analysis_predictor.cc 115.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/operator.h"
36
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
37
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/framework/var_type_traits.h"
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/inference/analysis/helper.h"
41
#include "paddle/fluid/inference/analysis/pass_result_info.h"
42
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
43
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
44
#include "paddle/fluid/inference/api/helper.h"
45
#include "paddle/fluid/inference/api/infer_context.h"
46
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
47
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
48
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
49
#include "paddle/fluid/inference/api/resource_manager.h"
50
#include "paddle/fluid/inference/utils/io_utils.h"
51
#include "paddle/fluid/inference/utils/model_utils.h"
52
#include "paddle/fluid/inference/utils/singleton.h"
53
#include "paddle/fluid/memory/memcpy.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
55
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
56
#include "paddle/fluid/platform/device_context.h"
57
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
58
#include "paddle/fluid/platform/profiler.h"
59
#include "paddle/phi/api/include/tensor.h"
60 61
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
62
#include "paddle/phi/common/place.h"
W
Wilber 已提交
63
#include "paddle/phi/core/enforce.h"
64
#include "paddle/phi/core/generator.h"
65
#include "paddle/phi/kernels/funcs/data_type_transform.h"
66 67
#include "paddle/utils/string/split.h"

68
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
69 70 71 72
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
73

74
#ifdef PADDLE_WITH_MKLML
75
#include "paddle/phi/backends/dynload/mklml.h"
76 77
#endif

78 79 80 81
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

82 83 84 85
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

86
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
87
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
88
#include "paddle/fluid/inference/tensorrt/helper.h"
89
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

96
namespace paddle {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
namespace {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
void UpdatePrivateDeviceContext(InferGPUContext *gpu_context,
                                GPUContextResource *gpu_resource,
                                Place place_) {
  gpu_context->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                .GetAllocator(place_, gpu_resource->GetStream())
                                .get());
  gpu_context->SetPinnedAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
  gpu_context->SetHostAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(platform::CPUPlace())
                                    .get());
  gpu_context->SetZeroAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetZeroAllocator(place_)
                                    .get());
  gpu_context->SetHostZeroAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(platform::CPUPlace())
          .get());
  gpu_context->SetGenerator(
      phi::DefaultCUDAGenerator(place_.GetDeviceId()).get());
  gpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());

  gpu_context->SetStream(gpu_resource->GetStream());
  gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
  gpu_context->SetBlasTensorCoreHandle(
      gpu_resource->GetBlasTensorCoreHandleCreator());
  gpu_context->SetBlasTF32Handle(
      gpu_resource->GetBlasTF32TensorCoreHandleCreator());
  gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
  gpu_context->SetSolverHandle(gpu_resource->GetSolverDnHandleCreator());
  gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
  gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDevice());

  gpu_context->SetComputeCapability(gpu_resource->GetGpuComputeCapability());
  gpu_context->SetMaxThreadsPerBlock(gpu_resource->GetGpuMaxThreadsPerBlock());
  gpu_context->SetMaxThreadsPerMultiProcessor(
      gpu_resource->GetGpuMaxThreadsPerMp());
  gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
  gpu_context->SetMultiProcessors(gpu_resource->GetGPUMultiProcessors());
  gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
  gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
  VLOG(1) << "thread id is " << std::this_thread::get_id() << ", stream id is "
          << reinterpret_cast<void *>(gpu_resource->GetStream())
          << ", allotor ptr is "
          << reinterpret_cast<void *>(
                 memory::allocation::AllocatorFacade::Instance()
                     .GetAllocator(place_, gpu_resource->GetStream())
                     .get());
}
#endif
}  // namespace
152

N
nhzlx 已提交
153
using inference::Singleton;
154
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
155 156
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
157
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
158
#endif
159

160 161
int AnalysisPredictor::clone_num_ = 1;

162 163 164 165
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
166 167
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
168 169 170 171
    return true;
  }
  return false;
}
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

191
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
192
  switch (backend) {
193
    case paddle_infer::PlaceType::kGPU:
194 195
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
196
    case paddle_infer::PlaceType::kXPU:
197
      return phi::Backend::XPU;
198
    case paddle_infer::PlaceType::kCPU:
199
      return phi::Backend::CPU;
200 201
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
202 203
    case paddle_infer::PlaceType::kCUSTOM:
      return phi::Backend::CUSTOM;
204 205
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
206 207
          "Paddle Inference not support backend, we now only support GPU, XPU "
          "and CPU."));
208 209 210
      return phi::Backend::CPU;
  }
}
211

212 213 214
bool PaddleTensorToDenseTensor(const PaddleTensor &pt,
                               phi::DenseTensor *t,
                               const platform::Place &place) {
215
  framework::DDim ddim = phi::make_ddim(pt.shape);
216 217 218 219 220 221 222
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
223 224
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
225 226 227 228
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
229 230 231
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
232 233 234
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
235 236 237 238 239 240 241 242
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
243 244
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
245
        t->numel() * phi::SizeOf(t->dtype()),
246 247
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
248
  }
249 250 251

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
252 253 254 255
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
256 257
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
258 259
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
260 261 262 263
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
264
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
265 266
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
267 268
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
271
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
272
    auto dst_gpu_place = place;
C
ccrrong 已提交
273 274 275 276 277
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
278 279 280 281 282
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
283 284
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
285
    auto dst_xpu_place = place;
C
ccrrong 已提交
286 287 288 289 290
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
291 292 293
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    memory::Copy(custom_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUSTOM_DEVICE, should not reach here."));
311 312 313
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
314 315
        "The analysis predictor supports CPU, GPU, XPU and CUSTOM_DEVICE "
        "now."));
316 317 318 319 320 321 322 323 324
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}
325
}  // namespace
326

Y
Yan Chunwei 已提交
327
bool AnalysisPredictor::Init(
328 329
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
330
  VLOG(3) << "Predictor::init()";
331 332
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
333 334
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
335
    platform::EnableProfiler(tracking_device);
336
  } else {
337 338
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
339 340
  }

341 342 343 344
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

345
  // no matter with or without MKLDNN
L
luotao1 已提交
346
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
347

348 349 350
  if (!PrepareScope(parent_scope)) {
    return false;
  }
351 352 353

  InitPlace();

354 355 356 357 358 359 360
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

361 362 363
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

364 365 366
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
367
  }
368

369 370 371 372 373 374 375 376 377 378 379 380 381
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
382
        static_cast<phi::GPUContext *>(
383 384 385 386 387 388
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
389
  }
C
csy0225 已提交
390 391
#endif
#if defined(PADDLE_WITH_XPU)
Z
zhupengyang 已提交
392
  if (config_.use_xpu_ && !config_.use_lite_) {
C
csy0225 已提交
393
    private_context_ = true;
394
    if (!status_is_cloned_ && config_.external_stream_enabled()) {
C
csy0225 已提交
395 396
      predictor_stream_ = config_.GetExecStream();
    }
397
    if (predictor_stream_ == nullptr) {
398 399 400
      auto *global_context = static_cast<phi::XPUContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      predictor_stream_ = global_context->stream();
C
csy0225 已提交
401
    }
402
    InitDeviceContexts();
C
csy0225 已提交
403
  }
404
#endif
405

406
  inference::DisplayMemoryInfo(place_, "Init predictor");
407 408
  return true;
}
409

410
void AnalysisPredictor::InitPlace() {
411
  if (config_.use_gpu()) {
C
ccrrong 已提交
412 413
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
414 415
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
416
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
417
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
418
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
419 420
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
421 422
    }
#endif
423
  } else if (config_.use_xpu()) {
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
463 464 465 466 467 468 469
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
470 471 472
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
473 474
    place_ = paddle::platform::CustomPlace(config_.custom_device_type(),
                                           config_.custom_device_id());
475 476 477 478 479
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
480
#endif
481 482 483
  } else {
    place_ = paddle::platform::CPUPlace();
  }
484 485 486 487 488 489 490 491 492 493 494
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
495
  // Init GPUContext.
496 497 498 499 500
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
501
          auto *gpu_context = new InferGPUContext(place_);
502
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
503 504 505
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
C
csy0225 已提交
506
#endif
507
#ifdef PADDLE_WITH_XPU
C
csy0225 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  if (place_.GetType() == phi::AllocationType::XPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto &instance = memory::allocation::AllocatorFacade::Instance();
          auto *xpu_context = new InferXPUContext(place_);
          xpu_context->SetAllocator(instance.GetAllocator(place_).get());
          xpu_context->SetGenerator(
              phi::DefaultXPUGenerator(place_.GetDeviceId()).get());
          xpu_context->SetHostAllocator(
              instance.GetAllocator(platform::CPUPlace()).get());
          xpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());
          xpu_context->SetZeroAllocator(
              instance.GetZeroAllocator(place_).get());
          xpu_context->SetHostZeroAllocator(
              instance.GetZeroAllocator(platform::CPUPlace()).get());
523
          xpu_context->SetStream(predictor_stream_);
C
csy0225 已提交
524 525 526
          return std::unique_ptr<phi::DeviceContext>(xpu_context);
        }));
  }
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
#endif
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  }
542 543 544
#endif
#if defined(PADDLE_WITH_XPU)
  if (place_.GetType() == phi::AllocationType::XPU) {
C
csy0225 已提交
545 546 547 548 549 550 551 552
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::XPUContext *>(pool.Get(place_))
          ->stream();
    }
553
  }
554 555 556 557 558 559 560 561
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (place_.GetType() == phi::AllocationType::CUSTOM) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    return reinterpret_cast<const phi::CustomContext *>(pool.Get(place_))
        ->stream();
  }
562
#endif
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
  // TODO(inference): Support other backends.
  return nullptr;
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
580 581 582 583 584
#ifdef PADDLE_WITH_XPU
  // Set "XPU_PADDLE_L3_SIZE" to "0" to avoid malloc l3 cache when xpu_context
  // init.
  setenv("XPU_PADDLE_L3_SIZE", "0", 0);
#endif
585 586 587 588 589 590 591 592
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
593
    paddle::framework::InitMemoryMethod();
594
    paddle::framework::InitDevices();
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
620 621
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
622 623 624 625 626
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
627 628 629 630 631
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
632 633 634 635 636 637
  }
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
  return true;
}

bool AnalysisPredictor::CreateExecutor() {
638 639 640
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
660 661
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
662 663 664 665 666 667 668 669 670
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
671 672
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
673 674
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
675 676 677
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
678 679 680
  }
}

681
bool AnalysisPredictor::PrepareExecutor() {
682
  if (config_.dist_config().use_dist_model()) {
683
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
684 685
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
686 687 688 689
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use FleetExecutor since it's not compiled with PSCORE,"
        "Please recompile or reinstall Paddle with PSCORE support."));
690
#endif
691
  }
W
wenbin 已提交
692 693
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
694 695
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
696

697 698 699 700 701 702 703 704 705
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

706 707 708
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
709

710 711 712
  return true;
}

713
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
750 751 752 753 754 755 756
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
793 794 795 796 797 798
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
799 800 801 802 803 804 805 806 807 808 809
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
810 811 812 813 814
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
  } else if (config_.use_xpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_bkcl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else if (config_.use_custom_device()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_xccl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
903 904 905
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
906 907 908 909 910 911 912 913 914 915 916 917 918
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
919 920
      static_cast<bool>(fin.is_open()),
      true,
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

993 994
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
995 996 997 998 999 1000 1001 1002
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<paddle::Tensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(phi::vectorize<int>(inputs[i].dims()));
  }
  MkldnnPreSet(inputs_shape);
#endif
}

W
Wilber 已提交
1014 1015 1016 1017
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
1018
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
1019 1020 1021
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
1022 1023
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
1024 1025
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
1026 1027 1028
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
1029 1030 1031
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
1032
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
1033
  }
1034
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
1035 1036
      config_.mkldnn_cache_capacity_);

1037 1038 1039 1040 1041 1042
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
1043
  if (config_.mkldnn_cache_capacity_ > 0 &&
1044
      static_cast<phi::OneDNNContext *>(
1045 1046
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
1047
    if (VLOG_IS_ON(2)) {
1048
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
1049 1050 1051 1052 1053 1054
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
1055 1056 1057
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
1058 1059 1060 1061
  }
#endif
}

1062 1063 1064
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
1065
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
1066 1067 1068
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
1069
  VLOG(3) << "Predictor::predict";
1070 1071 1072 1073
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
1074 1075 1076
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
1077 1078
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
1079
    return false;
1080
  }
M
Michal Gallus 已提交
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1091 1092 1093
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
1094

1095 1096 1097 1098
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
1099
  }
Y
Yan Chunwei 已提交
1100

M
minqiyang 已提交
1101
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
1102

Y
Yan Chunwei 已提交
1103 1104 1105 1106 1107
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
1108 1109 1110
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
1111
  tensor_array_batch_cleaner_.ResetNoTensorVars();
1112 1113 1114 1115

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1116 1117
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
1118
#endif
1119
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1120 1121 1122
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
1123
  phi::dynload::MKL_Free_Buffers();
1124
#endif
1125 1126
  return true;
}
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
bool AnalysisPredictor::Run(const std::vector<paddle::Tensor> &inputs,
                            std::vector<paddle::Tensor> *outputs) {
  inference::DisplayMemoryInfo(place_, "before run");
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
  VLOG(3) << "predict start";
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();

  inference::DisplayMemoryInfo(place_, "after run");

  // get fetch variable
  if (!GetFetch(outputs, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
  }

  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
  tensor_array_batch_cleaner_.ResetNoTensorVars();

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
#if defined(PADDLE_WITH_MKLML)
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
1187
  phi::dynload::MKL_Free_Buffers();
1188 1189 1190 1191
#endif
  return true;
}

1192 1193
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
1194
  VLOG(3) << "Predictor::set_feed";
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1205
    phi::DenseTensor *input = &feed_tensors_[i];
1206
    if (!PaddleTensorToDenseTensor(inputs[i], input, place_)) {
1207 1208 1209
      return false;
    }
    int idx = -1;
1210
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1211 1212
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1213 1214
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1215 1216
      }
      idx = feed_names_[name];
1217
    } else {
R
Ruibiao Chen 已提交
1218
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1219
    }
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    framework::SetFeedVariable(scope, *input, framework::kFeedOpType, idx);
  }
  return true;
}

bool AnalysisPredictor::SetFeed(const std::vector<paddle::Tensor> &inputs,
                                framework::Scope *scope) {
  VLOG(3) << "Predictor::set_feed";
  PADDLE_ENFORCE_EQ(inputs.size(),
                    feeds_.size(),
                    platform::errors::InvalidArgument(
                        "wrong feed input size, need %d but get %d.",
                        feeds_.size(),
                        inputs.size()));
  for (size_t i = 0; i < inputs.size(); ++i) {
Y
Yuanle Liu 已提交
1235
    PADDLE_ENFORCE_EQ(inputs[i].defined(),
1236 1237
                      true,
                      paddle::platform::errors::InvalidArgument(
Y
Yuanle Liu 已提交
1238 1239 1240 1241 1242 1243
                          "The input Tensor expected to be defined."));
    PADDLE_ENFORCE_EQ(
        inputs[i].is_dense_tensor(),
        true,
        paddle::platform::errors::InvalidArgument(
            "The input Tensor expected to be type of dense tensor."));
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  }

  if (std::all_of(inputs.cbegin(), inputs.cend(), [&](const paddle::Tensor &t) {
        return !t.name().empty() && feed_names_.count(t.name());
      })) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, inputs[i].name());
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
  } else {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, idx2feeds_[i]);
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
1260 1261 1262 1263 1264
  }
  return true;
}

template <typename T>
1265
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1266 1267
                                    PaddleTensor *output) {
  // set shape.
1268
  auto shape = phi::vectorize(fetch.dims());
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1286
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1287 1288
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1289
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1290
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1291 1292
        static_cast<size_t>(idx),
        i,
1293
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1294 1295
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1296
            i));
1297
    framework::FetchType &fetch_var =
1298
        framework::GetFetchVariable(*scope, framework::kFetchOpType, idx);
1299
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1300
    auto type = framework::TransToProtoVarType(fetch.dtype());
1301
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1302
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1303
    if (type == framework::proto::VarType::FP32) {
1304 1305
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1306
    } else if (type == framework::proto::VarType::INT64) {
1307 1308
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1309 1310 1311
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1312 1313 1314
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1315
    } else {
1316 1317
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1318 1319
    }
  }
Y
Yan Chunwei 已提交
1320 1321
  return true;
}
1322

1323 1324 1325 1326 1327 1328 1329
bool AnalysisPredictor::GetFetch(std::vector<paddle::Tensor> *outputs,
                                 framework::Scope *scope) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    auto const &name = idx2fetches_[i];
    auto &t = framework::GetVariableTensor(*scope, name);
Y
Yuanle Liu 已提交
1330
    (*outputs)[i] = paddle::Tensor(std::make_shared<phi::DenseTensor>(t), name);
1331 1332 1333 1334
  }
  return true;
}

1335
void AnalysisPredictor::PrepareArgument() {
1336
  VLOG(3) << "AnalysisPredictor::PrepareArgument";
1337 1338 1339
  // Init std::unique_ptr argument_.
  argument_.reset(new Argument);
  argument_->SetUseGPU(config_.use_gpu());
1340
  argument_->SetUseCutlass(config_.use_cutlass_);
1341 1342 1343 1344 1345
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1346
  // Analyze inference_program
1347 1348
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
1349
  argument_->SetSaveOptimizedModel(config_.save_optimized_model_);
1350
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1351
  if (!config_.model_dir().empty()) {
1352
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1353
  } else {
C
ccrrong 已提交
1354 1355
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1356 1357
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1358

1359 1360
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1361
  }
1362
  // For JITLayer
1363 1364
  argument_->SetSkipLoadParams(config_.skip_load_params_);

1365 1366
  argument_->SetTensorRtPrecisionMode(static_cast<int>(
      paddle::ConvertPrecision(config_.tensorrt_precision_mode_)));
1367 1368 1369 1370 1371 1372 1373 1374
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1375
      config_.tuned_tensorrt_dynamic_shape());
1376
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1377
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1378 1379 1380 1381 1382 1383 1384 1385 1386
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wilber 已提交
1387
    argument_->SetTensorRtUseCudaGraph(config_.trt_use_cuda_graph_);
1388 1389 1390
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1391
        config_.trt_allow_build_at_runtime());
1392 1393
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1394
  }
1395

D
denglin-github 已提交
1396 1397
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1398 1399 1400 1401 1402 1403
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1404
        config_.dlnne_disable_nodes_by_outputs_);
1405 1406
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
1407 1408
    argument_->SetDlnnePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.dlnne_precision_mode_)));
D
denglin-github 已提交
1409 1410
  }

Z
zhupengyang 已提交
1411
  argument_->SetUseXpu(config_.use_xpu_);
石晓伟 已提交
1412
  if (config_.lite_engine_enabled()) {
1413
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1414
        config_.cpu_math_library_num_threads());
1415 1416
    argument_->SetLitePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.lite_precision_mode_)));
1417 1418 1419
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
Z
zhupengyang 已提交
1420 1421
    argument_->SetXpuLocked(config_.xpu_lite_l3_locked_);
    argument_->SetXpuEnableMultiStream(config_.xpu_lite_enable_multi_stream_);
1422
    argument_->SetUseOpenCL(config_.use_opencl_);
1423
    // NNAdapter related
1424 1425
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1426
        config_.NNAdapter().nnadapter_device_names);
1427
    argument_->SetNNAdapterContextProperties(
1428
        config_.NNAdapter().nnadapter_context_properties);
1429
    argument_->SetNNAdapterModelCacheDir(
1430
        config_.NNAdapter().nnadapter_model_cache_dir);
1431
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1432
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1433
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1434 1435 1436 1437 1438 1439 1440
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1441 1442
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1443 1444 1445
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1446
#ifdef PADDLE_WITH_IPU
1447 1448 1449 1450 1451 1452 1453 1454
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1455
      config_.ipu_available_memory_proportion_);
1456 1457
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1458
      config_.ipu_enable_model_runtime_executor_);
1459 1460
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1461
#endif
J
jianghaicheng 已提交
1462

1463
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1464
    LOG(INFO) << "MKLDNN is enabled";
1465
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1466 1467
  }

1468
  if (config_.use_cinn_compiler_) {
1469
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1470 1471
  }

1472 1473 1474
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1475
    argument_->SetQuantizeEnabledOpTypes(
1476
        config_.mkldnn_quantizer_config()->enabled_op_types());
1477
    argument_->SetQuantizeExcludedOpIds(
1478 1479
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1480 1481
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1482
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1483
  }
B
baoachun 已提交
1484 1485 1486

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1487 1488 1489
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1490
  }
1491 1492
#endif

1493
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1494
  argument_->SetUseCustomDevice(config_.use_custom_device());
1495 1496
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1497 1498
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1499 1500
  }
#endif
1501

1502
  argument_->SetUseXpu(config_.use_xpu_);
Z
zhupengyang 已提交
1503 1504 1505 1506
  argument_->SetXpuDeviceId(config_.xpu_config_.device_id);
  argument_->SetXpuL3Size(config_.xpu_config_.l3_size);
  argument_->SetXpuL3Ptr(config_.xpu_config_.l3_ptr);
  argument_->SetXpuL3AutotuneSize(config_.xpu_config_.l3_autotune_size);
1507
  argument_->SetXpuContext(config_.xpu_config_.context);
Z
zhupengyang 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
  argument_->SetXpuStream(config_.xpu_config_.stream);
  argument_->SetXpuConvAutotuneLevel(config_.xpu_config_.conv_autotune_level);
  argument_->SetXpuConvAutotuneFile(config_.xpu_config_.conv_autotune_file);
  argument_->SetXpuConvAutotuneFileWriteback(
      config_.xpu_config_.conv_autotune_file_writeback);
  argument_->SetXpuFcAutotuneLevel(config_.xpu_config_.fc_autotune_level);
  argument_->SetXpuFcAutotuneFile(config_.xpu_config_.fc_autotune_file);
  argument_->SetXpuFcAutotuneFileWriteback(
      config_.xpu_config_.fc_autotune_file_writeback);
  argument_->SetXpuGemmComputePrecision(
      config_.xpu_config_.gemm_compute_precision);
  argument_->SetXpuTransformerSoftmaxOptimizeLevel(
      config_.xpu_config_.transformer_softmax_optimize_level);
  argument_->SetXpuTransformerEncoderAdaptiveSeqlen(
      config_.xpu_config_.transformer_encoder_adaptive_seqlen);
  argument_->SetXpuQuantPostStaticGeluOutThreshold(
      config_.xpu_config_.quant_post_static_gelu_out_threshold);
  argument_->SetXpuQuantPostDynamicActivationMethod(
      config_.xpu_config_.quant_post_dynamic_activation_method);
  argument_->SetXpuQuantPostDynamicWeightPrecision(
      config_.xpu_config_.quant_post_dynamic_weight_precision);
1529
  argument_->SetXpuQuantPostDynamicOpTypes(
Z
zhupengyang 已提交
1530 1531 1532
      config_.xpu_config_.quant_post_dynamic_op_types);
  argument_->SetXpuLiteL3Locked(config_.xpu_lite_l3_locked_);
  argument_->SetXpuLiteEnableMultiStream(config_.xpu_lite_enable_multi_stream_);
1533

1534
  auto *pass_builder = config_.pass_builder();
1535 1536
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1537 1538
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
Z
zhupengyang 已提交
1539
              << ", we will use a new PassStrategy. Note that only GPU/XPU "
1540
                 "backend is supported for now.";
1541 1542 1543
    if (!config_.use_cinn_compiler_) {
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
1544
        pass_builder->ClearPasses();
1545 1546 1547 1548 1549
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
1550
        pass_builder->ClearPasses();
1551 1552 1553 1554
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1555 1556 1557 1558
      } else if (config_.use_xpu()) {
        // All passes support fp16. Not reset pass_builder.
      } else {
        pass_builder->ClearPasses();
1559 1560 1561
      }
    }
  }
1562

Y
Yan Chunwei 已提交
1563
  if (!config_.ir_optim()) {
1564
    argument_->SetEnableIrOptim(false);
1565
    if (config_.enable_gpu_mixed_) {
1566
      argument_->SetEnableIrOptim(true);
1567
      pass_builder->ClearPasses();
1568
      pass_builder->AppendPass("auto_mixed_precision_pass");
1569 1570
      LOG(INFO) << "This model run in GPU mixed precision mode with no ir "
                   "optimization.";
1571
    } else {
1572 1573
      LOG(INFO)
          << "Ir optimization is turned off, no ir pass will be executed.";
1574 1575 1576 1577 1578
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1579
    if (config_.enable_gpu_mixed_) {
1580
      LOG(INFO) << "This model run in GPU mixed precision mode.";
1581
    }
Y
Yan Chunwei 已提交
1582
  }
1583 1584 1585 1586 1587 1588 1589 1590 1591

  argument_->SetEnableCustomDeviceMixed(config_.enable_custom_device_mixed());
  if (config_.enable_custom_device_mixed_) {
    argument_->SetEnableIrOptim(true);
    pass_builder->ClearPasses();
    pass_builder->AppendPass("auto_mixed_precision_pass");
    LOG(INFO) << "This model run in Custom Device mixed precision mode.";
  }

1592 1593 1594 1595
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1596

1597
  // mixed precison.
1598 1599 1600 1601
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1602
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1603
  argument_->SetEnableLowPrecisionIO(config_.enable_low_precision_io_);
1604 1605 1606 1607 1608
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1609 1610 1611 1612 1613 1614 1615 1616
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif
1617
  Analyzer().Run(argument_.get());
1618
  PADDLE_ENFORCE_EQ(
1619
      argument_->scope_valid(),
C
ccrrong 已提交
1620
      true,
1621
      platform::errors::InvalidArgument("The argument scope should be valid."));
1622
  VLOG(5) << "to prepare executor";
1623
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1624
  inference_program_.reset(
1625
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1626 1627 1628
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1629
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1630 1631 1632 1633
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1634
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1635
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1636
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1648 1649 1650
#endif
        delete prog;
      });
1651 1652 1653
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1654
#if defined(PADDLE_WITH_TESTING)
1655
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1656 1657
#endif

1658 1659 1660
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1661 1662 1663
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1664 1665 1666 1667 1668
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1669
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1670
}
1671 1672

template <>
1673 1674 1675
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1676
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1677 1678
      config.is_valid(),
      true,
1679 1680
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1681

1682 1683 1684 1685
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1686
                 []() { inference::RegisterAllCustomOperator(); });
1687

1688 1689 1690 1691 1692 1693
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1694
          platform::errors::InvalidArgument(
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
      FLAGS_logtostderr = 1;
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1735

1736 1737 1738 1739 1740 1741 1742 1743
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1744

1745 1746 1747
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1748
        }
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1762
      }
1763
    }
1764 1765 1766 1767
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1768 1769

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1770 1771
  // Each config can only be used for one predictor.
  config.SetInValid();
1772 1773
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1774 1775 1776 1777
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1778 1779 1780 1781 1782
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1783 1784
    return nullptr;
  }
1785

G
Gabor Buella 已提交
1786
  return predictor;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1801
void AnalysisPredictor::PrepareFeedFetch() {
1802 1803 1804
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1805
  CreateFeedFetchVar(sub_scope_);
1806
  for (auto *op : inference_program_->Block(0).AllOps()) {
1807
    if (op->Type() == framework::kFeedOpType) {
R
Ruibiao Chen 已提交
1808
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1809 1810 1811 1812 1813
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1814
      idx2feeds_[idx] = op->Output("Out")[0];
1815
    } else if (op->Type() == framework::kFetchOpType) {
R
Ruibiao Chen 已提交
1816
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1817 1818
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1819
      }
Y
Yan Chunwei 已提交
1820
      fetches_[idx] = op;
N
nhzlx 已提交
1821
      idx2fetches_[idx] = op->Input("X")[0];
1822 1823 1824 1825
    }
  }
}

1826
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1827 1828 1829
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1830
  auto *var = scope->Var(framework::kFeedOpType);
1831
  var->GetMutable<framework::FeedList>();
1832
  var = scope->Var(framework::kFetchOpType);
1833
  var->GetMutable<framework::FetchList>();
1834 1835
}

N
nhzlx 已提交
1836 1837 1838 1839 1840 1841 1842 1843
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1844 1845 1846 1847 1848 1849
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1850 1851 1852
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1853 1854 1855 1856 1857
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1889 1890 1891 1892 1893 1894 1895 1896
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1942 1943
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1944
  framework::Scope *scope;
1945
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1946 1947 1948
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1949
    scope = executor_->GetScope();
1950 1951
  }
#else
1952
  scope = executor_->GetScope();
1953
#endif
1954
  PADDLE_ENFORCE_NOT_NULL(
1955
      scope->FindVar(name),
1956
      platform::errors::PreconditionNotMet(
1957
          "The variable named %s is not found in the scope of the executor.",
1958
          name));
1959 1960
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1961 1962
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1963 1964
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1965 1966 1967 1968
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1969
  } else if (platform::is_xpu_place(place_)) {
1970 1971 1972 1973 1974 1975 1976 1977
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1978
      auto xpu_place = place_;
1979 1980
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
1981 1982 1983 1984
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1985 1986
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1987 1988
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1989
  } else {
1990
    auto gpu_place = place_;
N
nhzlx 已提交
1991 1992
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1993 1994 1995 1996 1997
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1998
  framework::Scope *scope;
1999
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
2000 2001 2002
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
2003
    scope = executor_->GetScope();
2004 2005
  }
#else
2006
  scope = executor_->GetScope();
2007
#endif
2008
  PADDLE_ENFORCE_NOT_NULL(
2009
      scope->FindVar(name),
2010
      platform::errors::PreconditionNotMet(
2011
          "The variable named %s is not found in the scope of the executor.",
2012
          name));
2013 2014
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
2015 2016
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
2017 2018
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
2019 2020 2021 2022
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
2023
  } else if (platform::is_xpu_place(place_)) {
2024 2025 2026 2027 2028 2029 2030 2031
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
2032
      auto xpu_place = place_;
2033 2034
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
2035 2036 2037 2038
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
2039 2040
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
2041 2042
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
2043
  } else {
2044
    auto gpu_place = place_;
N
nhzlx 已提交
2045 2046
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
2047 2048 2049 2050
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
2051
  inference::DisplayMemoryInfo(place_, "before run");
2052
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
2063 2064 2065
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
2066
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

Z
zhupengyang 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
#ifdef PADDLE_WITH_XPU
  InferXPUContext *infer_xpu_ctx = nullptr;
  if (config_.use_xpu_ && !config_.use_lite_) {
    PADDLE_ENFORCE(
        private_context_,
        paddle::platform::errors::Fatal(
            "Must use private context if run predictor on xpu place."));
    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    infer_xpu_ctx =
        static_cast<InferXPUContext *>(dev_ctxs->at(place_).get().get());
2101 2102 2103 2104
    auto *x_context = static_cast<xpu::Context *>(config_.xpu_config_.context);
    if (x_context != nullptr) {
      infer_xpu_ctx->SetXContext(x_context);
    }
Z
zhupengyang 已提交
2105 2106 2107 2108 2109 2110 2111 2112
    infer_xpu_ctx->SetStream(predictor_stream_);
    infer_xpu_ctx->SetL3Info(config_.xpu_config_.l3_size,
                             config_.xpu_config_.l3_ptr,
                             config_.xpu_config_.l3_autotune_size,
                             place_);
  }
#endif

2113
  executor_->Run();
2114
  inference::DisplayMemoryInfo(place_, "after run");
2115

Z
zhupengyang 已提交
2116 2117 2118 2119 2120 2121
#ifdef PADDLE_WITH_XPU
  if (config_.use_xpu_ && !config_.use_lite_ && infer_xpu_ctx != nullptr) {
    infer_xpu_ctx->L3CacheAutotune();
  }
#endif

2122 2123 2124 2125
  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
2126
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
2127
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
2128
  tensor_array_batch_cleaner_.ResetTensorArray();
2129 2130 2131 2132

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
2133 2134 2135
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
2136 2137 2138
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
2139
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
2140 2141 2142
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
2143
  phi::dynload::MKL_Free_Buffers();
T
Tao Luo 已提交
2144
#endif
2145 2146 2147
  return true;
}

W
Wilber 已提交
2148 2149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
2162
    ResourceManager::Instance().GpuResourceSwitchStream(predictor_stream_,
W
Wilber 已提交
2163 2164 2165
                                                        stream);
    predictor_stream_ = stream;

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    auto *dev_ctxs = const_cast<
        std::map<phi::Place,
                 std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        reinterpret_cast<const std::map<
            phi::Place,
            std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
            this->GetDeviceContexts()));

    dev_ctxs->erase(place_);
    dev_ctxs->emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
          auto *gpu_context = new InferGPUContext(place_);
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
W
Wilber 已提交
2183 2184
  }

W
Wilber 已提交
2185 2186 2187 2188
  return ZeroCopyRun();
}
#endif

2189 2190 2191 2192
bool AnalysisPredictor::ExpRunWithRuntimeConfig(void *config) {
#ifdef PADDLE_WITH_XPU
  auto xpu_runtime_config =
      reinterpret_cast<paddle_infer::experimental::XpuRuntimeConfig *>(config);
2193 2194

  config_.xpu_config_.context = xpu_runtime_config->context;
2195 2196
  auto *stream = xpu_runtime_config->stream;
  if (stream != nullptr && stream != predictor_stream_) {
C
csy0225 已提交
2197 2198 2199 2200
    paddle::platform::XPUStreamSync(
        static_cast<paddle::xpuStream>(predictor_stream_));
    predictor_stream_ = stream;
  }
2201

Z
zhupengyang 已提交
2202 2203
  auto l3_size = xpu_runtime_config->l3_size;
  auto l3_autotune_size = xpu_runtime_config->l3_autotune_size;
2204 2205 2206 2207 2208 2209 2210
  PADDLE_ENFORCE_LE(
      l3_autotune_size,
      l3_size,
      phi::errors::InvalidArgument(
          "l3_autotune_size(%zu) should be less than or equal to l3_size(%zu).",
          l3_autotune_size,
          l3_size));
Z
zhupengyang 已提交
2211 2212 2213
  config_.xpu_config_.l3_size = l3_size;
  config_.xpu_config_.l3_ptr = xpu_runtime_config->l3_ptr;
  config_.xpu_config_.l3_autotune_size = l3_autotune_size;
2214

Z
zhupengyang 已提交
2215
  return ZeroCopyRun();
C
csy0225 已提交
2216 2217 2218 2219
#endif
  return false;
}

2220 2221
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
2222 2223
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
2224 2225
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2226 2227
    auto *dev_ctx = pool.Get(place_);
    auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream();
2228
#ifdef PADDLE_WITH_HIP
2229
    hipStreamSynchronize(stream);
2230
#else
2231
    cudaStreamSynchronize(stream);
2232 2233 2234 2235 2236 2237 2238
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
2239
    if (!var->IsType<phi::DenseTensor>()) {
2240 2241
      continue;
    }
2242
    auto tensor = var->Get<phi::DenseTensor>();
2243
    if (!tensor.initialized()) continue;
2244
    framework::DDim dim = tensor.dims();
2245 2246 2247
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
2248 2249 2250 2251 2252 2253 2254

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
2255 2256
    if ((tensor.dtype() == phi::DataType::INT32 ||
         tensor.dtype() == phi::DataType::INT64) &&
2257 2258
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

      if (platform::is_cpu_place(tensor.place())) {
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          auto *cpu_ctx = pool.Get(platform::CPUPlace());
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::CPUContext &>(*cpu_ctx),
              tensor,
              DataType::INT32);
        }
2269 2270 2271
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
2272 2273 2274
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int));
      } else if (platform::is_gpu_place(tensor.place())) {
2275
#if defined(PADDLE_WITH_CUDA)
2276 2277 2278 2279 2280 2281 2282 2283
        auto *dev_ctx = pool.Get(tensor.place());
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::GPUContext &>(*dev_ctx),
              tensor,
              DataType::INT32);
        }
2284 2285
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
2286 2287 2288
                             int32_tensor.place(),
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int),
2289 2290 2291 2292 2293
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
2294 2295 2296 2297 2298 2299 2300
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2356 2357
}

2358 2359
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2360
  std::string filename;
2361 2362
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2363
  } else if (!config_.prog_file().empty()) {
2364 2365 2366
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2367
    filename = config_.prog_file();
2368
  } else {
2369
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2370 2371 2372 2373
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2374
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2375 2376
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2377
        config_.params_file());
2378 2379
    return false;
  }
2380 2381 2382

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2383
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2384 2385 2386
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2387
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2388 2389
        static_cast<bool>(fin.is_open()),
        true,
2390 2391 2392
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2393 2394 2395 2396 2397 2398 2399 2400
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2401
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2402
  }
2403 2404 2405 2406 2407 2408
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2409 2410
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2411

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2432
      if (!config_.params_file().empty()) {
2433 2434 2435 2436 2437 2438
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2439
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2440 2441 2442 2443 2444
        op->CheckAttrs();
      }
    }
  }

2445
  if (!config_.params_file().empty()) {
2446 2447 2448 2449 2450 2451
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2452
    op->SetAttr("file_path", {config_.params_file()});
2453 2454 2455 2456
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2457
  framework::NaiveExecutor e(place_);
2458 2459 2460 2461
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2462 2463
  return true;
}
2464

2465 2466 2467 2468 2469
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2470 2471 2472 2473 2474 2475 2476 2477
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2478
      auto *variable = executor_->GetScope()->FindVar(name);
2479
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2480
          name != framework::kFeedOpType && name != framework::kFetchOpType) {
2481
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2482
        auto *t = variable->GetMutable<phi::DenseTensor>();
2483 2484 2485 2486 2487 2488
        t->clear();
      }
    }
  }
}

2489
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2490
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2491 2492
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2493 2494
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2495 2496 2497
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2498
      std::string engine_name = PADDLE_GET_CONST(
2499
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2500
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2501 2502 2503 2504
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2505 2506
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2507
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2508
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2509 2510
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2511 2512 2513
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2514

N
nhzlx 已提交
2515
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2516 2517 2518
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2519

N
nhzlx 已提交
2520
      std::string model_opt_cache_dir =
2521 2522 2523
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2524

N
nhzlx 已提交
2525
      std::string calibration_table_data_path =
N
nhzlx 已提交
2526 2527 2528 2529
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2530 2531 2532 2533 2534

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2535 2536 2537 2538
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2539
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2540 2541
  return true;
}
N
nhzlx 已提交
2542
#endif
N
nhzlx 已提交
2543

2544
AnalysisPredictor::~AnalysisPredictor() {
2545
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2546
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2547 2548
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2549 2550
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2551
#endif
2552
  if (config_.with_profile_) {
2553 2554 2555 2556
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2566 2567
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2568

2569 2570 2571 2572 2573 2574
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2575

2576 2577 2578
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2579 2580 2581 2582 2583
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
C
csy0225 已提交
2584

W
Wilber 已提交
2585 2586 2587
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2588
  device_contexts_.clear();
2589 2590 2591 2592 2593 2594 2595

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2596 2597
}

2598
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
2599
  VLOG(3) << "AnalysisPredictor::Clone";
Y
Yan Chunwei 已提交
2600
  std::lock_guard<std::mutex> lk(clone_mutex_);
2601
  auto *x = new AnalysisPredictor(config_);
2602
  x->status_is_cloned_ = true;
2603
  x->root_predictor_id_ = this->root_predictor_id_;
2604
  x->config_.apply_optim_ = false;
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2615
  x->Init(scope_, inference_program_);
2616
#ifdef PADDLE_WITH_TENSORRT
2617
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2618
#endif
2619 2620 2621
  return std::unique_ptr<PaddlePredictor>(x);
}

2622
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2623 2624 2625
  return inference_program_->Proto()->SerializeAsString();
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2665 2666
void AnalysisPredictor::RegisterOutputHook(
    const OutputTensorHookFunc &hookfunc) {
2667 2668
  static std::once_flag register_hook_flag;
  std::call_once(register_hook_flag, [this] {
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    executor_->RegisterOutputHook(
        [this](framework::OperatorBase *op, framework::Scope *scope) {
          for (auto &output : op->Outputs()) {
            for (auto &var_name : output.second) {
              auto *var = scope->FindVar(var_name);
              if (!var || !var->IsType<phi::DenseTensor>()) continue;
              auto dense_tensor = var->Get<phi::DenseTensor>();
              if (!dense_tensor.initialized()) continue;
              auto tensor = paddle::Tensor(
                  std::make_shared<phi::DenseTensor>(dense_tensor), var_name);
              for (auto &hookfunc : this->hookfuncs_) {
                hookfunc(op->Type(), var_name, tensor);
              }
            }
2683
          }
2684
        });
2685 2686 2687 2688
  });
  hookfuncs_.push_back(hookfunc);
}

Y
Yan Chunwei 已提交
2689
template <>
2690 2691
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2692
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2693 2694
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2695 2696
}

2697
}  // namespace paddle
2698

2699
#ifdef PADDLE_WITH_TENSORRT
2700
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2701 2702 2703
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2704 2705
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2706
USE_TRT_CONVERTER(elementwise_pow_weight);
2707
USE_TRT_CONVERTER(elementwise_mod_weight);
W
wenbin 已提交
2708
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2709 2710 2711 2712 2713 2714 2715
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2716
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2717
USE_TRT_CONVERTER(elementwise_mod_tensor);
2718 2719 2720 2721 2722 2723
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2724
USE_TRT_CONVERTER(greater_equal);
2725
USE_TRT_CONVERTER(transpose);
2726
USE_TRT_CONVERTER(transpose2);
2727
USE_TRT_CONVERTER(flatten);
2728
USE_TRT_CONVERTER(flatten_contiguous_range);
2729
USE_TRT_CONVERTER(matrix_multiply);
2730
USE_TRT_CONVERTER(bmm);
2731 2732 2733 2734 2735 2736 2737 2738 2739
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2740 2741 2742
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(pad3d);
#endif
2743 2744
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2745
USE_TRT_CONVERTER(split);
2746
USE_TRT_CONVERTER(fill_any_like);
2747 2748
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2749
USE_TRT_CONVERTER(leaky_relu);
2750
USE_TRT_CONVERTER(shuffle_channel);
2751
USE_TRT_CONVERTER(where);
2752
USE_TRT_CONVERTER(bitwise_not);
2753 2754
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2755
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2756
USE_TRT_CONVERTER(silu);
2757
USE_TRT_CONVERTER(group_norm);
2758
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2759 2760 2761
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2762
USE_TRT_CONVERTER(multihead_matmul_roformer);
2763
USE_TRT_CONVERTER(skip_layernorm);
2764
USE_TRT_CONVERTER(slice);
2765
USE_TRT_CONVERTER(scale);
2766
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2767
USE_TRT_CONVERTER(clip);
2768
USE_TRT_CONVERTER(gather);
2769
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2770
USE_TRT_CONVERTER(yolo_box);
2771
USE_TRT_CONVERTER(yolo_box_head);
2772
USE_TRT_CONVERTER(arg_max);
2773
USE_TRT_CONVERTER(arg_min);
2774
USE_TRT_CONVERTER(roi_align);
2775
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2776
USE_TRT_CONVERTER(multiclass_nms);
2777
USE_TRT_CONVERTER(multiclass_nms3);
2778
USE_TRT_CONVERTER(nearest_interp);
2779
USE_TRT_CONVERTER(nearest_interp_v2);
2780
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2781
USE_TRT_CONVERTER(reshape);
2782
USE_TRT_CONVERTER(reshape2);
2783
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2784
USE_TRT_CONVERTER(reduce_mean);
2785
USE_TRT_CONVERTER(reduce_max);
2786
USE_TRT_CONVERTER(reduce_min);
2787
USE_TRT_CONVERTER(reduce_sum);
2788
USE_TRT_CONVERTER(reduce_prod);
2789 2790
USE_TRT_CONVERTER(reduce_any);
USE_TRT_CONVERTER(reduce_all);
W
wenbin 已提交
2791
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2792 2793
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2794
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2795
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2796
USE_TRT_CONVERTER(pool3d)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2823
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2824
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2825
USE_TRT_CONVERTER(preln_skip_layernorm)
W
Wang Bojun 已提交
2826
USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm)
2827
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2828
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2829
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2830 2831
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2832
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2833
USE_TRT_CONVERTER(cast)
2834 2835
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2836
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2837
USE_TRT_CONVERTER(not_equal);
2838 2839
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2840
USE_TRT_CONVERTER(range)
2841 2842
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2843 2844
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2845
USE_TRT_CONVERTER(fill_constant)
2846
USE_TRT_CONVERTER(fused_token_prune)
2847
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2848
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2849
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2850
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2851
USE_TRT_CONVERTER(merge_layernorm)
2852
USE_TRT_CONVERTER(trans_layernorm)
W
wenbin 已提交
2853
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2854 2855
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2856
USE_TRT_CONVERTER(fuse_eleadd_transpose)
2857 2858
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2859
USE_TRT_CONVERTER(lookup_table)
2860
USE_TRT_CONVERTER(expand_v2)
2861
USE_TRT_CONVERTER(expand_as_v2)
2862
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2863 2864
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2865
USE_TRT_CONVERTER(cumsum)
2866 2867 2868
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
2869
USE_TRT_CONVERTER(qk_multihead_matmul)
2870
#endif
2871 2872 2873
#if IS_TRT_VERSION_GE(8510)
USE_TRT_CONVERTER(grid_sampler)
#endif
X
xjmxyt 已提交
2874 2875
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
X
xjmxyt 已提交
2876
USE_TRT_CONVERTER(index_select);
2877
USE_TRT_CONVERTER(temporal_shift)
X
xjmxyt 已提交
2878
#endif
2879 2880 2881 2882
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2883
#endif
W
Wilber 已提交
2884 2885 2886 2887 2888 2889

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2890 2891 2892 2893 2894 2895 2896
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
C
cyberslack_lee 已提交
2897
          << "Paddle2ONNX do't support convert the Model, fall back to using "
2898 2899
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2900 2901 2902 2903
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2904 2905 2906 2907 2908 2909 2910 2911 2912
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2913 2914 2915 2916
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2917 2918 2919 2920 2921
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2922

2923 2924 2925 2926
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2927 2928 2929
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2930 2931

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2932
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2933 2934 2935 2936 2937 2938 2939
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2940
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2941 2942
}

2943 2944 2945 2946 2947 2948 2949 2950
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
2951 2952
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2953 2954 2955 2956 2957
bool Predictor::Run(const std::vector<paddle::Tensor> &inputs,
                    std::vector<paddle::Tensor> *outputs) {
  return predictor_->Run(inputs, outputs);
}

2958 2959
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2960 2961 2962 2963 2964 2965 2966 2967
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2968 2969
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2970 2971 2972 2973
void Predictor::RegisterOutputHook(const OutputTensorHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}

2974 2975
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
3010 3011 3012 3013
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

3014 3015 3016 3017 3018
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
3019
                             paddle_infer::PlaceType backend,
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
3045 3046
      size,
      1UL,
W
Wilber 已提交
3047 3048 3049 3050 3051 3052 3053 3054
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
3055
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
3056
    } else {
3057
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
3058 3059 3060 3061 3062 3063
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
3064 3065
      idx,
      preds_.size() + 1,
W
Wilber 已提交
3066
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
3067 3068
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
3069 3070 3071 3072 3073 3074 3075
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
3096 3097 3098

bool InternalUtils::RunWithRuntimeConfig(paddle_infer::Predictor *p,
                                         void *config) {
C
csy0225 已提交
3099
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
3100
  return pred->ExpRunWithRuntimeConfig(config);
C
csy0225 已提交
3101
}
W
Wilber 已提交
3102

3103 3104 3105 3106 3107 3108
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
3124 3125 3126 3127 3128
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
3129
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
3139
}  // namespace experimental
W
Wilber 已提交
3140
}  // namespace paddle_infer