creation.py 78.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18
import re
19 20
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
25 26
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
L
Ligoml 已提交
27 28 29 30 31 32 33 34 35 36 37 38
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
from ..framework import (
    convert_np_dtype_to_dtype_,
    _varbase_creator,
    OpProtoHolder,
)

39
# TODO: define functions to get create a tensor
40
import paddle
41
from paddle import _C_ops, _legacy_C_ops
L
Ligoml 已提交
42 43 44 45
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
)
46
import warnings
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
71
    Return fixed number of evenly spaced values within a given interval.
72 73 74 75 76 77 78 79 80 81

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
82
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
108
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
109 110
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
111
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
112 113
    if not isinstance(num, Variable):
        with device_guard("cpu"):
114
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
115
    if in_dygraph_mode():
L
Ligoml 已提交
116 117 118 119 120 121 122
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
123
    if _in_legacy_dygraph():
L
Ligoml 已提交
124 125 126
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
127 128 129 130 131 132 133

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
134 135 136 137 138 139
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
140 141 142 143
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
144 145 146 147 148 149
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
150 151 152 153
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
L
Ligoml 已提交
154 155 156 157 158 159 160 161 162 163
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
164 165
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
L
Ligoml 已提交
166 167 168 169
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
170 171 172

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
173 174 175 176 177 178
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
179
    if isinstance(num, int):
L
Ligoml 已提交
180
        out.desc.set_shape((num,))
181 182 183
    return out


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
206
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
L
Ligoml 已提交
246 247 248
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
249 250 251 252 253 254 255 256

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
257 258 259 260 261 262
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
263 264 265 266
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
267 268 269 270 271 272
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
273 274 275 276 277 278 279
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
L
Ligoml 已提交
280 281 282 283 284 285
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
286 287 288
    else:
        check_type(base, 'base', (int, float), 'logspace')

L
Ligoml 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
307 308
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
L
Ligoml 已提交
309 310 311 312
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
313 314 315

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
316 317 318 319 320 321 322 323 324 325 326
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
327
    if isinstance(num, int):
L
Ligoml 已提交
328
        out.desc.set_shape((num,))
329 330 331
    return out


332
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
333 334

    if not isinstance(data, np.ndarray):
335

336
        def _handle_dtype(data, dtype):
337 338 339 340 341
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

342 343 344 345
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
346
            if data.dtype == np.object_:
347 348 349 350
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
351 352 353 354 355 356
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
357
            data = data._copy_to(place, False)
358
            data = _handle_dtype(data, dtype)
359
            data.stop_gradient = stop_gradient
360
            return data
361
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
362
            # should't expose it to users, just for internal use.
363 364
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
365 366 367 368
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
369 370 371 372
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
373
            return data
374 375
        else:
            raise TypeError(
L
Ligoml 已提交
376 377 378 379
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
380 381
        if not dtype:
            if data.dtype in [
L
Ligoml 已提交
382 383 384 385 386
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
387 388 389
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
L
Ligoml 已提交
390 391 392 393 394
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
395 396 397 398 399
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
400 401

    if dtype and convert_dtype(dtype) != data.dtype:
402
        data = data.astype(convert_dtype(dtype))
403

J
Jiabin Yang 已提交
404
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
L
Ligoml 已提交
405 406 407 408 409 410 411 412
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
413
    else:
L
Ligoml 已提交
414 415 416 417 418 419 420
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
421 422


423 424 425 426 427
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
428 429 430 431 432 433 434

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

L
Ligoml 已提交
435 436 437 438 439
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
440 441 442 443 444
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

445 446
        if dtype:
            target_dtype = dtype
447
        elif hasattr(data, 'dtype') and data.dtype != 'object':
448 449 450 451 452 453
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

L
Ligoml 已提交
454 455 456 457 458
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
459
            if not all(
L
Ligoml 已提交
460 461
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


483 484
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
L
Ligoml 已提交
485
    Constructs a ``paddle.Tensor`` from ``data`` ,
486 487 488 489 490 491 492 493
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
L
Ligoml 已提交
494
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
495
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
L
Ligoml 已提交
496
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
497
            except for python float number which gets dtype from ``get_default_type`` .
L
Ligoml 已提交
498 499 500
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
501 502 503 504 505 506 507 508 509 510
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
L
Ligoml 已提交
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
L
Ligoml 已提交
526
        #        [1])
527 528 529 530 531 532 533 534 535 536 537 538 539 540

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
541 542 543 544
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

545 546 547 548 549
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
550
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
551 552 553
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
554
            return _to_tensor_static(data, dtype, stop_gradient)
555 556


557
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
558
    """
S
swtkiwi 已提交
559

560 561
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
562

P
Pei Yang 已提交
563
    Args:
564 565
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
566
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
567
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
568
            data type is the same as input.
569
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
570

P
Pei Yang 已提交
571
    Returns:
572
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
L
Ligoml 已提交
573

P
Pei Yang 已提交
574 575
    Examples:
        .. code-block:: python
576

P
Pei Yang 已提交
577
          import paddle
L
Ligoml 已提交
578

579
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
580
          output = paddle.full_like(input, 2.0)
581 582
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
583 584 585
    """

    if dtype is None:
586
        dtype = x.dtype
587
    else:
588 589 590
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

591
    if in_dygraph_mode():
592
        return _C_ops.full_like(x, fill_value, dtype, x.place)
593 594

    if _in_legacy_dygraph():
L
Ligoml 已提交
595 596 597
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
598

599
    helper = LayerHelper("full_like", **locals())
600
    check_variable_and_dtype(
L
Ligoml 已提交
601 602
        x,
        'x',
603
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
604 605
        'full_like',
    )
606
    check_dtype(
L
Ligoml 已提交
607 608
        dtype,
        'dtype',
609
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
610 611
        'full_like/zeros_like/ones_like',
    )
612
    out = helper.create_variable_for_type_inference(dtype=dtype)
613

L
Ligoml 已提交
614 615 616 617 618 619
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
620
    out.stop_gradient = True
P
Pei Yang 已提交
621 622 623
    return out


624
def ones(shape, dtype=None, name=None):
625
    """
B
BrilliantYuKaimin 已提交
626
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
627 628

    Args:
B
BrilliantYuKaimin 已提交
629 630 631 632
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
633

634
    Returns:
B
BrilliantYuKaimin 已提交
635
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
636 637 638 639

    Examples:
        .. code-block:: python

L
Ligoml 已提交
640
            import paddle
641 642

            # default dtype for ones OP
L
Ligoml 已提交
643
            data1 = paddle.ones(shape=[3, 2])
644 645 646 647
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

L
Ligoml 已提交
648
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
649 650 651 652 653
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
654
            data3 = paddle.ones(shape=shape, dtype='int32')
655 656
            # [[1 1]
            #  [1 1]]
657
    """
658 659 660
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
661 662


663
def ones_like(x, dtype=None, name=None):
664
    """
C
Chen Long 已提交
665
    Returns a Tensor filled with the value 1, with the same shape and
666
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
667 668

    Args:
669 670
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
671
        dtype(str|np.dtype, optional): The data type of the
672 673 674
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
675
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
676

677
    Returns:
678 679 680
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

681 682 683
    Examples:
        .. code-block:: python

684
            import paddle
685

686
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
687 688
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
689

690 691
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
692 693


694
def zeros(shape, dtype=None, name=None):
695
    """
C
Chen Long 已提交
696
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
697 698

    Args:
699
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
700
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
701 702 703
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
704 705

    Returns:
706
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
707 708 709 710 711

    Examples:
        .. code-block:: python

          import paddle
L
Ligoml 已提交
712 713

          data = paddle.zeros(shape=[3, 2], dtype='float32')
714 715 716
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
717
          data = paddle.zeros(shape=[2, 2])
718 719
          # [[0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
720

721
          # shape is a Tensor
722
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
723
          data3 = paddle.zeros(shape=shape, dtype='int32')
724 725
          # [[0 0]
          #  [0 0]]
726
    """
727 728 729
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
730 731


732
def zeros_like(x, dtype=None, name=None):
733
    """
734
    Returns a Tensor filled with the value 0, with the same shape and
735
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
736 737

    Args:
738 739
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
740
        dtype(str|np.dtype, optional): The data type of the
741 742 743
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
744
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
745 746

    Returns:
747 748
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
749

750

751 752 753
    Examples:
        .. code-block:: python

754
            import paddle
755

Z
zhupengyang 已提交
756
            x = paddle.to_tensor([1, 2, 3])
757 758
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
759

760 761
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
762 763


764
def eye(num_rows, num_columns=None, dtype=None, name=None):
765
    """
L
Ligoml 已提交
766

767
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
768

769
    Args:
770 771
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
772
            If None, default: num_rows.
W
wangchaochaohu 已提交
773
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
774 775
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
776
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
777

778
    Returns:
779
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
780

781 782
    Examples:
        .. code-block:: python
L
Ligoml 已提交
783

784
          import paddle
785

786
          data = paddle.eye(3, dtype='int32')
787 788 789
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
790
          data = paddle.eye(2, 3, dtype='int32')
791 792
          # [[1 0 0]
          #  [0 1 0]]
793 794
    """

795 796 797 798 799 800 801 802
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

803 804
    if dtype is None:
        dtype = 'float32'
805 806 807
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
808
        _check_attr(num_columns, "num_columns")
809 810 811 812
    else:
        num_columns = num_rows

    if _non_static_mode():
813
        if in_dygraph_mode():
L
Ligoml 已提交
814 815 816
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
817
        elif _in_legacy_dygraph():
L
Ligoml 已提交
818 819 820
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
821 822 823

    else:
        helper = LayerHelper("eye", **locals())
L
Ligoml 已提交
824 825 826 827 828 829
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
830
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
Ligoml 已提交
831 832 833 834 835 836 837 838 839 840 841
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
842 843 844

    out.stop_gradient = True
    return out
845 846


847
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
848
    """
S
swtkiwi 已提交
849

850
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
L
Ligoml 已提交
851

W
wangchaochaohu 已提交
852
    Args:
853
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
854 855
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
856
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
857 858
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
859
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
860
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
861 862
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
863

864
    Returns:
865
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
866

W
wangchaochaohu 已提交
867 868 869
    Examples:
        .. code-block:: python

870
            import paddle
W
wangchaochaohu 已提交
871

L
Ligoml 已提交
872
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
873 874 875 876 877 878 879 880 881 882
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
L
Ligoml 已提交
883 884
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
885
            #  [True True]]
L
Ligoml 已提交
886

887 888 889
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
L
Ligoml 已提交
890
            # [[2.0]
891
            #  [2.0]]
W
wangchaochaohu 已提交
892 893 894 895 896
    """

    if dtype is None:
        dtype = 'float32'

897
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
898 899


900
def arange(start=0, end=None, step=1, dtype=None, name=None):
901
    """
902
    Returns a 1-D Tensor with spaced values within a given interval.
903

904 905
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
906

907 908
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
909 910

    Parameters:
911 912 913 914 915 916 917 918 919 920 921 922
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
923
        dtype(str|np.dtype, optional): The data type of the
924 925
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
926
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
927

L
Ligoml 已提交
928
    Returns:
929
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
930 931
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
932

Z
zhupengyang 已提交
933
    Examples:
934 935
        .. code-block:: python

Z
zhupengyang 已提交
936
            import paddle
937

Z
zhupengyang 已提交
938 939
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
940

Z
zhupengyang 已提交
941 942
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
943

Z
zhupengyang 已提交
944 945 946
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
947

Z
zhupengyang 已提交
948 949 950
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
L
Ligoml 已提交
951

952 953 954 955 956 957
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
958

959
    out_shape = None
L
Ligoml 已提交
960 961 962 963 964
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
965 966
        out_shape = [int(math.ceil((end - start) / step))]

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
989
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
990 991

    if _in_legacy_dygraph():
992
        out = _legacy_C_ops.range(start, end, step)
993 994 995
        out.stop_gradient = True
        return out

L
Ligoml 已提交
996 997 998
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
999 1000
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
L
Ligoml 已提交
1001 1002 1003 1004 1005
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1006
    out.stop_gradient = True
1007 1008
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1009
    return out
W
WuHaobo 已提交
1010 1011 1012


def _tril_triu_op(helper):
L
Ligoml 已提交
1013
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1014
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1015
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1016 1017

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1018
    check_variable_and_dtype(
L
Ligoml 已提交
1019 1020 1021 1022 1023
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1024
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1025
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1026
    diagonal = helper.kwargs.get('diagonal', 0)
L
Ligoml 已提交
1027
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1028 1029 1030 1031 1032 1033
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
L
Ligoml 已提交
1034 1035 1036
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1037 1038 1039 1040 1041 1042 1043 1044

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1045 1046
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1047 1048 1049 1050

    return out


Y
yaoxuefeng 已提交
1051
def tril(x, diagonal=0, name=None):
1052
    r"""
1053
    Returns the lower triangular part of a matrix (2-D tensor) or batch
L
Ligoml 已提交
1054 1055
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1056 1057 1058
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1059
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1060
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1061 1062 1063 1064 1065 1066 1067
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1068
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1069 1070

    Returns:
Y
yaoxuefeng 已提交
1071
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1072
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1073 1074 1075 1076

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1077
            import paddle
W
WuHaobo 已提交
1078

1079 1080 1081 1082 1083
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1084

1085 1086 1087 1088 1089
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1090 1091

            # example 2, positive diagonal value
1092 1093 1094 1095 1096
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1097 1098

            # example 3, negative diagonal value
1099 1100 1101 1102 1103
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1104
    """
F
From00 已提交
1105
    if in_dygraph_mode():
1106
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1107 1108

    if _in_legacy_dygraph():
1109
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1110
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1111 1112 1113 1114

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1115
def triu(x, diagonal=0, name=None):
1116
    r"""
1117
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1118
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1119 1120 1121 1122
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1123
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1124 1125 1126 1127 1128 1129 1130 1131
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1132
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1133 1134

    Returns:
Y
yaoxuefeng 已提交
1135
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1136
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1137 1138 1139 1140

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1141
            import paddle
W
WuHaobo 已提交
1142

1143 1144 1145 1146 1147
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1148 1149

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1150
            triu1 = paddle.tensor.triu(x)
1151 1152 1153 1154
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1155 1156

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1157
            triu2 = paddle.tensor.triu(x, diagonal=2)
1158 1159 1160 1161
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1162 1163

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1164
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1165 1166 1167 1168
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1169 1170

    """
F
From00 已提交
1171
    if in_dygraph_mode():
1172
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1173 1174

    if _in_legacy_dygraph():
1175
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1176
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1177 1178

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1179 1180


1181
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1182
    """
1183 1184

    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
L
Ligoml 已提交
1185

S
suytingwan 已提交
1186
    Args:
L
Ligoml 已提交
1187
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1188
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
L
Ligoml 已提交
1189
        **kwargs (optional): Currently, only accept name in **kwargs
1190
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1191
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1192

S
suytingwan 已提交
1193
    Returns:
Y
yaoxuefeng 已提交
1194
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1195 1196 1197 1198 1199 1200

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1201 1202 1203 1204
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1205

Y
yaoxuefeng 已提交
1206 1207
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1208 1209 1210 1211 1212 1213

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1214 1215
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1216
    if _in_legacy_dygraph():
1217
        num = len(args)
1218
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1219
        return out
Y
YuanRisheng 已提交
1220
    if in_dygraph_mode():
1221
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1222

1223
    name = kwargs.get("name", None)
S
suytingwan 已提交
1224 1225
    helper = LayerHelper('meshgrid', **locals())

1226 1227
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1228

1229
    for id, input_ in enumerate(args):
L
Ligoml 已提交
1230 1231 1232 1233 1234 1235
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1236

1237
    num = len(args)
S
suytingwan 已提交
1238
    out = [
1239
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1240 1241
        for i in range(num)
    ]
L
Ligoml 已提交
1242 1243 1244
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1245 1246

    return out
1247 1248


L
Li Min 已提交
1249 1250
def diagflat(x, offset=0, name=None):
    """
1251
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1267
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1268 1269 1270 1271 1272 1273

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1274
            :name: code-example-1
L
Li Min 已提交
1275

1276 1277 1278 1279
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1280 1281 1282 1283 1284
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1285 1286

            y = paddle.diagflat(x, offset=1)
1287 1288 1289 1290 1291 1292
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1293 1294

            y = paddle.diagflat(x, offset=-1)
1295 1296 1297 1298 1299 1300
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1301 1302

        .. code-block:: python
1303
            :name: code-example-2
L
Li Min 已提交
1304

1305
            import paddle
L
Li Min 已提交
1306

1307 1308
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1309 1310 1311 1312 1313 1314
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1315 1316

            y = paddle.diagflat(x, offset=1)
1317 1318 1319 1320 1321 1322 1323
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1324 1325

            y = paddle.diagflat(x, offset=-1)
1326 1327 1328 1329 1330 1331 1332
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1333 1334
    """
    padding_value = 0
1335 1336
    if in_dygraph_mode():
        if len(x.shape) == 1:
1337
            return _C_ops.diag(x, offset, padding_value)
1338
        else:
1339 1340
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1341 1342

    if _in_legacy_dygraph():
L
Li Min 已提交
1343
        if len(x.shape) == 1:
L
Ligoml 已提交
1344 1345 1346
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1347
        else:
1348
            y, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1349 1350 1351 1352 1353
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1354 1355

    check_type(x, 'x', (Variable), 'diagflat')
L
Ligoml 已提交
1356 1357 1358
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1359 1360 1361 1362 1363 1364 1365 1366
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
L
Ligoml 已提交
1367 1368 1369 1370 1371 1372
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1373
    else:
L
Ligoml 已提交
1374 1375 1376 1377 1378 1379
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1380 1381
        out1.stop_gradient = True

L
Ligoml 已提交
1382 1383 1384 1385 1386 1387
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1388 1389 1390 1391
    out2.stop_gradient = True
    return out2


1392 1393
def diag(x, offset=0, padding_value=0, name=None):
    """
1394
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1410
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1411

1412 1413 1414 1415 1416
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1417
            :name: code-example-1
1418

1419
            import paddle
1420

1421 1422 1423
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1424 1425 1426 1427 1428
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1429 1430

            y = paddle.diag(x, offset=1)
1431 1432 1433 1434 1435 1436
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1437 1438

            y = paddle.diag(x, padding_value=6)
1439 1440 1441 1442 1443
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1444 1445

        .. code-block:: python
1446
            :name: code-example-2
1447

1448
            import paddle
1449

1450 1451 1452
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1453 1454 1455
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1456

1457
            y = paddle.diag(x, offset=1)
1458 1459 1460
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1461

1462
            y = paddle.diag(x, offset=-1)
1463 1464 1465
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1466
    """
J
Jiabin Yang 已提交
1467
    if in_dygraph_mode():
1468
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1469 1470
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
1471 1472 1473
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1474 1475
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
L
Ligoml 已提交
1476 1477 1478 1479 1480 1481
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1482 1483 1484 1485
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
L
Ligoml 已提交
1486 1487 1488 1489
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1490

J
Jiabin Yang 已提交
1491
            helper = LayerHelper("diag_v2", **locals())
1492

J
Jiabin Yang 已提交
1493
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1494

L
Ligoml 已提交
1495 1496 1497 1498 1499 1500
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1501

J
Jiabin Yang 已提交
1502 1503
            out.stop_gradient = True
            return out
1504 1505 1506 1507


def empty(shape, dtype=None, name=None):
    """
1508
    Returns a Tensor with uninitialized data which size is same as ``shape``.
L
Ligoml 已提交
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1519
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1520

1521 1522 1523 1524 1525 1526
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1527
            import paddle
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1553 1554 1555 1556 1557 1558 1559
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1560 1561
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1562 1563 1564
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1565 1566 1567 1568
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1569
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1570 1571 1572
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1573 1574 1575 1576 1577 1578
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

L
Ligoml 已提交
1579 1580 1581 1582 1583 1584
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1585 1586 1587 1588 1589 1590
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
L
Ligoml 已提交
1591 1592 1593
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1594 1595 1596

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
L
Ligoml 已提交
1597 1598 1599 1600 1601 1602 1603
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1604 1605
    out.stop_gradient = True
    return out
1606 1607 1608 1609


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1610
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1611
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
L
Ligoml 已提交
1612

1613 1614 1615
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
1616
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1617
            data type is the same as input.
1618
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1640
    if in_dygraph_mode():
L
Ligoml 已提交
1641 1642 1643 1644 1645
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1646 1647 1648 1649
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
1650 1651 1652
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1653 1654 1655 1656 1657
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1669 1670 1671 1672 1673 1674
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
L
Ligoml 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1686 1687
    out.stop_gradient = True
    return out
1688 1689 1690 1691


def assign(x, output=None):
    """
1692

1693
    Copy value of the :attr:`x` to the :attr:`output`.
L
Ligoml 已提交
1694

1695
    Parameters:
1696 1697
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1698
            data limitation.
1699
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
L
Ligoml 已提交
1700

1701
    Returns:
1702
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
L
Ligoml 已提交
1703

1704 1705
    Examples:
        .. code-block:: python
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1717
    """
1718 1719
    input = x
    helper = LayerHelper('assign', **locals())
L
Ligoml 已提交
1720 1721 1722 1723 1724 1725
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1737
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1738
        if in_dygraph_mode():
1739
            if output is None:
1740
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1741
            else:
1742
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1743 1744 1745
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1746
            _legacy_C_ops.assign(input, output)
1747
        else:
L
Ligoml 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1764 1765
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1766 1767 1768 1769 1770
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1771
    elif isinstance(input, np.ndarray):
1772
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1773
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1774
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
L
Ligoml 已提交
1775 1776 1777 1778
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1779
                    if isinstance(x, (Variable, core.eager.Tensor))
L
Ligoml 已提交
1780 1781
                ]
            ):
1782 1783 1784 1785 1786
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1787
                if not isinstance(x, (Variable, core.eager.Tensor)):
1788 1789 1790 1791 1792 1793 1794 1795 1796
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
L
Ligoml 已提交
1797
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1798
            raise TypeError(
1799
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1800
            )
1801

1802 1803 1804 1805 1806 1807 1808
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
L
Ligoml 已提交
1809 1810
                "it to float32"
            )
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
L
Ligoml 已提交
1828 1829
                "received %s." % convert_dtype(dtype)
            )
1830
        if input.size > 1024 * 1024:
L
Ligoml 已提交
1831 1832 1833 1834
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1835 1836 1837
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
L
Ligoml 已提交
1838 1839 1840 1841 1842 1843 1844
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1845 1846 1847
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
L
Ligoml 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1857
        else:
1858 1859
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1871

Z
zyfncg 已提交
1872
    if is_inplace and _in_legacy_dygraph():
1873 1874 1875
        output._bump_inplace_version()

    return output
1876 1877


1878 1879
def clone(x, name=None):
    """
L
Ligoml 已提交
1880 1881
    Returns a copy of input Tensor. It will always have a Tensor copy.

1882 1883 1884 1885
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1886
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1887

L
Ligoml 已提交
1888
    Returns:
1889
        Tensor, A Tensor copied from ``input``.
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


L
Ligoml 已提交
1908
# NOTE(zhiqiu): not public
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1922
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1923 1924 1925 1926 1927

    Examples:
        .. code-block:: python

          import paddle
1928

1929 1930 1931 1932 1933 1934 1935
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
L
Ligoml 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
L
Ligoml 已提交
1973 1974 1975 1976 1977 1978
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
1979
    return output
F
Feiyu Chan 已提交
1980 1981 1982 1983 1984 1985 1986 1987


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1988
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2003 2004 2005 2006
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2007
    """
2008
    if in_dygraph_mode():
2009
        return _C_ops.complex(real, imag)
2010

Z
zhiboniu 已提交
2011
    if paddle.in_dynamic_mode():
2012
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2013 2014 2015 2016 2017 2018 2019 2020

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
2021 2022
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2023 2024 2025 2026
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2027 2028 2029 2030


def tril_indices(row, col, offset=0, dtype='int64'):
    """
L
Ligoml 已提交
2031 2032
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2033 2034
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
L
Ligoml 已提交
2035

2036 2037 2038 2039 2040
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

L
Ligoml 已提交
2041 2042 2043 2044
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
L
Ligoml 已提交
2055

2056 2057 2058
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
L
Ligoml 已提交
2059
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2060 2061 2062 2063 2064
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
L
Ligoml 已提交
2065
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2090 2091 2092
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2093 2094 2095
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2096 2097 2098
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2099 2100 2101 2102 2103 2104 2105
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2106 2107 2108 2109 2110 2111
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2112
    return out
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2174 2175 2176
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2177 2178 2179
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2180 2181 2182
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2183 2184 2185 2186 2187 2188 2189
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2190 2191 2192 2193 2194 2195
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2196
    return out