261
                import paddle
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_sequential_execution = True
                build_strategy.fuse_elewise_add_act_ops = True
                build_strategy.fuse_bn_act_ops = True
                build_strategy.enable_auto_fusion = True
                build_strategy.fuse_relu_depthwise_conv = True
                build_strategy.fuse_broadcast_ops = True
                build_strategy.fuse_all_optimizer_ops = True
                build_strategy.enable_inplace = True
262

263 264
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.build_strategy = build_strategy
1
123malin 已提交
265

266 267
        """

W
wangxiaoning 已提交
268
        build_strategy = paddle.static.BuildStrategy()
269 270
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
271 272
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
273
                value = paddle.static.BuildStrategy.ReduceStrategy(value)
274
            setattr(build_strategy, f.name, value)
275 276 277
        return build_strategy

    @build_strategy.setter
278
    @is_strict_auto
279 280 281 282
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
283 284 285 286
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
287
            elif f.label == 3:  # repeated field
288 289 290
                getattr(self.strategy.build_strategy, f.name).extend(
                    getattr(strategy, f.name)
                )
291 292

    @property
Y
Yuang Liu 已提交
293 294
    def gradient_scale_configs(self):
        """
295

Y
Yuang Liu 已提交
296
        Set the strategy of gradient scale
297

Y
Yuang Liu 已提交
298
        Examples:
299
            .. code-block:: python
Y
Yuang Liu 已提交
300

301 302 303
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_scale_configs = {'scale_strategy': 'avg'}
Y
Yuang Liu 已提交
304 305

        Note that, strategy must be in 'avg', 'sum' or 'customized'
306

Y
Yuang Liu 已提交
307 308 309 310 311 312
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
313 314 315 316 317
        check_configs_key(
            self.strategy.gradient_scale_configs,
            config,
            'gradient_scale_configs',
        )
Y
Yuang Liu 已提交
318 319 320
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
321
    def a_sync(self):
322
        """
323

324
        Indicating whether we are using asynchronous stocastic gradient descent updates
325
        for training. This property is valid when we are using parameter server training,
326 327 328 329
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
330
            .. code-block:: python
1
123malin 已提交
331

332 333 334
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
335

336 337
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
338

339 340
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
341

342
        """
D
Dong Daxiang 已提交
343
        return self.strategy.a_sync
344

D
Dong Daxiang 已提交
345
    @a_sync.setter
346
    @is_strict_auto
D
Dong Daxiang 已提交
347
    def a_sync(self, flag):
348
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
349
            self.strategy.a_sync = flag
350
            self.a_sync_configs = {"k_steps": 0}
351
        else:
352
            raise ValueError(
353 354 355 356
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
357 358

    @property
D
Dong Daxiang 已提交
359
    def a_sync_configs(self):
360
        """
361

D
Dong Daxiang 已提交
362
        Set a_sync update configurations. In general, asynchronous parameter server
363 364
        training has serveral configurable settings that can be configured through
        a dict.
365

366
        **Notes**:
M
mapingshuo 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
380

381
        Examples:
382
            .. code-block:: python
1
123malin 已提交
383

384 385 386
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
387

388 389 390 391
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
                configs = {"k_steps": 1024, "send_queue_size": 32}
                strategy.a_sync_configs = configs
392

393 394
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
395

396
        """
D
Dong Daxiang 已提交
397
        return get_msg_dict(self.strategy.a_sync_configs)
398

D
Dong Daxiang 已提交
399
    @a_sync_configs.setter
400
    @is_strict_auto
D
Dong Daxiang 已提交
401
    def a_sync_configs(self, configs):
402 403 404
        check_configs_key(
            self.strategy.a_sync_configs, configs, "a_sync_configs"
        )
D
Dong Daxiang 已提交
405
        assign_configs_value(self.strategy.a_sync_configs, configs)
406

407 408 409
    @property
    def trainer_desc_configs(self):
        """
410

411
        Set trainer desc configurations.
412 413 414 415 416 417 418 419

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

420
            stat_var_names(list(str)):
421 422

        Examples:
423
            .. code-block:: python
424

425 426 427
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
428

429 430 431
                strategy = fleet.DistributedStrategy()
                configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
                strategy.trainer_desc_configs = configs
432

433 434
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
435 436 437 438

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

439 440 441
    @property
    def adam_d2sum(self):
        """
442

443
        set adam_d2sum
W
wangguanqun 已提交
444
        Default value: False
445 446

        Examples:
447
            .. code-block:: python
448

449 450 451
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
452

453 454
                strategy = fleet.DistributedStrategy()
                strategy.adam_d2sum = True  # by default this is False
455

456 457
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
458 459 460 461 462 463 464 465 466 467 468

        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
469 470 471 472
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
473

474 475 476
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
477 478 479
        check_configs_key(
            self.strategy.trainer_desc_configs, configs, "trainer_desc_configs"
        )
480 481
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

482 483 484
    @property
    def fs_client_param(self):
        """
485

486
        Set fs client configurations.
487 488

        Note:
489
            uri(str): the uri of fs client
490

491
            user(str): the user_name of fs client
492

493
            passwd(str): the passwd of fs client
494

495
            hadoop_bin(str):
496

497
        Examples:
498 499 500 501 502 503 504 505 506 507 508
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
                strategy = fleet.DistributedStrategy()
                configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
                strategy.fs_client_param = configs
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)

509 510 511 512 513 514
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
515 516 517
        check_configs_key(
            self.strategy.fs_client_param, configs, "fs_client_param"
        )
518 519 520 521 522 523 524 525 526 527
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
528

529 530
        table_param = self.strategy.downpour_table_param

531
        def set_table_config(msg, config_name, configs, index=0):
532 533 534
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
535
                    logger.debug(f"message: {name}")
536 537 538 539
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
540
                        logger.debug(f"message num: {name} {num}")
541 542 543 544
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
545 546 547
                        set_table_config(
                            getattr(msg, field.name), name, configs
                        )
548
                else:
549
                    logger.debug("not message: %s", name)
550 551 552 553 554
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
555 556 557 558
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
559

560
        if not configs:
561
            logger.info("table configs is empty")
562
        else:
563 564 565
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
566 567 568 569 570
                set_table_config(
                    table_data,
                    "table_parameters." + table_name,
                    configs[table_name],
                )
571

572 573
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        support_sparse_key_list = [
            'sparse_table_class',
            'sparse_compress_in_save',
            'sparse_shard_num',
            'sparse_accessor_class',
            'sparse_learning_rate',
            'sparse_initial_g2sum',
            'sparse_initial_range',
            'sparse_weight_bounds',
            'sparse_fea_dim',
            'sparse_embedx_dim',
            'sparse_embedx_threshold',
            'sparse_nonclk_coeff',
            'sparse_click_coeff',
            'sparse_base_threshold',
            'sparse_delta_threshold',
            'sparse_delta_keep_days',
            'sparse_delete_after_unseen_days',
            'sparse_show_click_decay_rate',
            'sparse_delete_threshold',
            'sparse_converter',
            'sparse_deconverter',
            'sparse_enable_cache',
            'sparse_cache_rate',
            'sparse_cache_file_num',
            'sparse_beta1_decay_rate',
            'sparse_beta2_decay_rate',
            'sparse_ada_epsilon',
            'sparse_optimizer',
            'sparse_ssd_unseenday_threshold',
            'embed_sparse_optimizer',
            'embed_sparse_learning_rate',
            'embed_sparse_weight_bounds',
            'embed_sparse_initial_range',
            'embed_sparse_initial_g2sum',
            'embed_sparse_beta1_decay_rate',
            'embed_sparse_beta2_decay_rate',
            'embedx_sparse_optimizer',
            'embedx_sparse_learning_rate',
            'embedx_sparse_weight_bounds',
            'embedx_sparse_initial_range',
            'embedx_sparse_initial_g2sum',
            'embedx_sparse_beta1_decay_rate',
            'embedx_sparse_beta2_decay_rate',
            'feature_learning_rate',
            'nodeid_slot',
L
lxsbupt 已提交
620 621 622 623 624
            'sparse_load_filter_slots',
        ]
        support_sparse_table_class = [
            'DownpourSparseTable',
            'DownpourSparseSSDTable',
625
        ]
626
        support_sparse_accessor_class = [
627 628 629 630 631 632
            'DownpourSparseValueAccessor',
            'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor',
            'DownpourUnitAccessor',
            'DownpourDoubleUnitAccessor',
            'DownpourCtrDymfAccessor',
633 634 635
        ]
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
636
        def add_graph_config(graph, strategy):
637 638 639
            graph.feature_learning_rate = strategy.get(
                'feature_learning_rate', 0.05
            )
D
danleifeng 已提交
640 641
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

642
        def sparse_optimizer_config(sgd, strategy, prefix):
643 644 645
            optimizer_name = strategy.get(
                prefix + "sparse_optimizer", "adagrad"
            )
646 647 648 649
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
650 651
                    prefix + 'sparse_learning_rate', 0.05
                )
652
                sgd.naive.initial_range = strategy.get(
653 654 655 656 657
                    prefix + 'sparse_initial_range', 1e-4
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
658 659 660 661
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
662 663
                    prefix + 'sparse_learning_rate', 0.05
                )
664
                sgd.adagrad.initial_range = strategy.get(
665 666
                    prefix + 'sparse_initial_range', 1e-4
                )
667 668 669
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
670 671 672 673 674
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
675 676 677 678
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
679 680
                    prefix + 'sparse_learning_rate', 0.05
                )
681
                sgd.adagrad.initial_range = strategy.get(
682 683
                    prefix + 'sparse_initial_range', 1e-4
                )
684 685 686
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
687 688 689 690 691
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
692 693 694
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
695
                sgd.adam.learning_rate = strategy.get(
696 697
                    prefix + 'sparse_learning_rate', 0.001
                )
D
danleifeng 已提交
698
                sgd.adam.initial_range = strategy.get(
699 700
                    prefix + 'sparse_initial_range', 1e-4
                )
D
danleifeng 已提交
701
                sgd.adam.beta1_decay_rate = strategy.get(
702 703
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
D
danleifeng 已提交
704
                sgd.adam.beta2_decay_rate = strategy.get(
705 706
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
D
danleifeng 已提交
707
                sgd.adam.ada_epsilon = strategy.get(
708 709 710 711 712
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
D
danleifeng 已提交
713 714 715
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
716
                sgd.adam.learning_rate = strategy.get(
717 718
                    prefix + 'sparse_learning_rate', 0.001
                )
719
                sgd.adam.initial_range = strategy.get(
720 721
                    prefix + 'sparse_initial_range', 1e-4
                )
722
                sgd.adam.beta1_decay_rate = strategy.get(
723 724
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
725
                sgd.adam.beta2_decay_rate = strategy.get(
726 727
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
728
                sgd.adam.ada_epsilon = strategy.get(
729 730 731 732 733
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
734 735 736 737 738 739
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
740 741 742
            table_class = config.get(
                "sparse_table_class", "DownpourSparseTable"
            )
743 744
            if table_class not in support_sparse_table_class:
                raise ValueError(
L
lxsbupt 已提交
745
                    "support sparse_table_class: ['DownpourSparseTable, DownpourSparseSSDTable'], but actual %s"
746 747
                    % (table_class)
                )
L
lxsbupt 已提交
748 749 750 751
            if table_class == "DownpourSparseSSDTable":
                table_data.table_class = 'SSDSparseTable'
            else:
                table_data.table_class = 'MemorySparseTable'
752
            table_data.shard_num = config.get('sparse_shard_num', 1000)
753
            table_data.enable_sparse_table_cache = config.get(
754 755
                'sparse_enable_cache', True
            )
756
            table_data.sparse_table_cache_rate = config.get(
757 758
                'sparse_cache_rate', 0.00055
            )
759
            table_data.sparse_table_cache_file_num = config.get(
760 761
                'sparse_cache_file_num', 16
            )
762

763 764 765
            accessor_class = config.get(
                "sparse_accessor_class", "DownpourCtrAccessor"
            )
766 767
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
768
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
769 770
                    % (accessor_class)
                )
771

772 773
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
774 775
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
776
            else:
777 778 779
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
780 781 782 783 784
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
785 786
                'sparse_embedx_threshold', 10
            )
787

788 789 790 791 792
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

793
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
794 795
                'sparse_nonclk_coeff', 0.1
            )
796
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
797 798
                'sparse_click_coeff', 1
            )
799
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
800 801
                'sparse_base_threshold', 1.5
            )
802
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
803 804
                'sparse_delta_threshold', 0.25
            )
805
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
806 807 808 809 810 811 812 813 814 815 816 817 818 819
                'sparse_delta_keep_days', 16
            )
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = (
                config.get('sparse_show_click_decay_rate', 0.98)
            )
            table_data.accessor.ctr_accessor_param.delete_threshold = (
                config.get('sparse_delete_threshold', 0.8)
            )
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = (
                config.get('sparse_delete_after_unseen_days', 30)
            )
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = (
                config.get('sparse_ssd_unseenday_threshold', 1)
            )
L
lxsbupt 已提交
820 821 822 823
            load_filter_slots = config.get('sparse_load_filter_slots', [])
            table_data.accessor.ctr_accessor_param.load_filter_slots.extend(
                load_filter_slots
            )
824 825 826 827 828 829 830 831 832 833 834 835 836
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

837 838 839 840 841 842 843 844 845 846
            if (
                accessor_class == 'DownpourCtrAccessor'
                or accessor_class == 'DownpourCtrDoubleAccessor'
            ):
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, ''
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, ''
                )
847
            else:
848 849 850 851 852 853
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, 'embed_'
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, 'embedx_'
                )
D
danleifeng 已提交
854
            add_graph_config(table_data.accessor.graph_sgd_param, config)
855 856

        if not configs:
857
            logger.info("fleet desc config is empty")
858 859
        else:
            for table_name in configs:
860 861 862 863
                if (
                    table_name == 'dense_table'
                    or table_name == 'datanorm_table'
                ):
864 865 866 867 868 869 870
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

871
    @property
872 873 874 875
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
876

877
        Examples:
1
123malin 已提交
878

879
          .. code-block:: python
880

881
            import paddle.distributed.fleet as fleet
882 883
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
884

885 886
        """
        return self.strategy.amp
887

888
    @amp.setter
889
    @is_strict_auto
890
    def amp(self, flag):
891
        if isinstance(flag, bool):
892
            self.strategy.amp = flag
893
        else:
894
            logger.warning("amp should have value of bool type")
895 896

    @property
897
    def amp_configs(self):
898
        """
899

900 901 902 903
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
919

920 921 922 923 924 925 926 927
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
928
            .. code-block:: python
1
123malin 已提交
929

930 931 932 933 934 935
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "custom_white_list": ['conv2d']}
936 937

        Examples 2:
938 939 940 941 942 943 944 945 946 947
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                # pure fp16
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "use_pure_fp16": True
                }
948

949
        """
950
        return get_msg_dict(self.strategy.amp_configs)
951

952
    @amp_configs.setter
953
    @is_strict_auto
954 955 956
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
957

958 959 960
    @property
    def asp(self):
        """
961

962 963 964 965
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:
966
            .. code-block:: python
967

968 969 970
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.asp = True # by default this is false
971 972 973 974 975 976 977 978 979 980

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
981
            logger.warning("asp should have value of bool type")
982

983
    @property
984 985 986 987 988 989
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
990
            .. code-block:: python
1
123malin 已提交
991

992 993 994 995 996
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                # suppose x and y are names of checkpoint tensors for recomputation
                strategy.recompute_configs = {"checkpoints": ["x", "y"]}
997 998 999

        """
        return self.strategy.recompute
1000

1001 1002
    @property
    def sync_nccl_allreduce(self):
1003
        """
1004

1005 1006 1007 1008
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1009
            .. code-block:: python
1
123malin 已提交
1010

1011 1012 1013
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_nccl_allreduce = True
1014 1015

        """
1016 1017 1018
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
1019
    @is_strict_auto
1020 1021 1022 1023
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
1024
            logger.warning("sync_nccl_allreduce should have value of bool type")
1025

1026
    @property
1027
    def use_hierarchical_allreduce(self):
1028
        """
1029

1030 1031 1032 1033 1034
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1035
            .. code-block:: python
1
123malin 已提交
1036

1037 1038 1039
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.use_hierarchical_allreduce = True
1040 1041

        """
1042
        return self.strategy.use_hierarchical_allreduce
1043

1044
    @use_hierarchical_allreduce.setter
1045
    @is_strict_auto
1046
    def use_hierarchical_allreduce(self, flag):
1047
        if isinstance(flag, bool):
1048
            self.strategy.use_hierarchical_allreduce = flag
1049
        else:
1050 1051
            logger.warning(
                "use_hierarchical_allreduce should have value of bool type"
1052 1053 1054
            )

    @property
1055
    def hierarchical_allreduce_inter_nranks(self):
1056
        """
1057

1058 1059 1060 1061
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1062
            .. code-block:: python
1
123malin 已提交
1063

1064 1065 1066
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hierarchical_allreduce_inter_nranks = 8
1067 1068

        """
1069
        return self.strategy.hierarchical_allreduce_inter_nranks
1070

1071
    @hierarchical_allreduce_inter_nranks.setter
1072
    @is_strict_auto
1073 1074 1075
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
1076
        else:
1077 1078
            logger.warning(
                "hierarchical_allreduce_inter_nranks should have value of int type"
1079 1080
            )

1081
    @property
1082
    def sync_batch_norm(self):
1083
        """
1084

1085
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
1086

1087 1088 1089
        Default value: False

        Examples:
1090
            .. code-block:: python
1
123malin 已提交
1091

1092 1093 1094
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_batch_norm = True
1095 1096 1097

        """

1098
        return self.strategy.sync_batch_norm
1099

1100
    @sync_batch_norm.setter
1101
    @is_strict_auto
1102
    def sync_batch_norm(self, flag):
1103
        if isinstance(flag, bool):
1104
            self.strategy.sync_batch_norm = flag
1105
        else:
1106
            logger.warning("sync_batch_norm should have value of bool type")
1107 1108 1109

    @property
    def fuse_all_reduce_ops(self):
1110
        """
1111

1112 1113 1114 1115
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1116
            .. code-block:: python
1
123malin 已提交
1117

1118 1119 1120
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_all_reduce_ops = False
1121 1122

        """
1123 1124 1125
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
1126
    @is_strict_auto
1127 1128 1129 1130
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
1131
            logger.warning("fuse_all_reduce_ops should have value of bool type")
1132

1133 1134
    @property
    def fuse_grad_size_in_MB(self):
1135
        """
1136

1137 1138 1139 1140 1141
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1142
            .. code-block:: python
1
123malin 已提交
1143

1144 1145 1146
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_MB = 50
1
123malin 已提交
1147

1148
        """
1149 1150 1151
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
1152
    @is_strict_auto
1153 1154 1155 1156
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
1157
            logger.warning("fuse_grad_size_in_MB should have value of int type")
1158

1159 1160 1161
    @property
    def last_comm_group_size_MB(self):
        """
1162

1163 1164 1165
        Specifying the size of gradient to fuse in Mega-Bytes when
        the last group of each batch communicates. Making the last group
        small is useful to improve performance.
1166 1167 1168 1169

        Default value: 1

        Examples:
1170 1171 1172 1173 1174
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.last_comm_group_size_MB = 2
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1187 1188 1189
    @property
    def find_unused_parameters(self):
        """
1190

1191
        Indicating whether we are using find_unused_parameters to
1192 1193
        find unused parameters in DataParallel.

1194
        Default value: False
1195 1196

        Examples:
1197
            .. code-block:: python
1198

1199 1200 1201
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.find_unused_parameters = True
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
1213 1214
            logger.warning(
                "find_unused_parameters should have value of bool type"
1215
            )
1216

1217 1218 1219 1220 1221
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1222
    @is_strict_auto
1223 1224 1225 1226
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
1227 1228
            logger.warning(
                "fuse_grad_size_in_TFLOPS should have value of float type"
1229 1230
            )

1231
    @property
1232
    def nccl_comm_num(self):
1233
        """
1234

1235 1236 1237 1238 1239
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1240
            .. code-block:: python
1
123malin 已提交
1241

1242 1243 1244
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.nccl_comm_num = 2
1
123malin 已提交
1245

1246 1247
        """

1248
        return self.strategy.nccl_comm_num
1249

1250
    @nccl_comm_num.setter
1251
    @is_strict_auto
1252
    def nccl_comm_num(self, value):
1253
        if isinstance(value, int):
1254
            self.strategy.nccl_comm_num = value
1255
        else:
1256
            logger.warning("nccl_comm_num should have value of int type")
1257

1258
    @recompute.setter
1259
    @is_strict_auto
1260
    def recompute(self, flag):
1261
        if isinstance(flag, bool):
1262
            self.strategy.recompute = flag
1263
        else:
1264
            logger.warning("recompute should have value of bool type")
1265 1266

    @property
1267 1268
    def recompute_configs(self):
        """
1269

1270 1271
        Set recompute configurations.

J
JZ-LIANG 已提交
1272 1273 1274 1275
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

1276
        enable_offload(bool): enable recompute checkpoints offload feature. this feature
J
JZ-LIANG 已提交
1277 1278 1279 1280 1281 1282
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
1283
        specific here should be determined ("-1" is not allowed).
1284

1285
        Examples:
1286
            .. code-block:: python
1
123malin 已提交
1287

1288 1289 1290 1291 1292 1293 1294
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                strategy.recompute_configs = {
                    "checkpoints": ["x", "y"],
                    "enable_offload": True,
                    "checkpoint_shape": [100, 512, 1024] }
1295 1296 1297 1298 1299

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1300
    @is_strict_auto
1301
    def recompute_configs(self, configs):
1302 1303 1304
        check_configs_key(
            self.strategy.recompute_configs, configs, "checkpoint_configs"
        )
1305
        assign_configs_value(self.strategy.recompute_configs, configs)
1306

1307 1308 1309
    @property
    def sharding(self):
        """
1310

1311
        Indicating whether we are using sharding Optimizer for memory
1312
        optimization. We implement the sharding optimizer following the ZeRO-DP
J
JZ-LIANG 已提交
1313 1314
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1315

1316 1317
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1318 1319 1320
        Default value: False

        Examples:
1321
            .. code-block:: python
1
123malin 已提交
1322

1323 1324 1325
                import paddle.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
1
123malin 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
1336
            logger.warning("sharding should have value of bool type")
1337 1338 1339 1340

    @property
    def sharding_configs(self):
        """
1341

1342
        Set sharding configurations.
1343 1344

        **Note**:
1345 1346
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and
1347 1348
            communication. Default is segment_broadcast_MB.

1349
            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and
1350 1351 1352 1353
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

1354
            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation.
1355 1356 1357 1358 1359 1360
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

1361
            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model.
1362 1363 1364 1365 1366
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1367
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1368

1369
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1370

1371
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on.
1372
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1373

1374 1375 1376
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1377

1378
        Examples:
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
            .. code-block:: python

                # sharding-DP, 2 nodes with 8 gpus per node
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
                strategy.sharding_configs = {
                    "sharding_segment_strategy": "segment_broadcast_MB",
                    "segment_broadcast_MB": 32,
                    "sharding_degree": 8,
                    "dp_degree": 2,
                    "gradient_merge_acc_step": 4,
                    }
1
123malin 已提交
1392

1393 1394 1395 1396 1397 1398
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
1399 1400 1401
        check_configs_key(
            self.strategy.sharding_configs, configs, "sharding_configs"
        )
1402 1403
        assign_configs_value(self.strategy.sharding_configs, configs)

1404 1405 1406
    @property
    def without_graph_optimization(self):
        """
1407

1408 1409 1410
        Run program using Executor other than ParallelExecutor.

        Examples:
1411
            .. code-block:: python
1412

1413 1414 1415
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.without_graph_optimization = True
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
1426 1427
            logger.warning(
                "without_graph_optimization should have value of bool type"
1428 1429
            )

1430 1431 1432
    @property
    def _calc_comm_same_stream(self):
        """
1433

1434 1435 1436
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
1437

1438
        Examples:
1439 1440 1441 1442 1443 1444
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.calc_comm_same_stream = True

1445 1446 1447 1448 1449 1450 1451 1452 1453
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
1454 1455
            logger.warning(
                "calc_comm_same_stream should have value of boolean type"
1456 1457
            )

1458 1459 1460
    @property
    def fuse_grad_merge(self):
        """
1461

1462 1463 1464
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
1465

1466
        Examples:
1467 1468 1469 1470 1471 1472
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_param_grad = True

1473 1474 1475 1476 1477 1478 1479 1480 1481
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
1482
            logger.warning("fuse_grad_merge should have value of boolean type")
1483

1484 1485 1486
    @property
    def fuse_grad_size_in_num(self):
        """
1487

1488
        This based on raw_program_optimizer program and allreduce the num of the fused op
1489

1490
        Examples:
1491 1492 1493 1494 1495 1496 1497
            .. code-block:: python

                import paddle.distributed.fleet as fleet

                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_num = 2

1498 1499 1500 1501 1502 1503 1504 1505 1506
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
1507 1508
            logger.warning(
                "fuse_grad_size_in_num should have value of int32 type"
1509
            )
1510

1511
    @property
1512 1513
    def pipeline(self):
        """
1514

1515 1516 1517 1518 1519 1520
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1521
            .. code-block:: python
1
123malin 已提交
1522

1523 1524 1525
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
1526 1527 1528

        """
        return self.strategy.pipeline
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
1540
            logger.warning("is_fl_ps_mode should have value of bool type")
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
1552
            logger.warning("with_coordinator should have value of bool type")
1553

1554
    @pipeline.setter
1555
    @is_strict_auto
1556
    def pipeline(self, flag):
1557
        if isinstance(flag, bool):
1558
            self.strategy.pipeline = flag
1559
        else:
1560
            logger.warning("pipeline should have value of bool type")
1561 1562

    @property
1563 1564
    def pipeline_configs(self):
        """
1565

1566 1567
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
1568
        There are Tensor queue buffer between each pair of neighborhood GPUS
1569 1570 1571
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
1572
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
1573
        so that we will have a faster producer for downstream consumers.
1574

1575 1576
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1577

1578
            **micro_batch_size**: the number of small batches in each user defined batch
1579

1580
        Examples:
1581
            .. code-block:: python
1
123malin 已提交
1582

1583 1584 1585 1586
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
                strategy.pipeline_configs = {"micro_batch_size": 12}
1587

1588
        """
1589

1590
        return get_msg_dict(self.strategy.pipeline_configs)
1591

1592
    @pipeline_configs.setter
1593
    @is_strict_auto
1594
    def pipeline_configs(self, configs):
1595 1596 1597
        check_configs_key(
            self.strategy.pipeline_configs, configs, "pipeline_configs"
        )
1598
        assign_configs_value(self.strategy.pipeline_configs, configs)
1599

L
lilong12 已提交
1600 1601 1602
    @property
    def tensor_parallel(self):
        """
1603

L
lilong12 已提交
1604 1605 1606
        Indicating whether we are using tensor parallel for distributed training.

        Examples:
1607
            .. code-block:: python
L
lilong12 已提交
1608

1609 1610 1611
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
L
lilong12 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
1622
            logger.warning("tensor_parallel should have value of bool type")
L
lilong12 已提交
1623 1624 1625 1626

    @property
    def tensor_parallel_configs(self):
        """
1627

L
lilong12 已提交
1628 1629 1630 1631
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
1632

L
lilong12 已提交
1633
            **tensor_parallel_degree**: degree of tensor parallel
1634

1635 1636
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1637 1638

        Examples:
1639
            .. code-block:: python
L
lilong12 已提交
1640

1641 1642 1643 1644 1645
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
                strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                    "tensor_init_seed": 123}
L
lilong12 已提交
1646 1647 1648 1649 1650 1651 1652

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
1653 1654 1655 1656 1657
        check_configs_key(
            self.strategy.tensor_parallel_configs,
            configs,
            "tensor_parallel_configs",
        )
L
lilong12 已提交
1658 1659
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1660 1661 1662
    @property
    def hybrid_configs(self):
        """
1663

1664
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism
1665 1666 1667 1668 1669
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
1670
            **dp_degree(int)**: set number of GPUs in a data parallel group. Default -1.
1671
                                    This value should be an integer greater than 0.
1672
                                    If it is not set, or set to -1, its value will be inferred
1673 1674
                                    based on the total number of cards.

1675 1676 1677
            **mp_degree(int)**: set number of GPUs in a model parallel group. Default 1

            **pp_degree(int)**: set number of GPUs in a pipeline parallel group. Default 1
1678

1679 1680
            **order(list(string))**: set hybrid parallel dimensions, the order is from outside to inside. Default ['dp','pp','sharding','mp']

1681
        Examples:
1682 1683 1684 1685 1686 1687 1688
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hybrid_configs = {
                    "dp_degree": 1,
                    "mp_degree": 2,
1689 1690
                    "pp_degree": 1,
                    "order":['dp','pp','sharding','mp']}
1691

1692 1693 1694 1695 1696
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
1697 1698 1699 1700 1701
        hybrid_config = copy.deepcopy(configs)
        if "order" in hybrid_config:
            self.hybrid_parallel_order = hybrid_config["order"]
            hybrid_config.pop('order')

1702
        check_configs_key(
1703
            self.strategy.hybrid_configs, hybrid_config, "hybrid_configs"
1704
        )
1705 1706
        assign_configs_value(self.strategy.hybrid_configs, configs)

1707
    @property
1708
    def localsgd(self):
1709
        """
1710

M
mapingshuo 已提交
1711 1712 1713
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1714 1715 1716


        Examples:
1717
            .. code-block:: python
1
123malin 已提交
1718

1719 1720 1721
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True # by default this is false
1722 1723

        """
1724
        return self.strategy.localsgd
1725

1726
    @localsgd.setter
1727
    @is_strict_auto
1728 1729 1730
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1731
        else:
1732
            logger.warning("localsgd should have value of bool type")
1733 1734

    @property
1735
    def localsgd_configs(self):
1736
        """
1737

1738 1739 1740 1741
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1742
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1743
            begin_step(int) The step of beginning training by localsgd. Default 1.
1744 1745

        Examples:
1746
            .. code-block:: python
1
123malin 已提交
1747

1748 1749 1750 1751 1752
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True
                strategy.localsgd_configs = {"k_steps": 4,
                                            "begin_step": 30}
1753 1754 1755

        """

1756
        return get_msg_dict(self.strategy.localsgd_configs)
1757

1758
    @localsgd_configs.setter
1759
    @is_strict_auto
1760
    def localsgd_configs(self, configs):
1761 1762 1763
        check_configs_key(
            self.strategy.localsgd_configs, configs, "localsgd_configs"
        )
1764
        assign_configs_value(self.strategy.localsgd_configs, configs)
1765

1766 1767 1768
    @property
    def adaptive_localsgd(self):
        """
1769

1770
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
1771
        For more details, please refer to `Adaptive Communication Strategies to Achieve
1772 1773 1774
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.

        Examples:
1775
            .. code-block:: python
1
123malin 已提交
1776

1777 1778 1779
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True # by default this is false
1780 1781

        """
1782
        return self.strategy.adaptive_localsgd
1783 1784 1785 1786 1787

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1788
            self.strategy.adaptive_localsgd = flag
1789
        else:
1790
            logger.warning("adaptive_localsgd should have value of bool type")
1791 1792 1793 1794

    @property
    def adaptive_localsgd_configs(self):
        """
1795

1796 1797 1798 1799 1800 1801 1802
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1803

1804
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1805 1806

        Examples:
1807
            .. code-block:: python
1
123malin 已提交
1808

1809 1810 1811 1812 1813
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True
                strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                    "begin_step": 30}
1814 1815 1816 1817 1818 1819 1820 1821

        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
1822 1823 1824 1825 1826
        check_configs_key(
            self.strategy.adaptive_localsgd_configs,
            configs,
            "adaptive_localsgd_configs",
        )
1827 1828
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1829
    @property
1830
    def dgc(self):
1831
        """
1832

1833 1834 1835 1836 1837 1838
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1839
            .. code-block:: python
1
123malin 已提交
1840

1841 1842 1843
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True # by default this is false
1844 1845

        """
1846
        return self.strategy.dgc
1847

1848
    @dgc.setter
1849
    @is_strict_auto
1850 1851 1852
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1853
        else:
1854
            logger.warning("dgc should have value of bool type")
1855 1856

    @property
1857
    def dgc_configs(self):
1858
        r"""
1859

1860 1861 1862 1863
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1874 1875

        Examples:
1876
            .. code-block:: python
1
123malin 已提交
1877

1878 1879 1880 1881
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.dgc_configs = {"rampup_begin_step": 1252}
1882 1883

        """
1884
        return get_msg_dict(self.strategy.dgc_configs)
1885

1886
    @dgc_configs.setter
1887
    @is_strict_auto
1888 1889 1890
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1891

1892 1893 1894
    @property
    def fp16_allreduce(self):
        """
1895

1896 1897 1898 1899
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1900
            .. code-block:: python
1
123malin 已提交
1901

1902
                import paddle.distributed.fleet as fleet
1903

1904 1905
                strategy = fleet.DistributedStrategy()
                strategy.fp16_allreduce = True # by default this is false
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1917
    @property
1918
    def gradient_merge(self):
1919
        """
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1931
            .. code-block:: python
1
123malin 已提交
1932

1933 1934 1935 1936
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1937

1938
        """
1939
        return self.strategy.gradient_merge
1940

1941
    @gradient_merge.setter
1942
    @is_strict_auto
1943
    def gradient_merge(self, flag):
1944
        if isinstance(flag, bool):
1945
            self.strategy.gradient_merge = flag
1946
        else:
1947
            logger.warning("gradient_merge should have value of bool type")
1948 1949 1950

    @property
    def gradient_merge_configs(self):
1951
        """
1952

1953
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1954 1955 1956 1957 1958 1959 1960

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1961
            .. code-block:: python
1
123malin 已提交
1962

1963 1964 1965 1966
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1967

1968
        """
1969 1970 1971
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1972
    @is_strict_auto
1973
    def gradient_merge_configs(self, configs):
1974 1975 1976
        check_configs_key(
            self.strategy.gradient_merge_configs, configs, "gradient_configs"
        )
1977
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1978 1979

    @property
1980
    def lars(self):
1981
        """
1982

1983 1984
        Set lars configurations. lars is used to deal with the convergence problems when the global
        batch size is larger than 8k.  For more details, please refer to
1985 1986 1987 1988 1989
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1990
            .. code-block:: python
1
123malin 已提交
1991

1992 1993 1994
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True # by default this is false
1995 1996

        """
1997
        return self.strategy.lars
1998

1999
    @lars.setter
2000
    @is_strict_auto
2001
    def lars(self, flag):
2002
        if isinstance(flag, bool):
2003
            self.strategy.lars = flag
2004
        else:
2005
            logger.warning("lars should have value of bool type")
2006

2007 2008
    @property
    def lars_configs(self):
2009
        """
2010

2011 2012 2013 2014 2015
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
2016 2017
        **epsilon (float)**: argument is used to avoid potential devision-by-zero
        when compute the local lr;
2018 2019 2020 2021
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
2022
            .. code-block:: python
1
123malin 已提交
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True
                strategy.lars_configs = {
                            "lars_coeff": 0.01,
                            "lars_weight_decay": 0.0005,
                            "epsilon": 0,
                            "exclude_from_weight_decay": ['batch_norm', '.b_0']
                        }
M
mapingshuo 已提交
2033

2034
        """
2035 2036 2037
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
2038
    @is_strict_auto
2039 2040 2041 2042
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

2043
    @property
2044
    def lamb(self):
2045
        """
2046

2047 2048 2049
        Set lamb configurations. lamb is used to deal with the convergence problems for large
        batch size training, specially for attention-related model like BERT. For more details,
        please refer to
2050 2051 2052
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
2053

2054
        Examples:
2055
            .. code-block:: python
1
123malin 已提交
2056

2057 2058 2059
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True # by default this is false
2060 2061 2062

        """

2063
        return self.strategy.lamb
2064

2065
    @lamb.setter
2066
    @is_strict_auto
2067
    def lamb(self, flag):
2068
        if isinstance(flag, bool):
2069
            self.strategy.lamb = flag
2070
        else:
2071
            logger.warning("lamb should have value of bool type")
2072

2073 2074
    @property
    def lamb_configs(self):
2075
        """
2076

2077 2078 2079 2080 2081 2082 2083 2084
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
2085 2086 2087 2088 2089 2090 2091 2092 2093
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True
                strategy.lamb_configs = {
                        'lamb_weight_decay': 0.01,
                        'exclude_from_weight_decay': [],
                    }
1
123malin 已提交
2094

2095
        """
2096 2097 2098
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
2099
    @is_strict_auto
2100 2101 2102 2103
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

2104 2105
    @property
    def elastic(self):
2106
        """
2107

2108 2109
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
2110

2111
        """
2112 2113 2114
        return self.strategy.elastic

    @elastic.setter
2115
    @is_strict_auto
2116 2117 2118 2119
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
2120
            logger.warning("elastic should have value of bool type")
2121 2122 2123

    @property
    def auto(self):
2124
        """
2125

2126
        Indicating whether we are using auto-parallel configuration
2127
        This feature is currently an experimental feature. Currently,
2128 2129 2130 2131 2132 2133
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2134
            .. code-block:: python
1
123malin 已提交
2135

2136 2137 2138
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2139

2140 2141 2142 2143
                strategy = fleet.DistributedStrategy()
                strategy.auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2144

2145 2146
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2147 2148

        """
2149 2150 2151 2152 2153 2154 2155
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
2156
            logger.warning("auto should have value of bool type")
2157

2158 2159 2160
    @property
    def semi_auto(self):
        """
2161

2162
        Indicating whether we are using semi-auto parallel function
2163
        This feature is currently an experimental feature. Currently,
2164 2165 2166 2167 2168 2169
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2170
            .. code-block:: python
2171

2172 2173 2174
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2175

2176 2177 2178 2179
                strategy = fleet.DistributedStrategy()
                strategy.semi_auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2180

2181 2182
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2183 2184 2185 2186 2187 2188 2189 2190 2191

        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
2192
            logger.warning("semi-auto should have value of bool type")
2193

Z
zhaoyingli 已提交
2194 2195 2196
    @property
    def auto_search(self):
        """
2197

Z
zhaoyingli 已提交
2198 2199 2200
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
2201

Z
zhaoyingli 已提交
2202
        Examples:
2203 2204 2205 2206 2207 2208 2209 2210 2211
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.auto_search = True

Z
zhaoyingli 已提交
2212 2213 2214 2215 2216 2217 2218 2219
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
2220
            logger.warning("auto-search should have value of bool type")
Z
zhaoyingli 已提交
2221

2222 2223 2224
    @property
    def split_data(self):
        """
2225

2226 2227
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
2228

2229
        Examples:
2230 2231 2232 2233 2234 2235 2236 2237 2238
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.split_data = True

2239 2240 2241 2242 2243 2244 2245 2246
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
2247
            logger.warning("split_data should have value of bool type")
2248

2249 2250 2251
    @property
    def qat(self):
        """
2252

2253 2254
        Indicating whether we are using quantization training
        Default Value: False
2255

2256 2257 2258 2259 2260 2261 2262 2263
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
2264
            logger.warning("qat should have value of bool type")
2265 2266 2267 2268

    @property
    def qat_configs(self):
        """
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

2280
            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope,
2281 2282 2283 2284 2285
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:
2286
            .. code-block:: python
2287

2288
                import paddle.distributed.fleet as fleet
2289

2290 2291 2292 2293 2294 2295 2296
                strategy = fleet.DistributedStrategy()
                strategy.qat = True
                strategy.qat_configs = {
                    "channel_wise_abs_max": True,
                    "weight_bits": 8,
                    "activation_bits: 8,
                    "not_quant_pattern": ['skip_quant']}
2297 2298 2299 2300 2301 2302 2303 2304 2305

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2306 2307 2308
    @property
    def heter_ccl_mode(self):
        """
2309

K
kuizhiqing 已提交
2310 2311 2312 2313 2314 2315
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:
2316
            .. code-block:: python
K
kuizhiqing 已提交
2317

2318 2319
                import paddle
                import paddle.distributed.fleet as fleet
K
kuizhiqing 已提交
2320

2321 2322
                strategy = fleet.DistributedStrategy()
                strategy.heter_ccl_mode = True
K
kuizhiqing 已提交
2323

2324 2325 2326
                # for initialize parallel env, only need to call
                paddle.distributed.init_parallel_env()
                # then the heterogenous context will be created.
K
kuizhiqing 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335

        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
2336
            logger.warning("heter_ccl_mode should have value of bool type")
K
kuizhiqing 已提交
2337

2338 2339
    @property
    def cudnn_exhaustive_search(self):
2340
        """
2341

2342 2343 2344 2345 2346 2347 2348
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
2349
            .. code-block:: python
1
123malin 已提交
2350

2351 2352 2353
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2354

2355 2356 2357 2358 2359
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_exhaustive_search = False

                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2360 2361

        """
2362 2363 2364
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2365
    @is_strict_auto
2366 2367 2368 2369
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
2370 2371
            logger.warning(
                "cudnn_exhaustive_search should have value of bool type"
2372 2373 2374 2375
            )

    @property
    def conv_workspace_size_limit(self):
2376
        """
2377

2378 2379 2380 2381 2382 2383 2384
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
2385
            .. code-block:: python
1
123malin 已提交
2386

2387 2388 2389
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2390

2391 2392
                strategy = fleet.DistributedStrategy()
                strategy.conv_workspace_size_limit = 1024
2393

2394 2395
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2396

2397
        """
2398 2399 2400
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2401
    @is_strict_auto
2402 2403 2404 2405
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
2406 2407
            logger.warning(
                "conv_workspace_size_limit should have value of int type"
2408 2409 2410 2411
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2412
        """
2413

2414 2415 2416 2417 2418
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
2419
            .. code-block:: python
1
123malin 已提交
2420

2421 2422 2423
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2424

2425 2426
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_batchnorm_spatial_persistent = True
2427

2428 2429
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2430 2431

        """
2432 2433 2434
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2435
    @is_strict_auto
2436 2437 2438 2439
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
2440 2441
            logger.warning(
                "cudnn_batchnorm_spatial_persistent should have value of bool type"
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2464 2465
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2466

2467 2468 2469 2470 2471 2472
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2473
    def __repr__(self):
2474 2475 2476 2477 2478 2479
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

2480
        h1_format = "    " + f"|{{:^{length}s}}|\n"
2481
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
2482 2483
            max_k, " " * spacing, max_v
        )
2484 2485 2486 2487 2488 2489 2490 2491 2492

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2493
        fields = self.strategy.DESCRIPTOR.fields
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
2508
                                f"{f.name}=True <-> {f.name}_configs"
2509
                            )
2510
                            draws += line + "\n"
2511 2512 2513
                            my_configs = getattr(
                                self.strategy, f.name + "_configs"
                            )
2514 2515 2516
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2517
                                    getattr(my_configs, ff.name),
R
risemeup1 已提交
2518
                                    _message.RepeatedScalarContainer,
2519
                                ):
2520 2521 2522
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2523
                                            draws += h2_format.format(
2524 2525
                                                ff.name, str(v)
                                            )
2526
                                        else:
2527
                                            draws += h2_format.format(
2528 2529
                                                "", str(v)
                                            )
2530 2531 2532
                                else:
                                    draws += h2_format.format(
                                        ff.name,
2533 2534
                                        str(getattr(my_configs, ff.name)),
                                    )
2535 2536
                    else:
                        env_draws += h2_format.format(
2537 2538
                            f.name, str(getattr(self.strategy, f.name))
                        )
2539 2540
                else:
                    env_draws += h2_format.format(
2541 2542 2543 2544 2545 2546 2547 2548 2549
                        f.name, str(getattr(self.strategy, f.name))
                    )

        result_res = (
            draws
            + border
            + "\n"
            + h1_format.format("Environment Flags, Communication Flags")
        )
2550 2551 2552 2553 2554 2555 2556
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2557
        for f in fields:
2558
            build_strategy_str += h2_format.format(
2559 2560
                f.name, str(getattr(self.strategy.build_strategy, f.name))
            )
2561 2562 2563 2564 2565 2566 2567 2568
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
2569 2570
                f.name, str(getattr(self.strategy.execution_strategy, f.name))
            )
2571 2572 2573 2574
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res