conv.py 70.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18 19 20 21 22 23 24 25 26 27
from paddle import _C_ops, _legacy_C_ops, get_flags, in_dynamic_mode
from paddle.device import (
    get_all_custom_device_type,
    is_compiled_with_cuda,
    is_compiled_with_npu,
    is_compiled_with_rocm,
)
from paddle.fluid.framework import (
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)

L
LielinJiang 已提交
28
from ...device import get_cudnn_version
29 30 31
from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import nn
32 33 34
from ...fluid.layers.utils import (
    _contain_var,
    _convert_to_tensor_list,
35 36
    _is_symmetric_padding,
    convert_to_list,
37
)
38
from ...framework import no_grad
39 40
from ...static import Variable
from ...tensor.manipulation import squeeze, unsqueeze
41

42 43
__all__ = []

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
67 68 69 70
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
71 72 73 74 75 76 77 78 79 80 81 82 83 84
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
85 86
                    "is not supported.".format(padding)
                )
87
            padding_algorithm = "EXPLICIT"
88
            padding = _exclude_padding_in_batch_and_channel(
89 90
                padding, channel_last
            )
91
            if _is_symmetric_padding(padding, num_dims):
92 93 94 95
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
96 97
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
98 99 100 101
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
102
            padding = convert_to_list(padding, num_dims, 'padding')
103 104 105 106 107
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
108
        padding = convert_to_list(padding, num_dims, 'padding')
109 110
    if not all([p >= 0 for p in padding]):
        raise ValueError(
111 112 113 114
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
115 116 117
    return padding, padding_algorithm


118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
134

135
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
136
    if in_dygraph_mode() and op_type == "conv2d":
137 138 139 140 141 142 143
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
144
            groups,
145 146
            data_format,
        )
H
hong 已提交
147
        if bias is not None:
W
wanghuancoder 已提交
148 149 150
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
151 152 153 154 155 156 157 158
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
            if 'npu' in get_all_custom_device_type():
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
159 160
        else:
            return pre_bias
161 162

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
163 164 165 166 167 168 169 170 171 172
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
173
        if bias is not None:
W
wanghuancoder 已提交
174 175 176 177
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
178 179 180 181
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
182 183 184 185 186 187 188 189 190 191
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
192
        if bias is not None:
W
wanghuancoder 已提交
193 194 195 196
            new_shape = [1] * len(x.shape)
            new_shape[channel_dim] = -1
            bias = bias.reshape(new_shape)
            return _C_ops.add(pre_bias, bias)
197 198 199
        else:
            return pre_bias

Z
zhiboniu 已提交
200
    if in_dynamic_mode():
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
221
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
237
            "data_format": data_format,
L
LielinJiang 已提交
238
        }
239 240 241
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
242 243 244 245
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
246 247 248
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
249 250
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
251 252 253 254 255 256
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
257 258 259 260 261
        else:
            out = pre_bias
    return out


262 263 264 265 266 267 268 269 270 271 272
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
273
    r"""
W
whs 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
289
        Out = \sigma (W \ast X + b)
W
whs 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
316
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
317 318

    Args:
319
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
320 321
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
322
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
323
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
324
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
325
            contain one integers, (stride_size). Default: 1.
326
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
327 328 329 330 331 332
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
333
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
334 335 336 337 338 339
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
340
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
341 342 343
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
344 345
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
346 347 348
           None by default.

    Returns:
349
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
350 351 352 353 354 355 356
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
373 374 375 376 377 378 379 380
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
381 382 383 384
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
385

386
    channel_last = data_format == "NLC"
W
whs 已提交
387 388
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
389 390
    if len(x.shape) != 3:
        raise ValueError(
391 392 393 394
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
395 396 397
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
398 399 400 401
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
402 403
    if groups <= 0:
        raise ValueError(
404 405 406 407
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
408 409 410 411
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
412 413
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
414 415 416 417
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
418 419
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
420 421 422

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
423

W
whs 已提交
424
    if len(padding) == 2:
425
        padding = [0] * 2 + padding
W
whs 已提交
426
    elif len(padding) == 1:
427
        padding = [0] + padding
W
whs 已提交
428 429
    else:
        raise ValueError(
430 431 432 433
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
434 435 436
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
437 438

    l_type = "conv2d"
439 440

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
441 442 443 444 445 446
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
447 448 449
        l_type = 'depthwise_conv2d'
        use_cudnn = False

450
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
451
    if is_compiled_with_npu():
452
        if num_channels == groups and num_channels == num_filters:
453 454 455 456
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

457
    squeeze_aixs = -3 if channel_last else -2
458
    x = unsqueeze(x, axis=[squeeze_aixs])
459

460
    if in_dygraph_mode():
461 462 463 464 465 466 467 468 469 470 471 472
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
473
            out = _C_ops.depthwise_conv2d(
474 475 476 477 478 479 480 481 482 483 484 485 486
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
487 488 489
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
510
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
524
            "data_format": conv2d_data_format,
W
whs 已提交
525
        }
526 527 528
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
529
        helper = LayerHelper(l_type, **locals())
530
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
531 532
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
533 534 535
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
536 537
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
538
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
539 540 541
    return out


542 543 544 545 546 547 548 549 550 551 552
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
553
    r"""
S
swtkiwi 已提交
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

572
    ..  math::
573

574
        Out = \sigma (W \ast X + b)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

599
        ..  math::
600

601 602
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
603 604

    Args:
605
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
606
            of input is float16 or float32 or float64.
607
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
608
            the number of output channels, g is the number of groups, kH is the filter's
609
            height, kW is the filter's width.
610
        bias (Tensor, optional): The bias with shape [M,].
611 612
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
613
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
614 615 616 617
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
618 619
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
620
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
621
            when `data_format` is `"NHWC"`, `padding` can be in the form
622 623
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
624
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
625 626
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
627
            Default: dilation = 1.
C
cnn 已提交
628
        groups (int): The groups number of the Conv2D Layer. According to grouped
629 630 631 632
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
633
        data_format (str, optional): Specify the data format of the input, and the data format of the output
634 635 636
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
637 638
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
639 640 641
           None by default.

    Returns:
642
        A Tensor representing the conv2d result, whose data type is the same with input.
643 644 645 646

    Examples:
        .. code-block:: python

647
          import paddle
648 649
          import paddle.nn.functional as F

650 651
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
652 653 654 655

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

656 657 658 659 660
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
661 662 663 664
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
665

666
    channel_last = data_format == "NHWC"
667
    channel_dim = -1 if channel_last else 1
668 669
    if len(x.shape) != 4:
        raise ValueError(
670 671 672 673
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
674
    num_channels = x.shape[channel_dim]
675 676
    num_filters = weight.shape[0]
    if num_channels < 0:
677 678 679 680
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
681 682
    if groups <= 0:
        raise ValueError(
683 684 685 686
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
687 688 689 690
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
691 692
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
693 694 695 696
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
697 698
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
699

700 701
    cudnn_version = get_cudnn_version()

702 703 704 705 706
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
707

708 709
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
710 711
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
712 713

    l_type = "conv2d"
714 715 716 717 718
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
719
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
720
        if is_compiled_with_rocm():
721 722 723
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
724 725
    else:
        if in_dygraph_mode():
726 727 728 729 730 731 732
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
733
                groups,
734 735
                data_format,
            )
H
hong 已提交
736
            if bias is not None:
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
                if 'npu' in get_all_custom_device_type():
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
757 758 759 760
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
761

762
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
763
    if is_compiled_with_npu():
764
        if num_channels == groups and num_channels == num_filters:
765 766 767 768
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

769 770 771 772 773 774
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
775
        use_cudnn = False
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
808
    r"""
809 810 811 812 813 814 815 816 817 818 819 820 821 822
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
823
        Out = \sigma (W \ast X + b)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
859
          and :math:`L^\prime_{out} + stride`.
860 861 862 863 864 865 866 867 868

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
869
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
870 871 872 873 874 875 876
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
877
             If it is a list/tuple, it must contain one integer. Default: 0.
878 879 880 881 882 883 884
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
885
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
886 887
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
888
            tuple/list, it must contain one integer, `(feature_length)`. None if use
889
            filter_size(shape of weight), padding, and stride to calculate output_size.
890
        data_format (str, optional): Specify the data format of the input, and the data format of the output
891 892 893
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
894 895
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
896 897 898 899 900 901 902 903 904 905 906 907 908
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
909

910
          # shape: (1, 2, 4)
911 912
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
913
          # shape: (2, 1, 2)
914 915 916 917 918 919 920
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
921 922 923 924 925 926 927 928 929 930 931
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
932 933 934 935
                data_format
            )
        )
    channel_last = data_format == "NLC"
936
    channel_dim = -1 if channel_last else 1
937 938
    if len(x.shape) != 3:
        raise ValueError(
939 940 941 942
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
943 944 945

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
946 947 948 949
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
950 951
    if groups <= 0:
        raise ValueError(
952 953 954 955
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
956 957 958 959
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
960 961
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
962 963 964 965 966 967 968 969 970 971

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
972 973 974 975
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
976

977 978
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
979 980 981 982

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
983
        if output_padding != 0:
984 985 986 987
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
988
        if isinstance(output_size, (list, tuple, int)):
989
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
990 991
        else:
            raise ValueError(
992 993
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
994 995 996 997

    if output_padding == 0:
        output_padding = []
    else:
998 999 1000
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1001 1002 1003 1004

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1005
            "But got output_padding={} and stride={}".format(
1006 1007 1008
                output_padding[0], stride[0]
            )
        )
1009 1010 1011

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1012 1013 1014 1015 1016 1017
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1018 1019 1020 1021 1022 1023
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1024 1025
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1026

1027
    if in_dygraph_mode():
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1040 1041 1042
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1063
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1064 1065 1066 1067 1068
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1069
            'output_padding': output_padding,
1070 1071 1072 1073 1074 1075 1076
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1077
            'data_format': conv2d_data_format,
1078
        }
1079 1080 1081
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1082
        helper = LayerHelper(op_type, **locals())
1083
        dtype = helper.input_dtype(input_param_name='x')
1084 1085
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1086 1087 1088
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1089 1090 1091
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1092
    out = squeeze(out, axis=[squeeze_axis])
1093 1094 1095
    return out


1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1109
    r"""
S
swtkiwi 已提交
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1122
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1123 1124 1125

    For each input :math:`X`, the equation is:

1126
    ..  math::
1127

1128
        Out = \sigma (W \ast X + b)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1153
        ..  math::
1154 1155 1156 1157 1158 1159 1160

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1161 1162
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1163
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1164 1165 1166
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1167
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1168 1169

    Args:
L
LielinJiang 已提交
1170
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1171
            whose data type is float32 or float64.
L
LielinJiang 已提交
1172
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1173 1174
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1175
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1176 1177
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1178
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1179 1180
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1181
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1182
            it could be in three forms: `[pad_height, pad_width]` or
1183
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1184
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1185
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1186
            when `data_format` is `"NHWC"`, `padding` can be in the form
1187 1188
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1189 1190
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1191
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1192 1193 1194 1195 1196
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1197 1198
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1199
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1200
        output_size(int|tuple|list, optional): The output image size. If output size is a
1201
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1202
            filter_size(shape of weight), padding, and stride to calculate output_size.
1203
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1204 1205 1206
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1207 1208
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1209 1210 1211
           None by default.

    Returns:
1212
        A Tensor representing the conv2d_transpose, whose
1213 1214
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1215
        transposed convolution result.
1216 1217 1218 1219

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1220 1221
          import paddle
          import paddle.nn.functional as F
1222

1223 1224
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1225

1226
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1227
          y_np = y_var.numpy()
1228

1229
          print(y_np.shape)
1230 1231 1232 1233 1234 1235 1236
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1237 1238 1239 1240
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1241
    channel_dim = -1 if channel_last else 1
1242 1243
    if len(x.shape) != 4:
        raise ValueError(
1244 1245 1246 1247
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1248
    num_channels = x.shape[channel_dim]
1249
    if num_channels < 0:
1250 1251 1252 1253
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1254 1255
    if groups <= 0:
        raise ValueError(
1256 1257 1258 1259
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1260 1261 1262 1263
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1264 1265
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1266 1267 1268

    cudnn_version = get_cudnn_version()

1269 1270 1271 1272 1273
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1274 1275 1276

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1277 1278
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1279

1280 1281 1282
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1283
        if output_padding != 0:
1284 1285 1286 1287
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1288 1289 1290 1291 1292 1293
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1294
            output_size = convert_to_list(output_size, 2, 'output_size')
1295
        elif isinstance(output_size, Variable):
1296 1297 1298 1299 1300 1301 1302 1303 1304
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1305 1306 1307 1308
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1309 1310
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1311 1312
        else:
            raise ValueError(
1313 1314
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1315 1316 1317 1318

    if output_padding == 0:
        output_padding = []
    else:
1319
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1320 1321 1322

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1323
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1324
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1325
        use_cudnn = False
1326

F
From00 已提交
1327
    if in_dygraph_mode():
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1345 1346 1347 1348 1349 1350
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1371
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1372
        if bias is not None:
L
LielinJiang 已提交
1373
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1374
        else:
L
LielinJiang 已提交
1375
            out = pre_bias
1376
    else:
L
LielinJiang 已提交
1377
        inputs = {'Input': [x], 'Filter': [weight]}
1378
        attrs = {
L
LielinJiang 已提交
1379
            'output_padding': output_padding,
1380 1381 1382 1383 1384 1385 1386
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1387
            'data_format': data_format,
1388
        }
1389 1390 1391
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1392
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1393
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1394
        outputs = {"Output": [pre_bias]}
1395 1396 1397
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1398

1399
        if bias is not None:
L
LielinJiang 已提交
1400
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1401
        else:
L
LielinJiang 已提交
1402 1403
            out = pre_bias

1404 1405 1406
    return out


1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1418
    r"""
S
swtkiwi 已提交
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1431
    ..  math::
1432

1433
        Out = \sigma (W \ast X + b)
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1457
        ..  math::
1458 1459 1460 1461 1462 1463

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1464
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1465
            type of input is float16 or float32 or float64.
1466
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1467 1468
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1469
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1470 1471
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1472
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1473
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1474 1475 1476 1477
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1478
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1479
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1480
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1481 1482
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1483
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1484
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1485
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1486
            Default: dilation = 1.
1487
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1488 1489 1490 1491
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1492
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1493 1494 1495
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1496 1497
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1498 1499 1500
           None by default.

    Returns:
1501 1502 1503
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1504 1505 1506 1507 1508
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1509 1510
            import paddle
            import paddle.nn.functional as F
1511

1512 1513
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1514

1515 1516
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1517

1518
            print(y_np.shape)
1519 1520 1521 1522 1523 1524
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1525 1526
            "Attr(data_format): {}.".format(data_format)
        )
1527

1528
    channel_last = data_format == "NDHWC"
1529
    channel_dim = -1 if channel_last else 1
1530 1531
    if len(x.shape) != 5:
        raise ValueError(
1532 1533 1534 1535
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1536
    num_channels = x.shape[channel_dim]
1537 1538 1539
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1540
            "The channel dimension of the input({}) should be defined. "
1541 1542
            "Received: {}.".format(x.shape, num_channels)
        )
1543 1544
    if groups <= 0:
        raise ValueError(
1545 1546 1547 1548
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1549 1550 1551
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1552
            "Received: number of channels({}), groups({}).".format(
1553 1554 1555
                num_channels, groups
            )
        )
1556 1557 1558
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1559
            "Received: number of filters({}), groups({}).".format(
1560 1561 1562
                num_filters, groups
            )
        )
1563

1564
    cudnn_version = get_cudnn_version()
1565 1566 1567 1568 1569
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1570

1571
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1572 1573
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1574 1575
    op_type = "conv3d"

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1607
    r"""
L
LielinJiang 已提交
1608
    The convolution3d transpose layer calculates the output based on the input,
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1619
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1620 1621 1622

    For each input :math:`X`, the equation is:

1623
    ..  math::
1624

1625
        Out = \sigma (W \ast X + b)
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1650
        ..  math::
1651 1652 1653 1654 1655 1656 1657 1658 1659

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1660 1661
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1662 1663
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1664 1665 1666 1667
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1668
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1669 1670

    Args:
1671
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1672
            of input is float32 or float64.
L
LielinJiang 已提交
1673
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1674 1675
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1676
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1677 1678 1679
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1680
            Default: stride = 1.
1681
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1682 1683 1684
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1685
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1686
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1687
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1688
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1689 1690
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1691 1692
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1693
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1694 1695 1696 1697 1698
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1699 1700 1701
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1702
            Default: dilation = 1.
L
LielinJiang 已提交
1703
        output_size(int|list|tuple, optional): The output image size. If output size is a
1704
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1705
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1706
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1707 1708 1709
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1710 1711
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1712 1713 1714
           None by default.

    Returns:
1715
        A Tensor representing the conv3d_transpose, whose data
1716 1717 1718
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1719 1720 1721 1722
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1723

L
LielinJiang 已提交
1724
          import paddle
1725 1726
          import paddle.nn.functional as F

1727 1728
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1729

1730
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1731
          y_np = y_var.numpy()
1732

1733
          print(y_np.shape)
1734 1735 1736 1737 1738 1739
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1740 1741
            "Attr(data_format): {}.".format(data_format)
        )
1742

1743
    channel_last = data_format == "NDHWC"
1744
    channel_dim = -1 if channel_last else 1
1745 1746
    if len(x.shape) != 5:
        raise ValueError(
1747 1748 1749 1750
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1751
    num_channels = x.shape[channel_dim]
1752 1753 1754
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1755
            "The channel dimension of the input({}) should be defined. "
1756 1757
            "Received: {}.".format(x.shape, num_channels)
        )
1758 1759
    if groups <= 0:
        raise ValueError(
1760 1761 1762 1763
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1764 1765 1766
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1767
            "Received: number of channels({}), groups({}).".format(
1768 1769 1770
                num_channels, groups
            )
        )
1771 1772

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1773 1774
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1775 1776 1777
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1778
        if output_padding != 0:
1779 1780 1781 1782
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1783
        if isinstance(output_size, (list, tuple, int)):
1784
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1785 1786
        else:
            raise ValueError(
1787 1788
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1789 1790 1791 1792

    if output_padding == 0:
        output_padding = []
    else:
1793
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1794 1795 1796

    cudnn_version = get_cudnn_version()

1797 1798 1799 1800 1801 1802
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1803 1804 1805 1806

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1807
    if in_dygraph_mode():
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1820 1821 1822 1823 1824 1825
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1846
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1847
        if bias is not None:
L
LielinJiang 已提交
1848
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1849
        else:
L
LielinJiang 已提交
1850
            out = pre_bias
1851
    else:
L
LielinJiang 已提交
1852
        inputs = {'Input': [x], 'Filter': [weight]}
1853
        attrs = {
L
LielinJiang 已提交
1854
            'output_padding': output_padding,
1855 1856 1857 1858 1859 1860 1861
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1862
            "data_format": data_format_,
1863 1864
        }
        helper = LayerHelper(op_type, **locals())
1865 1866 1867
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1868

L
LielinJiang 已提交
1869
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1870 1871
        outputs = {"Output": [pre_bias]}

1872 1873 1874
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1875
        if bias is not None:
L
LielinJiang 已提交
1876
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1877
        else:
L
LielinJiang 已提交
1878
            out = pre_bias
1879 1880

    return out