tensor.py 70.7 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16 17 18
import numpy
import warnings

Y
Yu Yang 已提交
19
from ..layer_helper import LayerHelper
20
from ..param_attr import ParamAttr
21
from ..initializer import Initializer
22 23 24 25 26 27 28 29 30 31
from ..framework import (
    _current_expected_place,
    convert_np_dtype_to_dtype_,
    _non_static_mode,
    _varbase_creator,
    device_guard,
    _in_legacy_dygraph,
    in_dygraph_mode,
    _get_paddle_place,
)
X
xuwei06 已提交
32
from ..framework import Variable
33
from ..initializer import Constant
34
from ..core import VarDesc
35
from .. import core
36
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
37
from . import utils
38 39 40 41 42 43
from ..data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
44
from paddle.utils import deprecated
45

46
from .utils import check_shape
47
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
48 49

__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
76 77 78
]


X
xuwei06 已提交
79
def create_tensor(dtype, name=None, persistable=False):
80
    """
W
wangchaochaohu 已提交
81
    Create a variable, which will hold a Tensor with data type dtype.
82 83

    Args:
W
wangchaochaohu 已提交
84 85
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
86
        name(string, optional): The default value is None.  Normally there is no need for
W
wangchaochaohu 已提交
87
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
88
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
89
            default value is False.
90 91

    Returns:
W
wangchaochaohu 已提交
92
        Variable: The tensor to be created according to dtype.
93 94 95 96

    Examples:
        .. code-block:: python

97
          import paddle.fluid as fluid
98 99
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
Y
Yu Yang 已提交
115
    helper = LayerHelper("create_tensor", **locals())
116 117 118
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )
Y
Yu Yang 已提交
119 120


121 122 123
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
124
    """
125
        :api_attr: Static Graph
S
swtkiwi 已提交
126

127
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
128 129 130 131 132
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

133 134 135 136 137 138 139
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
140 141 142
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
143
        default_initializer (Initializer, optional): Initializer for the parameter
144 145

    Returns:
146
        The created parameter.
Y
yuyang18 已提交
147 148

    Examples:
149 150
        .. code-block:: python

151 152 153
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
154
    """
155 156
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        check_type(
            item,
            'item of shape',
            (
                int,
                numpy.uint8,
                numpy.int8,
                numpy.int16,
                numpy.int32,
                numpy.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
187
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
188 189 190 191 192 193
    check_type(
        default_initializer,
        'default_initializer',
        (type(None), Initializer),
        'create_parameter',
    )
194

Q
Qiao Longfei 已提交
195
    helper = LayerHelper("create_parameter", **locals())
196
    if attr is None:
X
xuwei06 已提交
197
        attr = ParamAttr(name=name)
198 199 200
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )
201 202


203 204 205
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
206
    """
207
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
208

209
    Parameters:
210
        shape (list[int]|tuple[int]): Shape of the variable
211
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
212
                      variable will be filled with it.
213 214
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
215
                           Default: False
216
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
217
                         Default: False
218 219
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
220 221

    Returns:
222
        Variable: The created Variable
F
fengjiayi 已提交
223 224 225 226

    Examples:
        .. code-block:: python

227 228 229
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
230
                                           persistable=True, force_cpu=True, name='new_var')
231
    """
232 233 234
    check_type(
        shape, 'shape', (list, tuple, numpy.ndarray), 'create_global_var'
    )
235
    for item in shape:
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        check_type(
            item,
            'item of shape',
            (
                int,
                numpy.uint8,
                numpy.int8,
                numpy.int16,
                numpy.int32,
                numpy.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )
267

Q
Qiao Longfei 已提交
268
    helper = LayerHelper("global_var", **locals())
269 270 271 272 273 274 275 276 277 278
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
        var, initializer=Constant(value=float(value), force_cpu=force_cpu)
    )
M
minqiyang 已提交
279

Q
Qiao Longfei 已提交
280 281 282
    return var


283
def cast(x, dtype):
Y
Yu Yang 已提交
284
    """
S
swtkiwi 已提交
285

286
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
287 288
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
289 290

    Args:
291
        x(Tensor): An input N-D Tensor with data type bool, float16,
292
            float32, float64, int32, int64, uint8.
293
        dtype(np.dtype|str): Data type of the output:
294
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
295 296

    Returns:
297
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
298 299 300

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
301

302
            import paddle
303

304 305
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
306
    """
H
hong 已提交
307 308 309
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
310
        return _C_ops.cast(x, dtype)
H
hong 已提交
311

J
Jiabin Yang 已提交
312
    if _non_static_mode():
313 314
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
315
        out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
316
        return out
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    check_variable_and_dtype(
        x,
        'x',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'cast',
    )
351 352

    helper = LayerHelper('cast', **locals())
353
    out = helper.create_variable_for_type_inference(
354 355 356 357 358 359 360 361
        dtype=dtype, stop_gradient=x.stop_gradient
    )
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype},
    )
Y
Yu Yang 已提交
362 363 364
    return out


365
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
366
    """
367
    This OP concatenates the input along the axis.
368 369

    Args:
370
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
371
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type.
372 373
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
374
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
375
            as ``axis+R``. Default is 0.
376 377 378
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
379 380

    Returns:
381
        Tensor: A Tensor with the same data type as ``input``.
382 383 384

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
385

386
            import paddle.fluid as fluid
387 388
            import numpy as np

389 390 391 392 393 394
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
395 396 397 398
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
399 400
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
401 402
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
403 404 405 406 407 408 409 410
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
411
    """
412

413 414 415 416 417 418
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
419
        out = _C_ops.concat(input, axis)
420
        return out
421 422

    if _in_legacy_dygraph():
S
songyouwei 已提交
423 424
        if isinstance(axis, Variable):
            axis = axis.numpy()
425
            axis = axis.item(0)
426 427
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
428
        out = _varbase_creator()
429
        _legacy_C_ops.concat(input, out, 'axis', axis)
430
        return out
431

432 433 434 435
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
436 437
                x,
                'input[' + str(id) + ']',
438
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
439 440
                'concat',
            )
441 442
            if x.dtype != input[0].dtype:
                raise TypeError(
443 444
                    "All the Tensors in the input must have the same data type."
                )
445
    else:
446
        input = [input]
447
    check_type(axis, 'axis', (int, Variable), 'concat')
448

449 450
    if isinstance(axis, Variable):
        check_dtype(
451 452 453 454 455
            axis.dtype,
            'axis',
            ['int32', 'int64'],
            'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor",
456
        )
457

458
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
460 461

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
462 463 464 465
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

466 467 468 469
        assert len(input) == 1, (
            "If the elements of 'input' in concat are Variable(LoDTensorArray), "
            "number of the elements must be 1, but received %s." % len(input)
        )
470
        out_index = helper.create_variable_for_type_inference(dtype="int32")
471 472 473 474 475 476
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out], 'OutIndex': [out_index]},
            attrs={'axis': axis, 'use_stack': False},
        )
477 478 479 480 481
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
482
        attrs['axis'] = axis
483

484 485 486
        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs
        )
Y
Yu Yang 已提交
487 488 489
    return out


G
Guo Sheng 已提交
490
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
491
    r"""
G
Guo Sheng 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
542 543

    Args:
G
Guo Sheng 已提交
544 545 546 547 548 549 550
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
551 552

    Returns:
G
Guo Sheng 已提交
553 554 555
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
556 557 558 559

    Examples:
        .. code-block:: python

560
            import paddle.fluid as fluid
561
            import numpy as np
G
Guo Sheng 已提交
562 563 564 565 566 567 568
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
569
    """
J
Jiabin Yang 已提交
570
    if _non_static_mode():
571
        assert isinstance(
572 573
            input, list
        ), "The 'input' in tensor_array_to_tensor must be list"
574 575
        from .nn import stack, concat
        from ..dygraph import to_variable
576

577 578 579
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
580 581
            numpy.array(list(map(lambda x: int(x.shape[axis]), input)))
        )
582 583
        return res, sizes

584 585 586
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
587 588 589 590 591 592
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'tensor_array_to_tensor',
            )
L
li099 已提交
593
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
594 595
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
596 597 598 599 600 601
    helper.append_op(
        type='tensor_array_to_tensor',
        inputs={'X': input},
        outputs={'Out': [out], 'OutIndex': [out_index]},
        attrs={'axis': axis, 'use_stack': use_stack},
    )
L
li099 已提交
602 603 604
    return out, out_index


605
def sums(input, out=None):
606
    r"""
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
628 629

    Args:
630 631 632 633
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
634 635

    Returns:
636 637
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
638 639

    Examples:
F
fengjiayi 已提交
640
        .. code-block:: python
K
kavyasrinet 已提交
641

642 643 644 645 646 647 648 649 650
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
651

652 653
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
654
    """
655 656 657
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
658 659 660 661 662 663
            check_variable_and_dtype(
                input_section,
                "input",
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'sums',
            )
664
    else:
665 666 667 668 669 670
        check_variable_and_dtype(
            input,
            "input",
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'sums',
        )
671

Y
Yu Yang 已提交
672 673
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
674
        out = helper.create_variable_for_type_inference(
675 676
            dtype=helper.input_dtype()
        )
677
    else:
678 679 680 681 682 683 684 685 686 687
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums'
        )

    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False},
    )
Y
Yu Yang 已提交
688 689 690
    return out


F
fengjiayi 已提交
691
def assign(input, output=None):
692
    """
S
swtkiwi 已提交
693

694
    The OP copies the :attr:`input` to the :attr:`output`.
695

696
    Parameters:
697 698 699 700
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
701
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
702
            be created as :attr:`output`. Default: None.
703 704

    Returns:
705
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
706 707 708

    Examples:
        .. code-block:: python
709

710
          import paddle
711
          import numpy as np
712
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
713 714 715 716
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
717 718 719
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
720
    """
Y
Yu Yang 已提交
721
    helper = LayerHelper('assign', **locals())
722 723 724 725 726 727
    check_type(
        input,
        'input',
        (Variable, numpy.ndarray, list, tuple, float, int, bool),
        'assign',
    )
728 729
    is_inplace = True if output is not None else False

730 731 732 733
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
734 735
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
736
    # but _non_static_mode()==False under @to_static, which means
737 738 739
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
740
        if _non_static_mode():
C
chentianyu03 已提交
741
            if in_dygraph_mode() and output is None:
742
                output = _C_ops.assign(input)
743 744
            elif in_dygraph_mode() and output is not None:
                _C_ops.assign_out_(input, output)
C
chentianyu03 已提交
745 746 747 748 749 750
            else:
                if output is None:
                    if _in_legacy_dygraph():
                        output = core.VarBase()
                    else:
                        output = core.eager.Tensor()
751
                _legacy_C_ops.assign(input, output)
752
        else:
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
769 770
            if output is None:
                output = helper.create_variable_for_type_inference(
771 772 773 774 775
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
X
xuwei06 已提交
776
    elif isinstance(input, numpy.ndarray):
777 778 779 780 781
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
782
        dtype = convert_np_dtype_to_dtype_(input.dtype)
783 784 785 786 787 788
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
789 790
                "it to float32"
            )
791
            dtype = VarDesc.VarType.FP32
792 793
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
794
            values = [int(v) for v in input.flat]
795
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
796
            value_name = "fp32_values"
797
            values = [float(v) for v in input.flat]
798
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
799
            value_name = "int32_values"
800
            values = [int(v) for v in input.flat]
801 802 803
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
804
        else:
805 806
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
807
                "the data type of 'input' must be bool, float32, int32 or int64, but "
808 809
                "received %s." % convert_dtype(dtype)
            )
810
        if input.size > 1024 * 1024:
811 812 813 814
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
815 816 817
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
818 819 820 821 822 823 824
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
825 826 827
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
828 829 830 831 832 833 834 835 836
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
837
        else:
838 839
            if output is None:
                output = helper.create_variable_for_type_inference(
840 841 842 843 844 845 846 847 848 849 850
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
X
xuwei06 已提交
851

J
Jiabin Yang 已提交
852
    if is_inplace and _non_static_mode():
853
        output._bump_inplace_version()
854

Y
Yu Yang 已提交
855 856 857
    return output


858
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
859
    """
S
swtkiwi 已提交
860

W
wangchaochaohu 已提交
861
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
862
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
863

T
tianshuo78520a 已提交
864
    The attribute `stop_gradient` of the created Tensor is set to True.
865 866

    Args:
867 868 869
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
870
        dtype(np.dtype|str): Data type of the output Tensor which can
871
            be float16, float32, float64, uint8, int16, int32, int64.
872
        value(bool|float|int|Tensor): The constant value used to initialize
873 874
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
875
        out(Tensor, optional): Optional output which can be any created
876 877
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
878 879
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
880 881

    Returns:
882
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
883

884 885 886
    Examples:
        .. code-block:: python

887
          import paddle.fluid as fluid
888
          # attr shape is a list which doesn't contain  Tensor.
889 890
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
891
          # data1=[[5], [5]] data2=[[5], [5]]
892

893
          # attr shape is a list which contains Tensor.
894
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
895
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
896

897
          # attr shape is a Tensor.
898
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
899
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
900

901
          # attr value is a Tensor.
W
wangchaochaohu 已提交
902 903
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
904
    """
905

W
wangchaochaohu 已提交
906
    attrs = {'force_cpu': force_cpu}
907
    dtype = convert_dtype(dtype)
908
    if not isinstance(value, Variable):
909
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
910
            attrs['str_value'] = str(int(value))
911
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
912 913
        else:
            attrs['str_value'] = str(float(value))
914
            attrs['value'] = float(value)
915

916 917 918 919 920
    if in_dygraph_mode():
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
921
            shape = utils.convert_shape_to_list(shape)
922 923 924 925 926

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
927
            out = _C_ops.full(shape, float(value), dtype, place)
928 929 930
            out.stop_gradient = True
            return out

931 932
        if out is not None:
            # final state mode is support out is not None.
933
            _C_ops.full_(out, shape, float(value), dtype, place)
934 935
            out.stop_gradient = True
            return out
936

937 938 939 940 941 942 943 944 945 946 947
    if _in_legacy_dygraph():
        shape = utils.convert_shape_to_list(shape)
        if out is None:
            out = _varbase_creator(dtype=dtype)

        if isinstance(value, Variable):
            if dtype in ['uint8', 'int16', 'int32', 'int64']:
                attrs['str_value'] = str(int(value.numpy().item(0)))
            else:
                attrs['str_value'] = str(float(value.numpy().item(0)))

948 949 950 951 952 953 954 955 956 957 958 959 960
        _legacy_C_ops.fill_constant(
            out,
            'value',
            float(value),
            'force_cpu',
            force_cpu,
            'dtype',
            out.dtype,
            'str_value',
            attrs['str_value'],
            'shape',
            shape,
        )
961 962 963
        out.stop_gradient = True
        return out

964 965 966
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
967 968
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
969 970
        inputs['ValueTensor'] = value

971
    check_shape(shape)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'uint8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'fill_constant',
    )
989
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
990

991
    if out is not None:
992 993 994
        check_variable_and_dtype(
            out, 'out', [convert_dtype(dtype)], 'fill_constant'
        )
995 996

    helper = LayerHelper("fill_constant", **locals())
997 998 999
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
    )
L
liym27 已提交
1000

Y
Yu Yang 已提交
1001
    if out is None:
X
Xin Pan 已提交
1002
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
1003
    attrs['dtype'] = out.dtype
1004 1005 1006 1007 1008 1009 1010
    helper.append_op(
        type='fill_constant',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
Y
Yu Yang 已提交
1011 1012 1013 1014
    out.stop_gradient = True
    return out


1015
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
1016
@templatedoc()
1017 1018 1019 1020 1021 1022 1023 1024 1025
def fill_constant_batch_size_like(
    input,
    shape,
    dtype,
    value,
    input_dim_idx=0,
    output_dim_idx=0,
    force_cpu=False,
):
1026
    """
T
tianshuo78520a 已提交
1027
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
1028 1029 1030 1031
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
1032 1033

    Args:
W
wangchaochaohu 已提交
1034 1035 1036 1037 1038
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
1039
        value(float|int): The constant value used to initialize the Tensor to be created.
W
wangchaochaohu 已提交
1040 1041 1042 1043 1044
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
1045
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
1046 1047

    Returns:
W
wangchaochaohu 已提交
1048
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
1049 1050 1051 1052 1053

    Examples:

        .. code-block:: python

1054
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
1055
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
1056
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
1057
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
1058

1059
    """
1060 1061 1062 1063 1064 1065 1066
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
1067 1068 1069
        out = _C_ops.full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place
        )
1070 1071 1072
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
1073
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
1074
    out = helper.create_variable_for_type_inference(dtype=dtype)
1075 1076 1077 1078 1079 1080
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
1081
        'force_cpu': force_cpu,
1082 1083 1084 1085 1086
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
1087 1088 1089 1090 1091 1092
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
1093 1094 1095 1096
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
1097 1098
def argmin(x, axis=0):
    """
1099 1100 1101
        :alias_main: paddle.argmin
        :alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
        :old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
1102

S
sneaxiy 已提交
1103 1104
    **argmin**

1105 1106
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1107 1108

    Args:
1109 1110 1111 1112 1113
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1114

S
sneaxiy 已提交
1115
    Returns:
1116
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1117

S
sneaxiy 已提交
1118 1119
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1120

1121
            import paddle.fluid as fluid
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
1149
    """
1150
    check_variable_and_dtype(
1151 1152 1153 1154 1155
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin',
    )
S
sneaxiy 已提交
1156
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
1157
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1158 1159 1160 1161 1162 1163
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1164
    out.stop_gradient = True
S
sneaxiy 已提交
1165 1166 1167 1168 1169 1170 1171
    return out


def argmax(x, axis=0):
    """
    **argmax**

1172 1173
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
1174 1175

    Args:
1176 1177 1178 1179 1180
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
1181

S
sneaxiy 已提交
1182
    Returns:
1183
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
1184

S
sneaxiy 已提交
1185 1186
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1187

1188
            import paddle.fluid as fluid
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1216
    """
1217
    check_variable_and_dtype(
1218 1219 1220 1221 1222
        x,
        'x',
        ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax',
    )
S
sneaxiy 已提交
1223
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1224
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
1225 1226 1227 1228 1229 1230
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
1231
    out.stop_gradient = True
S
sneaxiy 已提交
1232 1233 1234
    return out


1235
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1236
    """
1237 1238 1239
        :alias_main: paddle.argsort
        :alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
        :old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1240

1241 1242 1243
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1244 1245

    Args:
1246 1247 1248 1249 1250
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1251 1252 1253
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1254 1255 1256
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1257 1258

    Returns:
1259 1260 1261
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1262 1263 1264 1265

    Examples:
        .. code-block:: python

1266
            import paddle.fluid as fluid
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1308
    """
1309
    check_variable_and_dtype(
1310 1311 1312 1313 1314
        input,
        'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort',
    )
Y
Yibing Liu 已提交
1315
    helper = LayerHelper("argsort", **locals())
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True
    )
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True
    )
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out, 'Indices': ids},
        attrs={'axis': axis, 'descending': descending},
    )
Y
Yibing Liu 已提交
1328 1329 1330
    return out, ids


Y
Yang Yu 已提交
1331
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1332
    """
1333 1334
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1335

1336
    Parameters:
1337
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1338
        dtype (np.dtype|str): Data type of output Tensor, it supports
1339
            bool, float16, float32, float64, int32 and int64.
1340 1341
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1342
            Default: False.
1343 1344

    Returns:
1345
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1346 1347 1348 1349

    Examples:
        .. code-block:: python

1350
          import paddle.fluid as fluid
1351
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
1352

1353 1354 1355
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1356 1357 1358 1359
    """
    return fill_constant(value=1.0, **locals())


1360
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1361
    """
1362 1363
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1364

1365
    Parameters:
1366
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1367
        dtype (np.dtype|str): Data type of output Tensor, it supports
1368
            bool, float16, float32, float64, int32 and int64.
1369 1370
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1371
            Default: False.
1372 1373
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1374 1375

    Returns:
1376
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1377 1378 1379 1380

    Examples:
        .. code-block:: python

1381
          import paddle.fluid as fluid
1382
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1383

1384 1385 1386
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1387 1388
    """
    return fill_constant(value=0.0, **locals())
1389 1390


F
fengjiayi 已提交
1391 1392
def reverse(x, axis):
    """
1393 1394 1395
        :alias_main: paddle.reverse
        :alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
        :old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1396

1397
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1423
    Parameters:
1424 1425
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1426 1427
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1428 1429
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1430 1431

    Returns:
1432
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1433 1434 1435 1436

    Examples:
        .. code-block:: python

1437
          import paddle.fluid as fluid
1438 1439 1440 1441
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1452
    """
1453 1454 1455
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse'
    )
1456
    check_type(axis, 'axis', (int, tuple, list, Variable), 'reverse')
F
fengjiayi 已提交
1457 1458
    if isinstance(axis, int):
        axis = [axis]
W
wanghuancoder 已提交
1459
    if in_dygraph_mode():
1460
        return _C_ops.reverse(x, axis)
F
fengjiayi 已提交
1461
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1462
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1463 1464 1465 1466 1467 1468
    helper.append_op(
        type='reverse',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis},
    )
F
fengjiayi 已提交
1469 1470 1471
    return out


1472 1473 1474 1475 1476 1477 1478
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1479 1480 1481
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1482 1483
    """
    helper = LayerHelper("save", **locals())
1484 1485 1486 1487 1488 1489
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path, "overwrite": overwrite},
    )
1490 1491 1492 1493 1494 1495 1496


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1497 1498
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1499
        file_path(str): The file path where variables will be saved.
1500
        overwrite(bool): Whether or not cover the given file when it has already
1501 1502
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1503 1504 1505 1506 1507 1508 1509 1510

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1511
            import paddle.fluid as fluid
1512 1513 1514 1515 1516 1517 1518
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1519 1520
    """
    helper = LayerHelper("save_combine", **locals())
1521 1522 1523 1524 1525 1526
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path, "overwrite": overwrite},
    )
1527 1528 1529 1530


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1531
    Loads a list of variable from a single file.
1532 1533 1534 1535 1536 1537

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
1538 1539 1540 1541 1542 1543
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path},
    )
1544 1545 1546 1547 1548 1549 1550


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1551
       x (Tensor): The Tensor to be checked.
1552 1553

    Returns:
S
Steffy-zxf 已提交
1554
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1555

1556 1557
    Examples:
        .. code-block:: python
1558

S
Steffy-zxf 已提交
1559 1560
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1561
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1562
          # [False]
1563

1564
    """
J
Jiabin Yang 已提交
1565
    if _non_static_mode():
1566
        return _legacy_C_ops.isinf(x)
S
Steffy-zxf 已提交
1567

1568
    check_type(x, 'x', (Variable), 'has_inf')
1569
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1570
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1571 1572 1573 1574 1575 1576 1577 1578 1579
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1580
       x (Tensor): The Tensor to be checked.
1581 1582

    Returns:
S
Steffy-zxf 已提交
1583
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1584

1585 1586
    Examples:
        .. code-block:: python
1587

S
Steffy-zxf 已提交
1588 1589
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1590
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1591
          # [False]
1592

1593
    """
J
Jiabin Yang 已提交
1594
    if _non_static_mode():
1595
        return _legacy_C_ops.isnan(x)
S
Steffy-zxf 已提交
1596

1597
    check_type(x, 'x', (Variable), 'has_nan')
1598
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1599
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1600 1601 1602 1603 1604 1605
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1606

1607 1608 1609 1610
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1611
        x(Tensor): The Tensor to be checked.
1612 1613

    Returns:
N
Noel 已提交
1614
        Tensor: The tensor storing the output, contains a bool value.
1615 1616 1617 1618 1619

    Examples:

        .. code-block:: python

N
Noel 已提交
1620 1621 1622 1623 1624 1625
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1626
    """
1627 1628 1629
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "isfinite"
    )
1630
    helper = LayerHelper("isfinite", **locals())
1631

1632
    out = helper.create_variable_for_type_inference(dtype='bool')
1633 1634
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1635 1636


1637
def range(start, end, step, dtype, name=None):
W
whs 已提交
1638
    """
1639
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1640

1641 1642
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1643

1644 1645
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1646

L
Liufang Sang 已提交
1647
    Parameters:
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

1664
    Returns:
1665 1666 1667 1668 1669 1670
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1671 1672 1673 1674 1675

    examples:

        .. code-block:: python

1676
            import paddle.fluid as fluid
W
whs 已提交
1677

1678 1679
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1680

1681 1682 1683 1684 1685
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
1686
    out_shape = None
1687 1688 1689 1690 1691
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
1692 1693
        out_shape = [int(math.ceil((end - start) / step))]

1694 1695
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1696

W
whs 已提交
1697
    if not isinstance(start, Variable):
1698
        with device_guard("cpu"):
1699
            start = fill_constant([1], dtype, start, force_cpu=True)
1700 1701
    elif start.dtype != dtype:
        start = cast(start, dtype)
1702

W
whs 已提交
1703
    if not isinstance(end, Variable):
1704
        with device_guard("cpu"):
1705
            end = fill_constant([1], dtype, end, force_cpu=True)
1706 1707
    elif end.dtype != dtype:
        end = cast(end, dtype)
1708

W
whs 已提交
1709
    if not isinstance(step, Variable):
1710
        with device_guard("cpu"):
1711
            step = fill_constant([1], dtype, step, force_cpu=True)
1712 1713
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1714

Z
zyfncg 已提交
1715
    if in_dygraph_mode():
1716
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
Z
zyfncg 已提交
1717

Z
zyfncg 已提交
1718
    if _in_legacy_dygraph():
1719
        out = _legacy_C_ops.range(start, end, step)
J
Jiawei Wang 已提交
1720 1721
        out.stop_gradient = True
        return out
W
whs 已提交
1722

1723 1724 1725
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
1726
    helper = LayerHelper('range', **locals())
1727
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1728 1729 1730 1731 1732
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1733
    out.stop_gradient = True
1734 1735
    if out_shape is not None:
        out.desc.set_shape(out_shape)
W
whs 已提交
1736
    return out
Z
zhoukunsheng 已提交
1737 1738


1739
def linspace(start, stop, num, dtype=None, name=None):
1740
    r"""
1741
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1742 1743

    Args:
1744 1745 1746 1747
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1748
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1749
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1750
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1751
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1752
        name(str, optional): Normally there is no need for user to set this property.
1753
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1754 1755

    Returns:
1756
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1757
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
1758
        the value with input :attr:`start`.
Z
zhoukunsheng 已提交
1759

Z
zhoukunsheng 已提交
1760
    Examples:
Z
zhoukunsheng 已提交
1761 1762
        .. code-block:: python

1763 1764 1765
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1766 1767

    """
1768 1769
    if dtype is None:
        dtype = 'float32'
1770 1771 1772
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1773 1774
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1775 1776
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1777
    if not isinstance(start, Variable):
1778 1779
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1780
    if not isinstance(stop, Variable):
1781 1782
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1783
    if not isinstance(num, Variable):
1784 1785
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1786
    if in_dygraph_mode():
1787 1788 1789 1790 1791 1792 1793
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
1794
    if _in_legacy_dygraph():
1795 1796 1797
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
1798 1799
    helper = LayerHelper("linspace", **locals())

1800 1801 1802
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1803
    if isinstance(start, Variable):
1804 1805 1806 1807 1808 1809
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1810 1811
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1812

1813
    if isinstance(stop, Variable):
1814 1815 1816 1817 1818 1819
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
1820 1821 1822 1823
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
1834 1835
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
1836 1837 1838 1839
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
1840 1841

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1842

1843 1844 1845 1846 1847 1848
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
1849
    if isinstance(num, int):
1850
        out.desc.set_shape((num,))
Z
zhoukunsheng 已提交
1851
    return out
1852 1853


Z
zhoukunsheng 已提交
1854 1855
def zeros_like(x, out=None):
    """
1856
    This OP creates a zeros tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
1857 1858 1859
    with `x`.

    Args:
1860 1861 1862 1863 1864 1865
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1866 1867

    Returns:
1868 1869 1870
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1871 1872 1873 1874

    Examples:
        .. code-block:: python

1875
          import paddle.fluid as fluid
1876
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1877 1878
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1879
    """
1880 1881 1882
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'zeros_like'
    )
Z
zhoukunsheng 已提交
1883 1884 1885
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1886 1887
    else:
        check_variable_and_dtype(
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            out,
            "out",
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'zeros_like',
        )
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 0, "dtype": x.dtype},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
1899 1900
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1901 1902


1903
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1904
def diag(diagonal):
1905
    r"""
1906 1907 1908
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1909

1910
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1911 1912

    Args:
1913 1914
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1915 1916

    Returns:
1917 1918
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1919 1920 1921 1922 1923 1924

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
1925
          #  [0, 0, 5]
1926 1927 1928

          import paddle.fluid as fluid
          import numpy as np
1929 1930 1931
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1932 1933

    """
1934
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
1935 1936 1937 1938 1939 1940
    check_dtype(
        diagonal.dtype,
        'diagonal',
        ['float32', 'float64', 'int32', 'int64'],
        'diag',
    )
Z
zhoukunsheng 已提交
1941 1942 1943 1944 1945 1946 1947
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

1948 1949 1950
    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]}
    )
Z
zhoukunsheng 已提交
1951 1952 1953

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1954 1955


1956 1957 1958
def eye(
    num_rows, num_columns=None, batch_shape=None, dtype='float32', name=None
):
1959
    """
1960
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere.
1961 1962 1963

    Args:
        num_rows(int): the number of rows in each batch tensor.
1964 1965
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1966 1967
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1968
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1969 1970 1971 1972
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1973 1974

    Returns:
1975
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1976 1977 1978 1979 1980

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1981 1982
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1983
          #  [0, 1, 0]
1984 1985
          #  [0, 0, 1]]

1986
          data = fluid.layers.eye(2, 3, dtype='int32')
1987
          # [[1, 0, 0]
1988
          #  [0, 1, 0]]
1989 1990

          data = fluid.layers.eye(2, batch_shape=[3])
1991 1992 1993 1994 1995
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1996 1997 1998 1999 2000 2001 2002
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")
2003 2004
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
2005
    if num_columns is not None:
2006
        _check_attr(num_columns, "num_columns")
2007 2008
    else:
        num_columns = num_rows
2009

R
Ruibiao Chen 已提交
2010
    if in_dygraph_mode():
2011 2012 2013
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
R
Ruibiao Chen 已提交
2014
    elif _in_legacy_dygraph():
2015 2016 2017
        out = _legacy_C_ops.eye(
            'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
        )
2018 2019
    else:
        helper = LayerHelper("eye", **locals())
2020 2021 2022 2023 2024 2025
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
2026
        out = helper.create_variable_for_type_inference(dtype=dtype)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
2038 2039

    if batch_shape is not None:
2040 2041 2042
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
2043
        if _non_static_mode():
2044
            out, _ = _legacy_C_ops.reshape2(out, None, 'shape', re_shape)
2045
            return _legacy_C_ops.expand(out, None, 'expand_times', expand_times)
2046

2047 2048
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
2049
        for batch_val in batch_shape:
2050 2051
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
2052 2053

        from .nn import reshape, expand
2054

2055 2056 2057 2058
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
2059 2060 2061
    return out


Z
zhoukunsheng 已提交
2062 2063 2064 2065
def ones_like(x, out=None):
    """
    **ones_like**

2066
    This function creates a ones tensor which has identical shape and dtype
Z
zhoukunsheng 已提交
2067 2068 2069 2070 2071 2072 2073
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
2074
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
2085 2086 2087
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like'
    )
Z
zhoukunsheng 已提交
2088 2089 2090 2091

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2092 2093
    else:
        check_variable_and_dtype(
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
            out,
            "out",
            ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like',
        )
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
2105
    return out
Y
yaoxuefeng 已提交
2106 2107 2108 2109 2110


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
2111

Y
yaoxuefeng 已提交
2112
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)