Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
86cb3fb8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86cb3fb8
编写于
7月 08, 2021
作者:
M
Ming-Xu Huang
提交者:
GitHub
7月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Distributed Automatic SParsity with Fleet (#33558)
上级
1e5437de
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
352 addition
and
15 deletion
+352
-15
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+2
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+27
-1
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+3
-1
python/paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
...paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
+66
-0
python/paddle/fluid/contrib/sparsity/asp.py
python/paddle/fluid/contrib/sparsity/asp.py
+27
-13
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
+8
-0
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
...n/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
+89
-0
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
...ddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
+130
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
86cb3fb8
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -189,6 +190,7 @@ message DistributedStrategy {
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
bool
calc_comm_same_stream
=
32
[
default
=
false
];
optional
bool
asp
=
33
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -446,6 +447,31 @@ class DistributedStrategy(object):
check_configs_key
(
self
.
strategy
.
amp_configs
,
configs
,
"amp_configs"
)
assign_configs_value
(
self
.
strategy
.
amp_configs
,
configs
)
@
property
def
asp
(
self
):
"""
Indicating whether we are using automatic sparsity training
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.asp = True # by default this is false
"""
return
self
.
strategy
.
asp
@
asp
.
setter
@
is_strict_auto
def
asp
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
asp
=
flag
else
:
print
(
"WARNING: asp should have value of bool type"
)
@
property
def
recompute
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
86cb3fb8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -12,6 +13,7 @@
# See the License for the specific language governing permissions and
from
.amp_optimizer
import
AMPOptimizer
from
.asp_optimizer
import
ASPOptimizer
from
.recompute_optimizer
import
RecomputeOptimizer
from
.gradient_merge_optimizer
import
GradientMergeOptimizer
from
.graph_execution_optimizer
import
GraphExecutionOptimizer
...
...
python/paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
from
.meta_optimizer_base
import
MetaOptimizerBase
__all__
=
[]
class
ASPOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
ASPOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"AMPOptimizer"
,
"LarsOptimizer"
,
"LambOptimizer"
,
"GraphExecutionOptimizer"
,
"RecomputeOptimizer"
,
"GradientMergeOptimizer"
]
self
.
meta_optimizers_black_list
=
[]
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
ASPOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
if
self
.
user_defined_strategy
.
asp
:
return
True
return
False
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
asp
=
False
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
asp
=
True
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
=
ASPHelper
.
_minimize
(
self
.
inner_opt
,
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
return
optimize_ops
,
params_grads
python/paddle/fluid/contrib/sparsity/asp.py
浏览文件 @
86cb3fb8
...
...
@@ -64,12 +64,15 @@ def decorate(optimizer):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib import sparsity
main_program = fluid.Program()
startup_program = fluid.Program()
paddle.enable_static()
with fluid.program_guard(main_program, startup_program):
input_data = fluid.layers.data(name='data', shape=[None, 128])
label = fluid.layers.data(name='label', shape=[None, 10])
...
...
@@ -78,17 +81,13 @@ def decorate(optimizer):
loss = fluid.layers.mean(fluid.layers.square_error_cost(prob, label))
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = sparsity.decorate(optimizer)
optimizer.minimize(loss, startup_program)
# if do sparse training with Fleet, please replace above decorate with:
# strategy = paddle.distributed.fleet.DistributedStrategy()
# strategy.asp = True
# optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
# When apply distributed training with Fleet
import paddle.distributed.fleet as fleet
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = sparsity.decorate(optimizer) # Need to be called before `fleet.distributed_optimizer`
optimizer = fleet.distributed_optimizer(optimizer)
optimizer.minimize(loss, startup_program)
optimizer.minimize(loss, startup_program)
"""
return
ASPHelper
.
decorate
(
optimizer
)
...
...
@@ -126,23 +125,38 @@ def prune_model(place,
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.contrib import sparsity
paddle.enable_static()
main_program = fluid.Program()
startup_program = fluid.Program()
place = fluid.CUDAPlace(0)
place = paddle.CPUPlace()
if core.is_compiled_with_cuda():
place = paddle.CUDAPlace(0)
with fluid.program_guard(main_program, startup_program):
input_data = fluid.layers.data(name='data', shape=[None, 128])
label = fluid.layers.data(name='label', shape=[None, 10])
hidden = fluid.layers.fc(input=input_data, num_flatten_dims=-1, size=32, act=None)
hidden = fluid.layers.fc(input=input_data, num_flatten_dims=-1, size=32, act=None, name="need_sparse")
hidden = fluid.layers.fc(input=hidden, num_flatten_dims=-1, size=32, act=None, name="need_dense")
prob = fluid.layers.fc(input=hidden, num_flatten_dims=-1, size=10, act=None)
loss = fluid.layers.mean(fluid.layers.square_error_cost(prob, label))
optimizer = decorate(fluid.optimizer.SGD(learning_rate=0.1))
optimizer.minimize(optimizer, loss, main_program, startup_program)
# Setup exluded layers out from ASP workflow.
# Please note, excluded_layers must be set before calling `optimizer.minimize()`.
sparsity.set_excluded_layers(main_program, ["need_dense"])
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = fluid.contrib.mixed_precision.decorator.decorate(optimizer )
# Calling sparsity.decorate() to wrap minimize() in optimizer, which
# will insert necessary masking operations for ASP workflow.
optimizer = sparsity.decorate(optimizer)
optimizer.minimize(loss, startup_program)
exe = fluid.Executor(place)
exe.run(startup_program)
...
...
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
浏览文件 @
86cb3fb8
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
list
(
REMOVE_ITEM TEST_OPS
"test_fleet_with_asp"
}
)
list
(
REMOVE_ITEM TEST_OPS
"test_fleet_with_asp_amp"
}
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_fleet_with_asp MODULES test_fleet_with_asp ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_with_asp_amp MODULES test_fleet_with_asp_amp ENVS
${
dist_ENVS
}
)
endif
()
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
os
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
cuda_visible_devices
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
cuda_visible_devices
.
split
(
','
)[
0
]
paddle
.
enable_static
()
class
TestFleetWithASP
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
asp
=
True
return
avg_cost
,
strategy
,
input_x
,
input_y
def
test_with_asp
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
,
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
os
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
cuda_visible_devices
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
cuda_visible_devices
.
split
(
','
)[
0
]
paddle
.
enable_static
()
class
TestFleetWithASP
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
asp
=
True
return
avg_cost
,
strategy
,
input_x
,
input_y
def
test_with_asp_and_amp
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
,
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
optimizer
.
amp_init
(
place
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
def
test_with_asp_and_pure_fp16
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
with
paddle
.
static
.
amp
.
fp16_guard
():
avg_cost
,
strategy
,
\
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'use_pure_fp16'
:
True
}
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
paddle
.
static
.
amp
.
fp16_guard
():
optimizer
=
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
multi_precision
=
True
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
optimizer
.
amp_init
(
place
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录