creation.py 78.1 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
Pei Yang 已提交
15
from __future__ import print_function
16
import numpy as np
17
import math
18
import re
19 20
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
21 22 23 24
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
25 26
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
L
Ligoml 已提交
27 28 29 30 31 32 33 34 35 36 37 38
from ..fluid.data_feeder import (
    check_variable_and_dtype,
    check_type,
    check_dtype,
    convert_dtype,
)
from ..framework import (
    convert_np_dtype_to_dtype_,
    _varbase_creator,
    OpProtoHolder,
)

39
# TODO: define functions to get create a tensor
40
import paddle
41
from paddle import _C_ops, _legacy_C_ops
L
Ligoml 已提交
42 43 44 45
from ..fluid.framework import (
    _in_legacy_dygraph,
    _in_eager_without_dygraph_check,
)
46
import warnings
47

48 49
__all__ = []

W
wangchaochaohu 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
71
    Return fixed number of evenly spaced values within a given interval.
72 73 74 75 76 77 78 79 80 81

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
82
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
108
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
109 110
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
111
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
112 113
    if not isinstance(num, Variable):
        with device_guard("cpu"):
114
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
115
    if in_dygraph_mode():
L
Ligoml 已提交
116 117 118 119 120 121 122
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
123
    if _in_legacy_dygraph():
L
Ligoml 已提交
124 125 126
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
127 128 129 130 131 132 133

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
134 135 136 137 138 139
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
140 141 142 143
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
144 145 146 147 148 149
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
150 151 152 153
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
L
Ligoml 已提交
154 155 156 157 158 159 160 161 162 163
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
164 165
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
L
Ligoml 已提交
166 167 168 169
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
170 171 172

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
173 174 175 176 177 178
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
179
    if isinstance(num, int):
L
Ligoml 已提交
180
        out.desc.set_shape((num,))
181 182 183
    return out


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
    
    Notes:
        This API does not compute the gradient.
    
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
206
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
        just has the value with exponential of :attr:`start` with base :attr:`base`. 

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
L
Ligoml 已提交
246 247 248
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
249 250 251 252 253 254 255 256

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
L
Ligoml 已提交
257 258 259 260 261 262
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
263 264 265 266
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
L
Ligoml 已提交
267 268 269 270 271 272
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
273 274 275 276 277 278 279
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
L
Ligoml 已提交
280 281 282 283 284 285
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
286 287 288
    else:
        check_type(base, 'base', (int, float), 'logspace')

L
Ligoml 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
307 308
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
L
Ligoml 已提交
309 310 311 312
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
313 314 315

    out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
316 317 318 319 320 321 322 323 324 325 326
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
327
    if isinstance(num, int):
L
Ligoml 已提交
328
        out.desc.set_shape((num,))
329 330 331
    return out


332
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
333 334

    if not isinstance(data, np.ndarray):
335

336
        def _handle_dtype(data, dtype):
337 338 339 340 341
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

342 343 344 345
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
346
            if data.dtype == np.object_:
347 348 349 350
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
351 352 353 354 355 356
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
357
            data = data._copy_to(place, False)
358
            data = _handle_dtype(data, dtype)
359
            data.stop_gradient = stop_gradient
360
            return data
361
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
362
            # should't expose it to users, just for internal use.
363 364
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
365 366 367 368
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
369 370 371 372
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
373
            return data
374 375
        else:
            raise TypeError(
L
Ligoml 已提交
376 377 378 379
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
380 381
        if not dtype:
            if data.dtype in [
L
Ligoml 已提交
382 383 384 385 386
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
387 388 389
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
L
Ligoml 已提交
390 391 392 393 394
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
395 396 397 398 399
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
400 401

    if dtype and convert_dtype(dtype) != data.dtype:
402
        data = data.astype(convert_dtype(dtype))
403

J
Jiabin Yang 已提交
404
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
L
Ligoml 已提交
405 406 407 408 409 410 411 412
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
413
    else:
L
Ligoml 已提交
414 415 416 417 418 419 420
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
421 422


423 424 425 426 427
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
428 429 430 431 432 433 434

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

L
Ligoml 已提交
435 436 437 438 439
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
440 441 442 443 444
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

445 446
        if dtype:
            target_dtype = dtype
447
        elif hasattr(data, 'dtype') and data.dtype != 'object':
448 449 450 451 452 453
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

L
Ligoml 已提交
454 455 456 457 458
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
459
            if not all(
L
Ligoml 已提交
460 461
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


483 484
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
L
Ligoml 已提交
485
    Constructs a ``paddle.Tensor`` from ``data`` ,
486 487 488 489 490 491 492 493
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
L
Ligoml 已提交
494
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
495
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
L
Ligoml 已提交
496
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
497
            except for python float number which gets dtype from ``get_default_type`` .
L
Ligoml 已提交
498 499 500
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
501 502 503 504 505 506 507 508 509 510
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
L
Ligoml 已提交
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
L
Ligoml 已提交
526
        #        [1])
527 528 529 530 531 532 533 534 535 536 537 538 539 540

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
541 542 543 544
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

545 546 547 548 549
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
550
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
551 552 553
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
554
            return _to_tensor_static(data, dtype, stop_gradient)
555 556


557
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
558
    """
S
swtkiwi 已提交
559

560 561
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
562

P
Pei Yang 已提交
563
    Args:
564 565
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
566
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
567
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
568
            data type is the same as input.
569
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
570

P
Pei Yang 已提交
571
    Returns:
572
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
L
Ligoml 已提交
573

P
Pei Yang 已提交
574 575
    Examples:
        .. code-block:: python
576

P
Pei Yang 已提交
577
          import paddle
L
Ligoml 已提交
578

579
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
580
          output = paddle.full_like(input, 2.0)
581 582
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
583 584 585
    """

    if dtype is None:
586
        dtype = x.dtype
587
    else:
588 589 590
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

591
    if in_dygraph_mode():
592
        return _C_ops.full_like(x, fill_value, dtype, x.place)
593 594

    if _in_legacy_dygraph():
L
Ligoml 已提交
595 596 597
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
598

599
    helper = LayerHelper("full_like", **locals())
600
    check_variable_and_dtype(
L
Ligoml 已提交
601 602
        x,
        'x',
603
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
604 605
        'full_like',
    )
606
    check_dtype(
L
Ligoml 已提交
607 608
        dtype,
        'dtype',
609
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
L
Ligoml 已提交
610 611
        'full_like/zeros_like/ones_like',
    )
612
    out = helper.create_variable_for_type_inference(dtype=dtype)
613

L
Ligoml 已提交
614 615 616 617 618 619
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
620
    out.stop_gradient = True
P
Pei Yang 已提交
621 622 623
    return out


624
def ones(shape, dtype=None, name=None):
625
    """
B
BrilliantYuKaimin 已提交
626
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
627 628

    Args:
B
BrilliantYuKaimin 已提交
629 630 631 632
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
633

634
    Returns:
B
BrilliantYuKaimin 已提交
635
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
636 637 638 639

    Examples:
        .. code-block:: python

L
Ligoml 已提交
640
            import paddle
641 642

            # default dtype for ones OP
L
Ligoml 已提交
643
            data1 = paddle.ones(shape=[3, 2])
644 645 646 647
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

L
Ligoml 已提交
648
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
649 650 651 652 653
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
654
            data3 = paddle.ones(shape=shape, dtype='int32')
655 656
            # [[1 1]
            #  [1 1]]
657
    """
658 659 660
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
661 662


663
def ones_like(x, dtype=None, name=None):
664
    """
C
Chen Long 已提交
665
    Returns a Tensor filled with the value 1, with the same shape and
666
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
667 668

    Args:
669 670
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
671
        dtype(str|np.dtype, optional): The data type of the
672 673 674
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
675
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
676

677
    Returns:
678 679 680
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

681 682 683
    Examples:
        .. code-block:: python

684
            import paddle
685

686
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
687 688
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
689

690 691
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
692 693


694
def zeros(shape, dtype=None, name=None):
695
    """
C
Chen Long 已提交
696
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
697 698

    Args:
699
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
700
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
701 702 703
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
704 705

    Returns:
706
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
707 708 709 710 711

    Examples:
        .. code-block:: python

          import paddle
L
Ligoml 已提交
712 713

          data = paddle.zeros(shape=[3, 2], dtype='float32')
714 715 716
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
717
          data = paddle.zeros(shape=[2, 2])
718 719
          # [[0. 0.]
          #  [0. 0.]]
L
Ligoml 已提交
720

721
          # shape is a Tensor
722
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
L
Ligoml 已提交
723
          data3 = paddle.zeros(shape=shape, dtype='int32')
724 725
          # [[0 0]
          #  [0 0]]
726
    """
727 728 729
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
730 731


732
def zeros_like(x, dtype=None, name=None):
733
    """
734
    Returns a Tensor filled with the value 0, with the same shape and
735
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
736 737

    Args:
738 739
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
740
        dtype(str|np.dtype, optional): The data type of the
741 742 743
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
744
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
745 746

    Returns:
747 748
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
749

750

751 752 753
    Examples:
        .. code-block:: python

754
            import paddle
755

Z
zhupengyang 已提交
756
            x = paddle.to_tensor([1, 2, 3])
757 758
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
759

760 761
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
762 763


764
def eye(num_rows, num_columns=None, dtype=None, name=None):
765
    """
L
Ligoml 已提交
766

767
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
768

769
    Args:
770 771
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
772
            If None, default: num_rows.
W
wangchaochaohu 已提交
773
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
774 775
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
776
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
777

778
    Returns:
779
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
780

781 782
    Examples:
        .. code-block:: python
L
Ligoml 已提交
783

784
          import paddle
785

786
          data = paddle.eye(3, dtype='int32')
787 788 789
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
790
          data = paddle.eye(2, 3, dtype='int32')
791 792
          # [[1 0 0]
          #  [0 1 0]]
793 794
    """

795 796 797 798 799 800 801 802
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

803 804
    if dtype is None:
        dtype = 'float32'
805 806 807
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
808
        _check_attr(num_columns, "num_columns")
809 810 811 812
    else:
        num_columns = num_rows

    if _non_static_mode():
813
        if in_dygraph_mode():
L
Ligoml 已提交
814 815 816
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
817
        elif _in_legacy_dygraph():
L
Ligoml 已提交
818 819 820
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
821 822 823

    else:
        helper = LayerHelper("eye", **locals())
L
Ligoml 已提交
824 825 826 827 828 829
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
830
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
Ligoml 已提交
831 832 833 834 835 836 837 838 839 840 841
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
842 843 844

    out.stop_gradient = True
    return out
845 846


847
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
848
    """
S
swtkiwi 已提交
849

850
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
L
Ligoml 已提交
851

W
wangchaochaohu 已提交
852
    Args:
853
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
854 855
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
856
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
857 858
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
859
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
860
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
861 862
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
863

864
    Returns:
865
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
866

W
wangchaochaohu 已提交
867 868 869
    Examples:
        .. code-block:: python

870
            import paddle
W
wangchaochaohu 已提交
871

L
Ligoml 已提交
872
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
873 874 875 876 877 878 879 880 881 882
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
L
Ligoml 已提交
883 884
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
885
            #  [True True]]
L
Ligoml 已提交
886

887 888 889
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
L
Ligoml 已提交
890
            # [[2.0]
891
            #  [2.0]]
W
wangchaochaohu 已提交
892 893 894 895 896
    """

    if dtype is None:
        dtype = 'float32'

897
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
898 899


900
def arange(start=0, end=None, step=1, dtype=None, name=None):
901
    """
902
    Returns a 1-D Tensor with spaced values within a given interval.
903

904 905
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
906

907 908
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
909 910

    Parameters:
911 912 913 914 915 916 917 918 919 920 921 922
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
923
        dtype(str|np.dtype, optional): The data type of the
924 925
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
926
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
927

L
Ligoml 已提交
928
    Returns:
929
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
930 931
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
932

Z
zhupengyang 已提交
933
    Examples:
934 935
        .. code-block:: python

Z
zhupengyang 已提交
936
            import paddle
937

Z
zhupengyang 已提交
938 939
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
940

Z
zhupengyang 已提交
941 942
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
943

Z
zhupengyang 已提交
944 945 946
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
947

Z
zhupengyang 已提交
948 949 950
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
L
Ligoml 已提交
951

952 953 954 955 956 957
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
958

959
    out_shape = None
L
Ligoml 已提交
960 961 962 963 964
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
965 966
        out_shape = [int(math.ceil((end - start) / step))]

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
989
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
990 991

    if _in_legacy_dygraph():
992
        out = _legacy_C_ops.range(start, end, step)
993 994 995
        out.stop_gradient = True
        return out

L
Ligoml 已提交
996 997 998
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
999 1000
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
L
Ligoml 已提交
1001 1002 1003 1004 1005
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1006
    out.stop_gradient = True
1007 1008
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1009
    return out
W
WuHaobo 已提交
1010 1011 1012


def _tril_triu_op(helper):
L
Ligoml 已提交
1013
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1014
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1015
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1016 1017

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1018
    check_variable_and_dtype(
L
Ligoml 已提交
1019 1020 1021 1022 1023
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1024
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1025
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1026
    diagonal = helper.kwargs.get('diagonal', 0)
L
Ligoml 已提交
1027
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1028 1029 1030 1031 1032 1033
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
L
Ligoml 已提交
1034 1035 1036
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1037 1038 1039 1040 1041 1042 1043 1044

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1045 1046
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1047 1048 1049 1050

    return out


Y
yaoxuefeng 已提交
1051
def tril(x, diagonal=0, name=None):
1052
    r"""
1053
    Returns the lower triangular part of a matrix (2-D tensor) or batch
L
Ligoml 已提交
1054 1055
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1056 1057 1058
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1059
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1060
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1061 1062 1063 1064 1065 1066 1067
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1068
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1069 1070

    Returns:
Y
yaoxuefeng 已提交
1071
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1072
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1073 1074 1075 1076

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1077
            import paddle
W
WuHaobo 已提交
1078

1079 1080 1081 1082 1083
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1084

1085 1086 1087 1088 1089
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1090 1091

            # example 2, positive diagonal value
1092 1093 1094 1095 1096
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1097 1098

            # example 3, negative diagonal value
1099 1100 1101 1102 1103
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1104
    """
F
From00 已提交
1105
    if in_dygraph_mode():
1106
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1107 1108

    if _in_legacy_dygraph():
1109
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1110
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1111 1112 1113 1114

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1115
def triu(x, diagonal=0, name=None):
1116
    r"""
1117
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1118
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1119 1120 1121 1122
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1123
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1124 1125 1126 1127 1128 1129 1130 1131
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1132
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1133 1134

    Returns:
Y
yaoxuefeng 已提交
1135
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1136
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1137 1138 1139 1140

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1141
            import paddle
W
WuHaobo 已提交
1142

1143 1144 1145 1146 1147
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1148 1149

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1150
            triu1 = paddle.tensor.triu(x)
1151 1152 1153 1154
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1155 1156

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1157
            triu2 = paddle.tensor.triu(x, diagonal=2)
1158 1159 1160 1161
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1162 1163

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1164
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1165 1166 1167 1168
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1169 1170

    """
F
From00 已提交
1171
    if in_dygraph_mode():
1172
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1173 1174

    if _in_legacy_dygraph():
1175
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1176
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1177 1178

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1179 1180


1181
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1182
    """
C
Chen Long 已提交
1183
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
L
Ligoml 已提交
1184

S
suytingwan 已提交
1185
    Args:
L
Ligoml 已提交
1186
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1187
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
L
Ligoml 已提交
1188
        **kwargs (optional): Currently, only accept name in **kwargs
1189
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1190
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1191

S
suytingwan 已提交
1192
    Returns:
Y
yaoxuefeng 已提交
1193
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1194 1195 1196 1197 1198 1199

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1200 1201 1202 1203
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1204

Y
yaoxuefeng 已提交
1205 1206
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1207 1208 1209 1210 1211 1212

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1213 1214
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1215
    if _in_legacy_dygraph():
1216
        num = len(args)
1217
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1218
        return out
Y
YuanRisheng 已提交
1219
    if in_dygraph_mode():
1220
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1221

1222
    name = kwargs.get("name", None)
S
suytingwan 已提交
1223 1224
    helper = LayerHelper('meshgrid', **locals())

1225 1226
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1227

1228
    for id, input_ in enumerate(args):
L
Ligoml 已提交
1229 1230 1231 1232 1233 1234
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1235

1236
    num = len(args)
S
suytingwan 已提交
1237
    out = [
1238
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1239 1240
        for i in range(num)
    ]
L
Ligoml 已提交
1241 1242 1243
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1244 1245

    return out
1246 1247


L
Li Min 已提交
1248 1249
def diagflat(x, offset=0, name=None):
    """
1250
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1266
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1267 1268 1269 1270 1271 1272

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1273
            :name: code-example-1
L
Li Min 已提交
1274

1275 1276 1277 1278
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1279 1280 1281 1282 1283
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1284 1285

            y = paddle.diagflat(x, offset=1)
1286 1287 1288 1289 1290 1291
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1292 1293

            y = paddle.diagflat(x, offset=-1)
1294 1295 1296 1297 1298 1299
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1300 1301

        .. code-block:: python
1302
            :name: code-example-2
L
Li Min 已提交
1303

1304
            import paddle
L
Li Min 已提交
1305

1306 1307
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1308 1309 1310 1311 1312 1313
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1314 1315

            y = paddle.diagflat(x, offset=1)
1316 1317 1318 1319 1320 1321 1322
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1323 1324

            y = paddle.diagflat(x, offset=-1)
1325 1326 1327 1328 1329 1330 1331
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1332 1333
    """
    padding_value = 0
1334 1335
    if in_dygraph_mode():
        if len(x.shape) == 1:
1336
            return _C_ops.diag(x, offset, padding_value)
1337
        else:
1338 1339
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1340 1341

    if _in_legacy_dygraph():
L
Li Min 已提交
1342
        if len(x.shape) == 1:
L
Ligoml 已提交
1343 1344 1345
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1346
        else:
1347
            y, _ = _legacy_C_ops.flatten_contiguous_range(
L
Ligoml 已提交
1348 1349 1350 1351 1352
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1353 1354

    check_type(x, 'x', (Variable), 'diagflat')
L
Ligoml 已提交
1355 1356 1357
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1358 1359 1360 1361 1362 1363 1364 1365
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
L
Ligoml 已提交
1366 1367 1368 1369 1370 1371
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1372
    else:
L
Ligoml 已提交
1373 1374 1375 1376 1377 1378
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1379 1380
        out1.stop_gradient = True

L
Ligoml 已提交
1381 1382 1383 1384 1385 1386
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1387 1388 1389 1390
    out2.stop_gradient = True
    return out2


1391 1392
def diag(x, offset=0, padding_value=0, name=None):
    """
1393
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1409
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1410

1411 1412 1413 1414 1415
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1416
            :name: code-example-1
1417

1418
            import paddle
1419

1420 1421 1422
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1423 1424 1425 1426 1427
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1428 1429

            y = paddle.diag(x, offset=1)
1430 1431 1432 1433 1434 1435
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1436 1437

            y = paddle.diag(x, padding_value=6)
1438 1439 1440 1441 1442
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1443 1444

        .. code-block:: python
1445
            :name: code-example-2
1446

1447
            import paddle
1448

1449 1450 1451
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1452 1453 1454
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1455

1456
            y = paddle.diag(x, offset=1)
1457 1458 1459
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1460

1461
            y = paddle.diag(x, offset=-1)
1462 1463 1464
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1465
    """
J
Jiabin Yang 已提交
1466
    if in_dygraph_mode():
1467
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1468 1469
    else:
        if _in_legacy_dygraph():
L
Ligoml 已提交
1470 1471 1472
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1473 1474
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
L
Ligoml 已提交
1475 1476 1477 1478 1479 1480
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1481 1482 1483 1484
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
L
Ligoml 已提交
1485 1486 1487 1488
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1489

J
Jiabin Yang 已提交
1490
            helper = LayerHelper("diag_v2", **locals())
1491

J
Jiabin Yang 已提交
1492
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1493

L
Ligoml 已提交
1494 1495 1496 1497 1498 1499
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1500

J
Jiabin Yang 已提交
1501 1502
            out.stop_gradient = True
            return out
1503 1504 1505 1506


def empty(shape, dtype=None, name=None):
    """
1507
    Returns a Tensor with uninitialized data which size is same as ``shape``.
L
Ligoml 已提交
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1518
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1519

1520 1521 1522 1523 1524 1525
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1526
            import paddle
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1552 1553 1554 1555 1556 1557 1558
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1559 1560
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1561 1562 1563
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1564 1565 1566 1567
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1568
        shape = utils.convert_shape_to_list(shape)
L
Ligoml 已提交
1569 1570 1571
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1572 1573 1574 1575 1576 1577
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

L
Ligoml 已提交
1578 1579 1580 1581 1582 1583
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1584 1585 1586 1587 1588 1589
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
L
Ligoml 已提交
1590 1591 1592
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1593 1594 1595

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
L
Ligoml 已提交
1596 1597 1598 1599 1600 1601 1602
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1603 1604
    out.stop_gradient = True
    return out
1605 1606 1607 1608


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1609
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1610
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
L
Ligoml 已提交
1611

1612 1613 1614
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
L
Ligoml 已提交
1615
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1616
            data type is the same as input.
1617
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1639
    if in_dygraph_mode():
L
Ligoml 已提交
1640 1641 1642 1643 1644
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1645 1646 1647 1648
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
1649 1650 1651
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1652 1653 1654 1655 1656
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
L
Ligoml 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1668 1669 1670 1671 1672 1673
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
L
Ligoml 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1685 1686
    out.stop_gradient = True
    return out
1687 1688 1689 1690


def assign(x, output=None):
    """
1691

1692
    Copy value of the :attr:`x` to the :attr:`output`.
L
Ligoml 已提交
1693

1694
    Parameters:
1695 1696
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1697
            data limitation.
1698
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
L
Ligoml 已提交
1699

1700
    Returns:
1701
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
L
Ligoml 已提交
1702

1703 1704
    Examples:
        .. code-block:: python
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1716
    """
1717 1718
    input = x
    helper = LayerHelper('assign', **locals())
L
Ligoml 已提交
1719 1720 1721 1722 1723 1724
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1736
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1737
        if in_dygraph_mode():
1738
            if output is None:
1739
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1740
            else:
1741
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1742 1743 1744
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1745
            _legacy_C_ops.assign(input, output)
1746
        else:
L
Ligoml 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1763 1764
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1765 1766 1767 1768 1769
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1770
    elif isinstance(input, np.ndarray):
1771
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1772
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1773
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
L
Ligoml 已提交
1774 1775 1776 1777
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1778
                    if isinstance(x, (Variable, core.eager.Tensor))
L
Ligoml 已提交
1779 1780
                ]
            ):
1781 1782 1783 1784 1785
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1786
                if not isinstance(x, (Variable, core.eager.Tensor)):
1787 1788 1789 1790 1791 1792 1793 1794 1795
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
L
Ligoml 已提交
1796
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1797
            raise TypeError(
1798
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1799
            )
1800

1801 1802 1803 1804 1805 1806 1807
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
L
Ligoml 已提交
1808 1809
                "it to float32"
            )
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
L
Ligoml 已提交
1827 1828
                "received %s." % convert_dtype(dtype)
            )
1829
        if input.size > 1024 * 1024:
L
Ligoml 已提交
1830 1831 1832 1833
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1834 1835 1836
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
L
Ligoml 已提交
1837 1838 1839 1840 1841 1842 1843
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1844 1845 1846
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
L
Ligoml 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1856
        else:
1857 1858
            if output is None:
                output = helper.create_variable_for_type_inference(
L
Ligoml 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1870

Z
zyfncg 已提交
1871
    if is_inplace and _in_legacy_dygraph():
1872 1873 1874
        output._bump_inplace_version()

    return output
1875 1876


1877 1878
def clone(x, name=None):
    """
L
Ligoml 已提交
1879 1880
    Returns a copy of input Tensor. It will always have a Tensor copy.

1881 1882 1883 1884
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1885
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1886

L
Ligoml 已提交
1887
    Returns:
1888
        Tensor, A Tensor copied from ``input``.
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


L
Ligoml 已提交
1907
# NOTE(zhiqiu): not public
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1921
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1922 1923 1924 1925 1926

    Examples:
        .. code-block:: python

          import paddle
1927

1928 1929 1930 1931 1932 1933 1934
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
L
Ligoml 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
L
Ligoml 已提交
1972 1973 1974 1975 1976 1977
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
1978
    return output
F
Feiyu Chan 已提交
1979 1980 1981 1982 1983 1984 1985 1986


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1987
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2002 2003 2004 2005
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2006
    """
2007
    if in_dygraph_mode():
2008
        return _C_ops.complex(real, imag)
2009

Z
zhiboniu 已提交
2010
    if paddle.in_dynamic_mode():
2011
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2012 2013 2014 2015 2016 2017 2018 2019

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
L
Ligoml 已提交
2020 2021
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2022 2023 2024 2025
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2026 2027 2028 2029


def tril_indices(row, col, offset=0, dtype='int64'):
    """
L
Ligoml 已提交
2030 2031
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2032 2033
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
L
Ligoml 已提交
2034

2035 2036 2037 2038 2039
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

L
Ligoml 已提交
2040 2041 2042 2043
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
L
Ligoml 已提交
2054

2055 2056 2057
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
L
Ligoml 已提交
2058
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2059 2060 2061 2062 2063
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
L
Ligoml 已提交
2064
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2089 2090 2091
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2092 2093 2094
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2095 2096 2097
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2098 2099 2100 2101 2102 2103 2104
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2105 2106 2107 2108 2109 2110
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2111
    return out
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
L
Ligoml 已提交
2173 2174 2175
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2176 2177 2178
        return out

    if _in_legacy_dygraph():
L
Ligoml 已提交
2179 2180 2181
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2182 2183 2184 2185 2186 2187 2188
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

L
Ligoml 已提交
2189 2190 2191 2192 2193 2194
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2195
    return out