Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e50d883e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e50d883e
编写于
1月 17, 2022
作者:
S
sneaxiy
提交者:
GitHub
1月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add NoReduce mode for ParallelExecutor (#38969)
* add no reduce mode for pe * add NoReduce ut
上级
6eeb16b8
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
134 addition
and
17 deletion
+134
-17
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+4
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+1
-1
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.cc
...k/ir/multi_devices_graph_pass/multi_devices_graph_pass.cc
+2
-0
paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h
...rk/ir/multi_devices_graph_pass/multi_devices_graph_pass.h
+9
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+2
-1
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+12
-4
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+14
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
...dle/fluid/tests/unittests/test_parallel_executor_mnist.py
+89
-10
未找到文件。
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
e50d883e
...
...
@@ -239,6 +239,9 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
multi_devices_pass
=
AppendPass
(
"reduce_mode_multi_devices_pass"
).
get
();
break
;
case
BuildStrategy
::
ReduceStrategy
::
kNoReduce
:
multi_devices_pass
=
AppendPass
(
"no_reduce_multi_devices_pass"
).
get
();
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unknown reduce strategy."
));
...
...
@@ -475,6 +478,7 @@ USE_PASS(fuse_bn_act_pass);
USE_PASS
(
fuse_bn_add_act_pass
);
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
multi_batch_merge_pass
);
USE_PASS
(
no_reduce_multi_devices_pass
);
USE_PASS
(
reduce_mode_multi_devices_pass
);
USE_PASS
(
all_reduce_mode_multi_devices_pass
);
USE_PASS
(
dist_multi_devices_pass
);
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
e50d883e
...
...
@@ -72,7 +72,7 @@ struct BuildStrategy {
// For CPU, if you want to fix the order of summing to make the result
// of kAllReduce and kReduce no diff, you can add
// `FLAGS_cpu_deterministic=true` to env.
enum
class
ReduceStrategy
{
kAllReduce
=
0
,
kReduce
=
1
};
enum
class
ReduceStrategy
{
kAllReduce
=
0
,
kReduce
=
1
,
kNoReduce
=
2
};
enum
class
GradientScaleStrategy
{
kCoeffNumDevice
=
0
,
...
...
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
e50d883e
...
...
@@ -117,6 +117,7 @@ message BuildStrategy {
optional
bool
enable_addto
=
12
[
default
=
false
];
optional
bool
fix_op_run_order
=
13
[
default
=
false
];
optional
bool
allow_cuda_graph_capture
=
14
[
default
=
false
];
optional
int32
reduce_strategy
=
15
[
default
=
0
];
}
message
ExecutionStrategy
{
...
...
paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.cc
浏览文件 @
e50d883e
...
...
@@ -1283,3 +1283,5 @@ REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
paddle
::
framework
::
ir
::
DistSSAGraphBuilder
);
REGISTER_MULTI_DEVICES_PASS
(
async_multi_devices_pass
,
paddle
::
framework
::
ir
::
AsyncSSAGraphBuilder
);
REGISTER_MULTI_DEVICES_PASS
(
no_reduce_multi_devices_pass
,
paddle
::
framework
::
ir
::
NoReduceSSAGraphBuilder
);
paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h
浏览文件 @
e50d883e
...
...
@@ -144,6 +144,15 @@ class AllReduceSSAGraphBuilder : public MultiDevSSAGraphBuilderBase {
bool
IsEncoded
(
const
std
::
string
&
p_name
)
const
;
};
class
NoReduceSSAGraphBuilder
:
public
MultiDevSSAGraphBuilderBase
{
protected:
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
const
std
::
string
&
p_name
,
const
std
::
string
&
g_name
)
const
override
{}
void
InsertPostprocessOps
(
ir
::
Graph
*
result
)
const
override
{}
};
class
AsyncSSAGraphBuilder
:
public
MultiDevSSAGraphBuilderBase
{
protected:
void
InsertCollectiveOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
e50d883e
...
...
@@ -2984,7 +2984,8 @@ All parameter, weight, gradient are variables in Paddle.
py
::
enum_
<
BuildStrategy
::
ReduceStrategy
>
(
build_strategy
,
"ReduceStrategy"
)
.
value
(
"Reduce"
,
BuildStrategy
::
ReduceStrategy
::
kReduce
)
.
value
(
"AllReduce"
,
BuildStrategy
::
ReduceStrategy
::
kAllReduce
);
.
value
(
"AllReduce"
,
BuildStrategy
::
ReduceStrategy
::
kAllReduce
)
.
value
(
"_NoReduce"
,
BuildStrategy
::
ReduceStrategy
::
kNoReduce
);
py
::
enum_
<
BuildStrategy
::
GradientScaleStrategy
>
(
build_strategy
,
"GradientScaleStrategy"
)
.
value
(
"CoeffNumDevice"
,
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
e50d883e
...
...
@@ -102,6 +102,10 @@ class DistributedJobInfo(object):
self
.
job_info
.
strategy
=
dist_strategy
ReduceStrategyFluid
=
paddle
.
fluid
.
BuildStrategy
.
ReduceStrategy
ReduceStrategyFleet
=
int
class
DistributedStrategy
(
object
):
__lock_attr
=
False
...
...
@@ -239,8 +243,10 @@ class DistributedStrategy(object):
build_strategy
=
paddle
.
fluid
.
BuildStrategy
()
fields
=
self
.
strategy
.
build_strategy
.
DESCRIPTOR
.
fields
for
f
in
fields
:
setattr
(
build_strategy
,
f
.
name
,
getattr
(
self
.
strategy
.
build_strategy
,
f
.
name
))
value
=
getattr
(
self
.
strategy
.
build_strategy
,
f
.
name
)
if
f
.
name
==
'reduce_strategy'
:
value
=
ReduceStrategyFluid
(
value
)
setattr
(
build_strategy
,
f
.
name
,
value
)
return
build_strategy
@
build_strategy
.
setter
...
...
@@ -249,8 +255,10 @@ class DistributedStrategy(object):
fields
=
self
.
strategy
.
build_strategy
.
DESCRIPTOR
.
fields
for
f
in
fields
:
if
f
.
label
==
1
or
f
.
label
==
2
:
# optional and required field
setattr
(
self
.
strategy
.
build_strategy
,
f
.
name
,
getattr
(
strategy
,
f
.
name
))
value
=
getattr
(
strategy
,
f
.
name
)
if
f
.
name
==
'reduce_strategy'
:
value
=
ReduceStrategyFleet
(
value
)
setattr
(
self
.
strategy
.
build_strategy
,
f
.
name
,
value
)
elif
f
.
label
==
3
:
# repeated field
getattr
(
self
.
strategy
.
build_strategy
,
f
.
name
).
extend
(
getattr
(
strategy
,
f
.
name
))
...
...
python/paddle/fluid/compiler.py
浏览文件 @
e50d883e
...
...
@@ -85,6 +85,16 @@ def _has_optimizer_in_control_flow(program):
return
False
def
_should_broadcast_or_not_exists
(
program
,
var_name
):
block
=
program
.
global_block
()
var
=
block
.
vars
.
get
(
var_name
,
None
)
if
var
is
None
:
return
True
is_distributed
=
getattr
(
var
,
'_is_distributed'
,
False
)
or
getattr
(
var
,
'is_distributed'
,
False
)
return
not
is_distributed
class
CompiledProgram
(
object
):
"""
:api_attr: Static Graph
...
...
@@ -398,7 +408,10 @@ class CompiledProgram(object):
for
node
in
self
.
_graph
.
nodes
():
if
node
.
is_var
()
and
node
.
var
()
is
not
None
and
node
.
var
().
persistable
()
and
\
node
.
var
().
type
()
!=
core
.
VarDesc
.
VarType
.
RAW
:
self
.
_persistable_vars
.
append
(
cpt
.
to_text
(
node
.
name
()))
name
=
cpt
.
to_text
(
node
.
name
())
if
self
.
_program
is
not
None
and
_should_broadcast_or_not_exists
(
self
.
_program
,
name
):
self
.
_persistable_vars
.
append
(
cpt
.
to_text
(
node
.
name
()))
places
=
list
(
map
(
_place_obj
,
places
))
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_mnist.py
浏览文件 @
e50d883e
...
...
@@ -65,17 +65,18 @@ def fc_with_batchnorm(use_feed):
return
loss
def
init_data
():
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
class
TestMNIST
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
):
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
def
_compare_reduce_and_allreduce
(
self
,
model
,
use_device
,
...
...
@@ -87,7 +88,7 @@ class TestMNIST(TestParallelExecutorBase):
if
use_device
==
DeviceType
.
XPU
and
not
core
.
is_compiled_with_xpu
():
return
img
,
label
=
self
.
_
init_data
()
img
,
label
=
init_data
()
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
model
,
...
...
@@ -116,7 +117,7 @@ class TestMNIST(TestParallelExecutorBase):
if
use_device
==
DeviceType
.
XPU
and
not
core
.
is_compiled_with_xpu
():
return
img
,
label
=
self
.
_
init_data
()
img
,
label
=
init_data
()
self
.
check_network_convergence
(
simple_fc_net
,
...
...
@@ -144,7 +145,7 @@ class TestMNIST(TestParallelExecutorBase):
if
use_device
==
DeviceType
.
CUDA
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_
init_data
()
img
,
label
=
init_data
()
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
method
=
simple_fc_net
,
...
...
@@ -175,7 +176,7 @@ class TestMNIST(TestParallelExecutorBase):
return
if
use_device
==
DeviceType
.
XPU
and
not
core
.
is_compiled_with_xpu
():
return
img
,
label
=
self
.
_
init_data
()
img
,
label
=
init_data
()
self
.
check_network_convergence
(
fc_with_batchnorm
,
...
...
@@ -199,6 +200,84 @@ class TestMNIST(TestParallelExecutorBase):
1e-5
,
1e-2
)
class
TestMNISTNoReduce
(
unittest
.
TestCase
):
def
run_program
(
self
,
device_type
):
if
device_type
==
DeviceType
.
CUDA
:
if
not
paddle
.
is_compiled_with_cuda
():
return
places
=
paddle
.
static
.
cuda_places
()
else
:
self
.
assertEqual
(
device_type
,
DeviceType
.
CPU
)
places
=
paddle
.
static
.
cpu_places
(
4
)
paddle
.
seed
(
10
)
with
paddle
.
fluid
.
unique_name
.
guard
():
main
=
paddle
.
static
.
Program
()
startup
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main
,
startup
):
loss
=
simple_fc_net
(
use_feed
=
True
)
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.0
)
optimizer
.
minimize
(
loss
)
grads
=
[
p
.
name
+
'@GRAD'
for
p
in
main
.
all_parameters
()]
no_reduce
=
paddle
.
static
.
BuildStrategy
.
ReduceStrategy
.
_NoReduce
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
no_reduce
main_multi_place
=
paddle
.
static
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
places
=
places
)
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
no_reduce
main_single_place
=
paddle
.
static
.
CompiledProgram
(
main
.
clone
(
)).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
places
=
places
[
0
])
image
,
label
=
init_data
()
feed
=
{
'image'
:
image
,
'label'
:
label
}
exe
=
paddle
.
static
.
Executor
(
places
[
0
])
scope
=
paddle
.
static
.
Scope
()
with
paddle
.
static
.
scope_guard
(
scope
):
exe
.
run
(
startup
)
grads_multi_place
=
exe
.
run
(
main_multi_place
,
feed
=
feed
,
fetch_list
=
[
grads
])
feeds
=
self
.
split_feed
(
feed
,
len
(
places
))
grads_single_place
=
[
list
()
for
_
in
range
(
len
(
grads
))]
for
f
in
feeds
:
gs
=
exe
.
run
(
main_single_place
,
feed
=
f
,
fetch_list
=
[
grads
])
for
i
,
g
in
enumerate
(
gs
):
grads_single_place
[
i
].
append
(
g
)
for
i
in
range
(
len
(
grads
)):
grads_single_place
[
i
]
=
np
.
concatenate
(
grads_single_place
[
i
],
axis
=
0
)
/
len
(
places
)
self
.
assertEqual
(
len
(
grads_multi_place
),
len
(
grads_single_place
))
for
g1
,
g2
in
zip
(
grads_multi_place
,
grads_single_place
):
self
.
assertTrue
(
np
.
allclose
(
g1
,
g2
),
'g1 = {}
\n
g2 = {}
\n
'
.
format
(
g1
,
g2
))
def
split_feed
(
self
,
feed
,
n
):
image
=
feed
[
'image'
]
label
=
feed
[
'label'
]
self
.
assertEqual
(
image
.
shape
[
0
]
%
n
,
0
)
self
.
assertEqual
(
label
.
shape
[
0
]
%
n
,
0
)
images
=
np
.
split
(
image
,
n
)
labels
=
np
.
split
(
label
,
n
)
return
[{
'image'
:
images
[
i
],
'label'
:
labels
[
i
]}
for
i
in
range
(
n
)]
def
test_main
(
self
):
self
.
run_program
(
DeviceType
.
CUDA
)
self
.
run_program
(
DeviceType
.
CPU
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录