creation.py 78.4 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18
import re
19 20
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
25 26
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
L
Ligoml 已提交
27 28 29 30 31
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
32
    convert_float_to_uint16,
L
Ligoml 已提交
33 34 35 36 37 38 39
)
from ..framework import (
    convert_np_dtype_to_dtype_,
    _varbase_creator,
    OpProtoHolder,
)

40
# TODO: define functions to get create a tensor
41
import paddle
42
from paddle import _C_ops, _legacy_C_ops
L
Ligoml 已提交
43 44 45 46
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
)
47
import warnings
48

49 50
__all__ = []

W
wangchaochaohu 已提交
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
72
    Return fixed number of evenly spaced values within a given interval.
73 74 75 76 77 78 79 80 81 82

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
83
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
109
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
110 111
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
112
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
113 114
    if not isinstance(num, Variable):
        with device_guard("cpu"):
115
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
116
    if in_dygraph_mode():
L
Ligoml 已提交
117 118 119 120 121 122 123
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
124
    if _in_legacy_dygraph():
L
Ligoml 已提交
125 126 127
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
128 129 130 131 132 133 134

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
135 136 137 138 139 140
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
141 142 143 144
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
145 146 147 148 149 150
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
151 152 153 154
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
L
Ligoml 已提交
155 156 157 158 159 160 161 162 163 164
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
165 166
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
L
Ligoml 已提交
167 168 169 170
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
171 172 173

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
174 175 176 177 178 179
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
180
    if isinstance(num, int):
L
Ligoml 已提交
181
        out.desc.set_shape((num,))
182 183 184
    return out


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
207
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
L
Ligoml 已提交
247 248 249
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
250 251 252 253 254 255 256 257

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
258 259 260 261 262 263
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
264 265 266 267
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
268 269 270 271 272 273
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
274 275 276 277 278 279 280
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
L
Ligoml 已提交
281 282 283 284 285 286
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
287 288 289
    else:
        check_type(base, 'base', (int, float), 'logspace')

L
Ligoml 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
308 309
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
L
Ligoml 已提交
310 311 312 313
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
314 315 316

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
317 318 319 320 321 322 323 324 325 326 327
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
328
    if isinstance(num, int):
L
Ligoml 已提交
329
        out.desc.set_shape((num,))
330 331 332
    return out


333
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
334 335

    if not isinstance(data, np.ndarray):
336

337
        def _handle_dtype(data, dtype):
338 339 340 341 342
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

343 344 345 346
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
347
            if data.dtype == np.object_:
348 349 350 351
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
352 353 354 355 356 357
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
358
            data = data._copy_to(place, False)
359
            data = _handle_dtype(data, dtype)
360
            data.stop_gradient = stop_gradient
361
            return data
362
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
363
            # should't expose it to users, just for internal use.
364 365
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
366 367 368 369
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
370 371 372 373
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
374
            return data
375 376
        else:
            raise TypeError(
L
Ligoml 已提交
377 378 379 380
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
381 382
        if not dtype:
            if data.dtype in [
L
Ligoml 已提交
383 384 385 386 387
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
388 389 390
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
L
Ligoml 已提交
391 392 393 394 395
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
396 397 398 399 400
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
401 402

    if dtype and convert_dtype(dtype) != data.dtype:
403 404 405 406 407
        if convert_dtype(dtype) in ['uint16']:
            # should not ndarray.astype('uint16') directly, data bits is wrong
            data = convert_float_to_uint16(data.astype('float32'))
        else:
            data = data.astype(convert_dtype(dtype))
408

J
Jiabin Yang 已提交
409
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
L
Ligoml 已提交
410 411 412 413 414 415 416 417
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
418
    else:
L
Ligoml 已提交
419 420 421 422 423 424 425
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
426 427


428 429 430 431 432
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
433 434 435 436 437 438 439

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

L
Ligoml 已提交
440 441 442 443 444
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
445 446 447 448 449
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

450 451
        if dtype:
            target_dtype = dtype
452
        elif hasattr(data, 'dtype') and data.dtype != 'object':
453 454 455 456 457 458
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

L
Ligoml 已提交
459 460 461 462 463
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
464
            if not all(
L
Ligoml 已提交
465 466
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


488 489
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
L
Ligoml 已提交
490
    Constructs a ``paddle.Tensor`` from ``data`` ,
491 492 493 494 495 496 497 498
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
L
Ligoml 已提交
499
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
500
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
L
Ligoml 已提交
501
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
502
            except for python float number which gets dtype from ``get_default_type`` .
L
Ligoml 已提交
503 504 505
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
506 507 508 509 510 511 512 513 514 515
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
L
Ligoml 已提交
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
L
Ligoml 已提交
531
        #        [1])
532 533 534 535 536 537 538 539 540 541 542 543 544 545

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
546 547 548 549
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

550 551 552 553 554
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
555
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
556 557 558
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
559
            return _to_tensor_static(data, dtype, stop_gradient)
560 561


562
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
563
    """
S
swtkiwi 已提交
564

565 566
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
567

P
Pei Yang 已提交
568
    Args:
569 570
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
571
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
572
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
573
            data type is the same as input.
574
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
575

P
Pei Yang 已提交
576
    Returns:
577
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
L
Ligoml 已提交
578

P
Pei Yang 已提交
579 580
    Examples:
        .. code-block:: python
581

P
Pei Yang 已提交
582
          import paddle
L
Ligoml 已提交
583

584
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
585
          output = paddle.full_like(input, 2.0)
586 587
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
588 589 590
    """

    if dtype is None:
591
        dtype = x.dtype
592
    else:
593 594 595
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

596
    if in_dygraph_mode():
597
        return _C_ops.full_like(x, fill_value, dtype, x.place)
598 599

    if _in_legacy_dygraph():
L
Ligoml 已提交
600 601 602
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
603

604
    helper = LayerHelper("full_like", **locals())
605
    check_variable_and_dtype(
L
Ligoml 已提交
606 607
        x,
        'x',
608
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
609 610
        'full_like',
    )
611
    check_dtype(
L
Ligoml 已提交
612 613
        dtype,
        'dtype',
614
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
615 616
        'full_like/zeros_like/ones_like',
    )
617
    out = helper.create_variable_for_type_inference(dtype=dtype)
618

L
Ligoml 已提交
619 620 621 622 623 624
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
625
    out.stop_gradient = True
P
Pei Yang 已提交
626 627 628
    return out


629
def ones(shape, dtype=None, name=None):
630
    """
B
BrilliantYuKaimin 已提交
631
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
632 633

    Args:
B
BrilliantYuKaimin 已提交
634 635 636 637
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
638

639
    Returns:
B
BrilliantYuKaimin 已提交
640
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
641 642 643 644

    Examples:
        .. code-block:: python

L
Ligoml 已提交
645
            import paddle
646 647

            # default dtype for ones OP
L
Ligoml 已提交
648
            data1 = paddle.ones(shape=[3, 2])
649 650 651 652
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

L
Ligoml 已提交
653
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
654 655 656 657 658
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
659
            data3 = paddle.ones(shape=shape, dtype='int32')
660 661
            # [[1 1]
            #  [1 1]]
662
    """
663 664 665
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
666 667


668
def ones_like(x, dtype=None, name=None):
669
    """
C
Chen Long 已提交
670
    Returns a Tensor filled with the value 1, with the same shape and
671
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
672 673

    Args:
674 675
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
676
        dtype(str|np.dtype, optional): The data type of the
677 678 679
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
680
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
681

682
    Returns:
683 684 685
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

686 687 688
    Examples:
        .. code-block:: python

689
            import paddle
690

691
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
692 693
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
694

695 696
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
697 698


699
def zeros(shape, dtype=None, name=None):
700
    """
C
Chen Long 已提交
701
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
702 703

    Args:
704
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
705
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
706 707 708
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
709 710

    Returns:
711
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
712 713 714 715 716

    Examples:
        .. code-block:: python

          import paddle
L
Ligoml 已提交
717 718

          data = paddle.zeros(shape=[3, 2], dtype='float32')
719 720 721
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
722
          data = paddle.zeros(shape=[2, 2])
723 724
          # [[0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
725

726
          # shape is a Tensor
727
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
728
          data3 = paddle.zeros(shape=shape, dtype='int32')
729 730
          # [[0 0]
          #  [0 0]]
731
    """
732 733 734
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
735 736


737
def zeros_like(x, dtype=None, name=None):
738
    """
739
    Returns a Tensor filled with the value 0, with the same shape and
740
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
741 742

    Args:
743 744
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
745
        dtype(str|np.dtype, optional): The data type of the
746 747 748
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
749
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
750 751

    Returns:
752 753
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
754

755

756 757 758
    Examples:
        .. code-block:: python

759
            import paddle
760

Z
zhupengyang 已提交
761
            x = paddle.to_tensor([1, 2, 3])
762 763
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
764

765 766
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
767 768


769
def eye(num_rows, num_columns=None, dtype=None, name=None):
770
    """
L
Ligoml 已提交
771

772
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
773

774
    Args:
775 776
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
777
            If None, default: num_rows.
W
wangchaochaohu 已提交
778
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
779 780
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
781
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
782

783
    Returns:
784
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
785

786 787
    Examples:
        .. code-block:: python
L
Ligoml 已提交
788

789
          import paddle
790

791
          data = paddle.eye(3, dtype='int32')
792 793 794
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
795
          data = paddle.eye(2, 3, dtype='int32')
796 797
          # [[1 0 0]
          #  [0 1 0]]
798 799
    """

800 801 802 803 804 805 806 807
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

808 809
    if dtype is None:
        dtype = 'float32'
810 811 812
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
813
        _check_attr(num_columns, "num_columns")
814 815 816 817
    else:
        num_columns = num_rows

    if _non_static_mode():
818
        if in_dygraph_mode():
L
Ligoml 已提交
819 820 821
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
822
        elif _in_legacy_dygraph():
L
Ligoml 已提交
823 824 825
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
826 827 828

    else:
        helper = LayerHelper("eye", **locals())
L
Ligoml 已提交
829 830 831 832 833 834
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
835
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
Ligoml 已提交
836 837 838 839 840 841 842 843 844 845 846
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
847 848 849

    out.stop_gradient = True
    return out
850 851


852
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
853
    """
S
swtkiwi 已提交
854

855
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
L
Ligoml 已提交
856

W
wangchaochaohu 已提交
857
    Args:
858
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
859 860
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
861
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
862 863
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
864
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
865
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
866 867
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
868

869
    Returns:
870
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
871

W
wangchaochaohu 已提交
872 873 874
    Examples:
        .. code-block:: python

875
            import paddle
W
wangchaochaohu 已提交
876

L
Ligoml 已提交
877
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
878 879 880 881 882 883 884 885 886 887
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
L
Ligoml 已提交
888 889
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
890
            #  [True True]]
L
Ligoml 已提交
891

892 893 894
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
L
Ligoml 已提交
895
            # [[2.0]
896
            #  [2.0]]
W
wangchaochaohu 已提交
897 898 899 900 901
    """

    if dtype is None:
        dtype = 'float32'

902
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
903 904


905
def arange(start=0, end=None, step=1, dtype=None, name=None):
906
    """
907
    Returns a 1-D Tensor with spaced values within a given interval.
908

909 910
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
911

912 913
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
914 915

    Parameters:
916 917 918 919 920 921 922 923 924 925 926 927
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
928
        dtype(str|np.dtype, optional): The data type of the
929 930
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
931
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
932

L
Ligoml 已提交
933
    Returns:
934
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
935 936
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
937

Z
zhupengyang 已提交
938
    Examples:
939 940
        .. code-block:: python

Z
zhupengyang 已提交
941
            import paddle
942

Z
zhupengyang 已提交
943 944
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
945

Z
zhupengyang 已提交
946 947
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
948

Z
zhupengyang 已提交
949 950 951
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
952

Z
zhupengyang 已提交
953 954 955
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
L
Ligoml 已提交
956

957 958 959 960 961 962
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
963

964
    out_shape = None
L
Ligoml 已提交
965 966 967 968 969
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
970 971
        out_shape = [int(math.ceil((end - start) / step))]

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
994
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
995 996

    if _in_legacy_dygraph():
997
        out = _legacy_C_ops.range(start, end, step)
998 999 1000
        out.stop_gradient = True
        return out

L
Ligoml 已提交
1001 1002 1003
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
1004 1005
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
L
Ligoml 已提交
1006 1007 1008 1009 1010
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1011
    out.stop_gradient = True
1012 1013
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1014
    return out
W
WuHaobo 已提交
1015 1016 1017


def _tril_triu_op(helper):
L
Ligoml 已提交
1018
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1019
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1020
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1021 1022

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1023
    check_variable_and_dtype(
L
Ligoml 已提交
1024 1025 1026 1027 1028
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1029
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1030
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1031
    diagonal = helper.kwargs.get('diagonal', 0)
L
Ligoml 已提交
1032
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1033 1034 1035 1036 1037 1038
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
L
Ligoml 已提交
1039 1040 1041
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1042 1043 1044 1045 1046 1047 1048 1049

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1050 1051
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1052 1053 1054 1055

    return out


Y
yaoxuefeng 已提交
1056
def tril(x, diagonal=0, name=None):
1057
    r"""
1058
    Returns the lower triangular part of a matrix (2-D tensor) or batch
L
Ligoml 已提交
1059 1060
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1061 1062 1063
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1064
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1065
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1066 1067 1068 1069 1070 1071 1072
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1073
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1074 1075

    Returns:
Y
yaoxuefeng 已提交
1076
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1077
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1078 1079 1080 1081

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1082
            import paddle
W
WuHaobo 已提交
1083

1084 1085 1086 1087 1088
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1089

1090 1091 1092 1093 1094
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1095 1096

            # example 2, positive diagonal value
1097 1098 1099 1100 1101
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1102 1103

            # example 3, negative diagonal value
1104 1105 1106 1107 1108
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1109
    """
F
From00 已提交
1110
    if in_dygraph_mode():
1111
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1112 1113

    if _in_legacy_dygraph():
1114
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1115
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1116 1117 1118 1119

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1120
def triu(x, diagonal=0, name=None):
1121
    r"""
1122
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1123
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1124 1125 1126 1127
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1128
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1129 1130 1131 1132 1133 1134 1135 1136
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1137
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1138 1139

    Returns:
Y
yaoxuefeng 已提交
1140
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1141
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1142 1143 1144 1145

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1146
            import paddle
W
WuHaobo 已提交
1147

1148 1149 1150 1151 1152
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1153 1154

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1155
            triu1 = paddle.tensor.triu(x)
1156 1157 1158 1159
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1160 1161

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1162
            triu2 = paddle.tensor.triu(x, diagonal=2)
1163 1164 1165 1166
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1167 1168

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1169
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1170 1171 1172 1173
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1174 1175

    """
F
From00 已提交
1176
    if in_dygraph_mode():
1177
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1178 1179

    if _in_legacy_dygraph():
1180
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1181
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1182 1183

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1184 1185


1186
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1187
    """
1188 1189

    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
L
Ligoml 已提交
1190

S
suytingwan 已提交
1191
    Args:
L
Ligoml 已提交
1192
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1193
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
L
Ligoml 已提交
1194
        **kwargs (optional): Currently, only accept name in **kwargs
1195
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1196
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1197

S
suytingwan 已提交
1198
    Returns:
Y
yaoxuefeng 已提交
1199
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1200 1201 1202 1203 1204 1205

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1206 1207 1208 1209
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1210

Y
yaoxuefeng 已提交
1211 1212
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1213 1214 1215 1216 1217 1218

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1219 1220
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1221
    if _in_legacy_dygraph():
1222
        num = len(args)
1223
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1224
        return out
Y
YuanRisheng 已提交
1225
    if in_dygraph_mode():
1226
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1227

1228
    name = kwargs.get("name", None)
S
suytingwan 已提交
1229 1230
    helper = LayerHelper('meshgrid', **locals())

1231 1232
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1233

1234
    for id, input_ in enumerate(args):
L
Ligoml 已提交
1235 1236 1237 1238 1239 1240
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1241

1242
    num = len(args)
S
suytingwan 已提交
1243
    out = [
1244
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1245 1246
        for i in range(num)
    ]
L
Ligoml 已提交
1247 1248 1249
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1250 1251

    return out
1252 1253


L
Li Min 已提交
1254 1255
def diagflat(x, offset=0, name=None):
    """
1256
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1272
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1273 1274 1275 1276 1277 1278

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1279
            :name: code-example-1
L
Li Min 已提交
1280

1281 1282 1283 1284
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1285 1286 1287 1288 1289
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1290 1291

            y = paddle.diagflat(x, offset=1)
1292 1293 1294 1295 1296 1297
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1298 1299

            y = paddle.diagflat(x, offset=-1)
1300 1301 1302 1303 1304 1305
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1306 1307

        .. code-block:: python
1308
            :name: code-example-2
L
Li Min 已提交
1309

1310
            import paddle
L
Li Min 已提交
1311

1312 1313
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1314 1315 1316 1317 1318 1319
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1320 1321

            y = paddle.diagflat(x, offset=1)
1322 1323 1324 1325 1326 1327 1328
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1329 1330

            y = paddle.diagflat(x, offset=-1)
1331 1332 1333 1334 1335 1336 1337
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1338 1339
    """
    padding_value = 0
1340 1341
    if in_dygraph_mode():
        if len(x.shape) == 1:
1342
            return _C_ops.diag(x, offset, padding_value)
1343
        else:
1344 1345
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1346 1347

    if _in_legacy_dygraph():
L
Li Min 已提交
1348
        if len(x.shape) == 1:
L
Ligoml 已提交
1349 1350 1351
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1352
        else:
1353
            y, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1354 1355 1356 1357 1358
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1359 1360

    check_type(x, 'x', (Variable), 'diagflat')
L
Ligoml 已提交
1361 1362 1363
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1364 1365 1366 1367 1368 1369 1370 1371
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
L
Ligoml 已提交
1372 1373 1374 1375 1376 1377
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1378
    else:
L
Ligoml 已提交
1379 1380 1381 1382 1383 1384
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1385 1386
        out1.stop_gradient = True

L
Ligoml 已提交
1387 1388 1389 1390 1391 1392
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1393 1394 1395 1396
    out2.stop_gradient = True
    return out2


1397 1398
def diag(x, offset=0, padding_value=0, name=None):
    """
1399
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1415
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1416

1417 1418 1419 1420 1421
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1422
            :name: code-example-1
1423

1424
            import paddle
1425

1426 1427 1428
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1429 1430 1431 1432 1433
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1434 1435

            y = paddle.diag(x, offset=1)
1436 1437 1438 1439 1440 1441
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1442 1443

            y = paddle.diag(x, padding_value=6)
1444 1445 1446 1447 1448
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1449 1450

        .. code-block:: python
1451
            :name: code-example-2
1452

1453
            import paddle
1454

1455 1456 1457
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1458 1459 1460
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1461

1462
            y = paddle.diag(x, offset=1)
1463 1464 1465
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1466

1467
            y = paddle.diag(x, offset=-1)
1468 1469 1470
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1471
    """
J
Jiabin Yang 已提交
1472
    if in_dygraph_mode():
1473
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1474 1475
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
1476 1477 1478
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1479 1480
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
L
Ligoml 已提交
1481 1482 1483 1484 1485 1486
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1487 1488 1489 1490
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
L
Ligoml 已提交
1491 1492 1493 1494
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1495

J
Jiabin Yang 已提交
1496
            helper = LayerHelper("diag_v2", **locals())
1497

J
Jiabin Yang 已提交
1498
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1499

L
Ligoml 已提交
1500 1501 1502 1503 1504 1505
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1506

J
Jiabin Yang 已提交
1507 1508
            out.stop_gradient = True
            return out
1509 1510 1511 1512


def empty(shape, dtype=None, name=None):
    """
1513
    Returns a Tensor with uninitialized data which size is same as ``shape``.
L
Ligoml 已提交
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1524
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1525

1526 1527 1528 1529 1530 1531
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1532
            import paddle
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1558 1559 1560 1561 1562 1563 1564
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1565 1566
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1567 1568 1569
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1570 1571 1572 1573
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1574
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1575 1576 1577
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1578 1579 1580 1581 1582 1583
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

L
Ligoml 已提交
1584 1585 1586 1587 1588 1589
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1590 1591 1592 1593 1594 1595
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
L
Ligoml 已提交
1596 1597 1598
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1599 1600 1601

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
L
Ligoml 已提交
1602 1603 1604 1605 1606 1607 1608
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1609 1610
    out.stop_gradient = True
    return out
1611 1612 1613 1614


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1615
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1616
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
L
Ligoml 已提交
1617

1618 1619 1620
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
1621
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1622
            data type is the same as input.
1623
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1645
    if in_dygraph_mode():
L
Ligoml 已提交
1646 1647 1648 1649 1650
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1651 1652 1653 1654
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
1655 1656 1657
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1658 1659 1660 1661 1662
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1674 1675 1676 1677 1678 1679
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
L
Ligoml 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1691 1692
    out.stop_gradient = True
    return out
1693 1694 1695 1696


def assign(x, output=None):
    """
1697

1698
    Copy value of the :attr:`x` to the :attr:`output`.
L
Ligoml 已提交
1699

1700
    Parameters:
1701 1702
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1703
            data limitation.
1704
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
L
Ligoml 已提交
1705

1706
    Returns:
1707
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
L
Ligoml 已提交
1708

1709 1710
    Examples:
        .. code-block:: python
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1722
    """
1723 1724
    input = x
    helper = LayerHelper('assign', **locals())
L
Ligoml 已提交
1725 1726 1727 1728 1729 1730
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1742
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1743
        if in_dygraph_mode():
1744
            if output is None:
1745
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1746
            else:
1747
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1748 1749 1750
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1751
            _legacy_C_ops.assign(input, output)
1752
        else:
L
Ligoml 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1769 1770
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1771 1772 1773 1774 1775
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1776
    elif isinstance(input, np.ndarray):
1777
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1778
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1779
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
L
Ligoml 已提交
1780 1781 1782 1783
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1784
                    if isinstance(x, (Variable, core.eager.Tensor))
L
Ligoml 已提交
1785 1786
                ]
            ):
1787 1788 1789 1790 1791
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1792
                if not isinstance(x, (Variable, core.eager.Tensor)):
1793 1794 1795 1796 1797 1798 1799 1800 1801
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
L
Ligoml 已提交
1802
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1803
            raise TypeError(
1804
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1805
            )
1806

1807 1808 1809 1810 1811 1812 1813
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
L
Ligoml 已提交
1814 1815
                "it to float32"
            )
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
L
Ligoml 已提交
1833 1834
                "received %s." % convert_dtype(dtype)
            )
1835
        if input.size > 1024 * 1024:
L
Ligoml 已提交
1836 1837 1838 1839
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1840 1841 1842
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
L
Ligoml 已提交
1843 1844 1845 1846 1847 1848 1849
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1850 1851 1852
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
L
Ligoml 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1862
        else:
1863 1864
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1876

Z
zyfncg 已提交
1877
    if is_inplace and _in_legacy_dygraph():
1878 1879 1880
        output._bump_inplace_version()

    return output
1881 1882


1883 1884
def clone(x, name=None):
    """
L
Ligoml 已提交
1885 1886
    Returns a copy of input Tensor. It will always have a Tensor copy.

1887 1888 1889 1890
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1891
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1892

L
Ligoml 已提交
1893
    Returns:
1894
        Tensor, A Tensor copied from ``input``.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


L
Ligoml 已提交
1913
# NOTE(zhiqiu): not public
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1927
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1928 1929 1930 1931 1932

    Examples:
        .. code-block:: python

          import paddle
1933

1934 1935 1936 1937 1938 1939 1940
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
L
Ligoml 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
L
Ligoml 已提交
1978 1979 1980 1981 1982 1983
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
1984
    return output
F
Feiyu Chan 已提交
1985 1986 1987 1988 1989 1990 1991 1992


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1993
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2008 2009 2010 2011
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2012
    """
2013
    if in_dygraph_mode():
2014
        return _C_ops.complex(real, imag)
2015

Z
zhiboniu 已提交
2016
    if paddle.in_dynamic_mode():
2017
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2018 2019 2020 2021 2022 2023 2024 2025

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
2026 2027
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2028 2029 2030 2031
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2032 2033 2034 2035


def tril_indices(row, col, offset=0, dtype='int64'):
    """
L
Ligoml 已提交
2036 2037
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2038 2039
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
L
Ligoml 已提交
2040

2041 2042 2043 2044 2045
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

L
Ligoml 已提交
2046 2047 2048 2049
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
L
Ligoml 已提交
2060

2061 2062 2063
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
L
Ligoml 已提交
2064
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2065 2066 2067 2068 2069
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
L
Ligoml 已提交
2070
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2095 2096 2097
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2098 2099 2100
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2101 2102 2103
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2104 2105 2106 2107 2108 2109 2110
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2111 2112 2113 2114 2115 2116
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2117
    return out
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2179 2180 2181
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2182 2183 2184
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2185 2186 2187
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2188 2189 2190 2191 2192 2193 2194
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2195 2196 2197 2198 2199 2200
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2201
    return out