distributed_strategy.py 90.0 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import copy

18 19 20
import google.protobuf
import google.protobuf.text_format

21
import paddle
22
from paddle.distributed.fleet.proto import distributed_strategy_pb2
23
from paddle.distributed.fleet.utils.log_util import logger
24
from paddle.fluid.framework import _global_flags
25
from paddle.fluid.wrapped_decorator import wrap_decorator
26

27
__all__ = []
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

43

44 45 46 47 48 49 50 51 52 53 54 55 56
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
57 58 59
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
60
                if f.label == 3:
S
sneaxiy 已提交
61 62
                    if config[f.name] is not None:
                        getattr(msg, f.name).extend(config[f.name])
63 64 65 66 67 68 69
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
70
        assert key in key_list, f"key:{key} not in {field_name}"
71 72


73
class DistributedJobInfo:
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


110 111 112
ReduceStrategyFleet = int


113
class DistributedStrategy:
114 115
    __lock_attr = False

116
    def __init__(self):
117
        """
118

119 120
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
121
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
122
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
123

124 125
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

126
        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
127 128 129
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
130
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
131 132 133

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
134
        if _global_flags().is_public(key):
135
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
136 137
                _global_flags()[key]
            )
138
        key = 'FLAGS_conv_workspace_size_limit'
139 140
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
141
        key = 'FLAGS_cudnn_exhaustive_search'
142 143
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
144
        key = 'FLAGS_sync_nccl_allreduce'
145 146
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
147

148
        self.hybrid_parallel_order = ['dp', 'pp', 'sharding', 'mp']
W
wuhuachaocoding 已提交
149 150
        self.sync_param_name = ["embedding", "layer_norm", ".b_"]

151
        self.__lock_attr = True
152
        logger.info("distributed strategy initialized")
153 154 155

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
156
            raise TypeError(
157
                f"{key} is not a attribute of {self.__class__.__name__}"
158
            )
159
        object.__setattr__(self, key, value)
160

161
    def save_to_prototxt(self, output):
162
        """
163

164 165 166
        Serialize current DistributedStrategy to string and save to output file

        Examples:
167
            .. code-block:: python
1
123malin 已提交
168

169 170 171 172 173 174
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.recompute = True
                strategy.recompute_configs = {"checkpoints": ["x"]}
                strategy.save_to_prototxt("dist_strategy.prototxt")
1
123malin 已提交
175

176
        """
177 178 179 180
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
181
        """
182

183 184 185
        Load from prototxt file for DistributedStrategy initialization

        Examples:
186
            .. code-block:: python
1
123malin 已提交
187

188 189 190
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.load_from_prototxt("dist_strategy.prototxt")
191 192 193 194

        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
195 196
                str(f.read()), self.strategy
            )
197 198 199 200 201 202 203

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
204
            .. code-block:: python
1
123malin 已提交
205

206 207 208 209 210
                import paddle
                exe_strategy = paddle.static.ExecutionStrategy()
                exe_strategy.num_threads = 10
                exe_strategy.num_iteration_per_drop_scope = 10
                exe_strategy.num_iteration_per_run = 10
211

212 213
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.execution_strategy = exe_strategy
214 215

        """
W
wangxiaoning 已提交
216
        execution_strategy = paddle.static.ExecutionStrategy()
217 218
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
219 220 221 222 223
            setattr(
                execution_strategy,
                f.name,
                getattr(self.strategy.execution_strategy, f.name),
            )
224 225 226
        return execution_strategy

    @execution_strategy.setter
227
    @is_strict_auto
228 229 230
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
231 232 233 234 235
            setattr(
                self.strategy.execution_strategy,
                f.name,
                getattr(strategy, f.name),
            )
236 237 238 239

    @property
    def build_strategy(self):
        """
240

241 242 243 244 245
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
246
            .. code-block:: python
1
123malin 已提交
247

248 249 250 251 252 253 254 255 256 257
                import paddle
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_sequential_execution = True
                build_strategy.fuse_elewise_add_act_ops = True
                build_strategy.fuse_bn_act_ops = True
                build_strategy.enable_auto_fusion = True
                build_strategy.fuse_relu_depthwise_conv = True
                build_strategy.fuse_broadcast_ops = True
                build_strategy.fuse_all_optimizer_ops = True
                build_strategy.enable_inplace = True
258

259 260
                strategy = paddle.distributed.fleet.DistributedStrategy()
                strategy.build_strategy = build_strategy
1
123malin 已提交
261

262 263
        """

W
wangxiaoning 已提交
264
        build_strategy = paddle.static.BuildStrategy()
265 266
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
267 268
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
269
                value = paddle.static.BuildStrategy.ReduceStrategy(value)
270
            setattr(build_strategy, f.name, value)
271 272 273
        return build_strategy

    @build_strategy.setter
274
    @is_strict_auto
275 276 277 278
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
279 280 281 282
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
283
            elif f.label == 3:  # repeated field
284 285 286
                getattr(self.strategy.build_strategy, f.name).extend(
                    getattr(strategy, f.name)
                )
287 288

    @property
Y
Yuang Liu 已提交
289 290
    def gradient_scale_configs(self):
        """
291

Y
Yuang Liu 已提交
292
        Set the strategy of gradient scale
293

Y
Yuang Liu 已提交
294
        Examples:
295
            .. code-block:: python
Y
Yuang Liu 已提交
296

297 298 299
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_scale_configs = {'scale_strategy': 'avg'}
Y
Yuang Liu 已提交
300 301

        Note that, strategy must be in 'avg', 'sum' or 'customized'
302

Y
Yuang Liu 已提交
303 304 305 306 307 308
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
309 310 311 312 313
        check_configs_key(
            self.strategy.gradient_scale_configs,
            config,
            'gradient_scale_configs',
        )
Y
Yuang Liu 已提交
314 315 316
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
317
    def a_sync(self):
318
        """
319

320
        Indicating whether we are using asynchronous stocastic gradient descent updates
321
        for training. This property is valid when we are using parameter server training,
322 323 324 325
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
326
            .. code-block:: python
1
123malin 已提交
327

328 329 330
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
331

332 333
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
334

335 336
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
337

338
        """
D
Dong Daxiang 已提交
339
        return self.strategy.a_sync
340

D
Dong Daxiang 已提交
341
    @a_sync.setter
342
    @is_strict_auto
D
Dong Daxiang 已提交
343
    def a_sync(self, flag):
344
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
345
            self.strategy.a_sync = flag
346
            self.a_sync_configs = {"k_steps": 0}
347
        else:
348
            raise ValueError(
349 350 351 352
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
353 354

    @property
D
Dong Daxiang 已提交
355
    def a_sync_configs(self):
356
        """
357

D
Dong Daxiang 已提交
358
        Set a_sync update configurations. In general, asynchronous parameter server
359 360
        training has serveral configurable settings that can be configured through
        a dict.
361

362
        **Notes**:
M
mapingshuo 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
376

377
        Examples:
378
            .. code-block:: python
1
123malin 已提交
379

380 381 382
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
383

384 385 386 387
                strategy = fleet.DistributedStrategy()
                strategy.a_sync = True  # by default this is True
                configs = {"k_steps": 1024, "send_queue_size": 32}
                strategy.a_sync_configs = configs
388

389 390
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
391

392
        """
D
Dong Daxiang 已提交
393
        return get_msg_dict(self.strategy.a_sync_configs)
394

D
Dong Daxiang 已提交
395
    @a_sync_configs.setter
396
    @is_strict_auto
D
Dong Daxiang 已提交
397
    def a_sync_configs(self, configs):
398 399 400
        check_configs_key(
            self.strategy.a_sync_configs, configs, "a_sync_configs"
        )
D
Dong Daxiang 已提交
401
        assign_configs_value(self.strategy.a_sync_configs, configs)
402

403 404 405
    @property
    def trainer_desc_configs(self):
        """
406

407
        Set trainer desc configurations.
408 409 410 411 412 413 414 415

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

416
            stat_var_names(list(str)):
417 418

        Examples:
419
            .. code-block:: python
420

421 422 423
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
424

425 426 427
                strategy = fleet.DistributedStrategy()
                configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
                strategy.trainer_desc_configs = configs
428

429 430
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
431 432 433 434

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

435 436 437
    @property
    def adam_d2sum(self):
        """
438

439
        set adam_d2sum
W
wangguanqun 已提交
440
        Default value: False
441 442

        Examples:
443
            .. code-block:: python
444

445 446 447
                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
448

449 450
                strategy = fleet.DistributedStrategy()
                strategy.adam_d2sum = True  # by default this is False
451

452 453
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)
454 455 456 457 458 459 460 461 462 463 464

        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
465 466 467 468
                "The type of `flag` is invalid, expected type is bool, but received {}".format(
                    type(flag)
                )
            )
469

470 471 472
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
473 474 475
        check_configs_key(
            self.strategy.trainer_desc_configs, configs, "trainer_desc_configs"
        )
476 477
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

478 479 480
    @property
    def fs_client_param(self):
        """
481

482
        Set fs client configurations.
483 484

        Note:
485
            uri(str): the uri of fs client
486

487
            user(str): the user_name of fs client
488

489
            passwd(str): the passwd of fs client
490

491
            hadoop_bin(str):
492

493
        Examples:
494 495 496 497 498 499 500 501 502 503 504
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                role_maker = fleet.PaddleCloudRoleMaker()
                fleet.init(role_maker)
                strategy = fleet.DistributedStrategy()
                configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
                strategy.fs_client_param = configs
                # code block for defining loss and local optimizer
                # sgd = fleet.distributed_optimizer(optimizer, strategy)

505 506 507 508 509 510
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
511 512 513
        check_configs_key(
            self.strategy.fs_client_param, configs, "fs_client_param"
        )
514 515 516 517 518 519 520 521 522 523
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
524

525 526
        table_param = self.strategy.downpour_table_param

527
        def set_table_config(msg, config_name, configs, index=0):
528 529 530
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
531
                    logger.debug(f"message: {name}")
532 533 534 535
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
536
                        logger.debug(f"message num: {name} {num}")
537 538 539 540
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
541 542 543
                        set_table_config(
                            getattr(msg, field.name), name, configs
                        )
544
                else:
545
                    logger.debug("not message: %s", name)
546 547 548 549 550
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
551 552 553 554
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
555

556
        if not configs:
557
            logger.info("table configs is empty")
558
        else:
559 560 561
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
562 563 564 565 566
                set_table_config(
                    table_data,
                    "table_parameters." + table_name,
                    configs[table_name],
                )
567

568 569
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        support_sparse_key_list = [
            'sparse_table_class',
            'sparse_compress_in_save',
            'sparse_shard_num',
            'sparse_accessor_class',
            'sparse_learning_rate',
            'sparse_initial_g2sum',
            'sparse_initial_range',
            'sparse_weight_bounds',
            'sparse_fea_dim',
            'sparse_embedx_dim',
            'sparse_embedx_threshold',
            'sparse_nonclk_coeff',
            'sparse_click_coeff',
            'sparse_base_threshold',
            'sparse_delta_threshold',
            'sparse_delta_keep_days',
            'sparse_delete_after_unseen_days',
            'sparse_show_click_decay_rate',
            'sparse_delete_threshold',
            'sparse_converter',
            'sparse_deconverter',
            'sparse_enable_cache',
            'sparse_cache_rate',
            'sparse_cache_file_num',
            'sparse_beta1_decay_rate',
            'sparse_beta2_decay_rate',
            'sparse_ada_epsilon',
            'sparse_optimizer',
            'sparse_ssd_unseenday_threshold',
            'embed_sparse_optimizer',
            'embed_sparse_learning_rate',
            'embed_sparse_weight_bounds',
            'embed_sparse_initial_range',
            'embed_sparse_initial_g2sum',
            'embed_sparse_beta1_decay_rate',
            'embed_sparse_beta2_decay_rate',
            'embedx_sparse_optimizer',
            'embedx_sparse_learning_rate',
            'embedx_sparse_weight_bounds',
            'embedx_sparse_initial_range',
            'embedx_sparse_initial_g2sum',
            'embedx_sparse_beta1_decay_rate',
            'embedx_sparse_beta2_decay_rate',
            'feature_learning_rate',
            'nodeid_slot',
L
lxsbupt 已提交
616 617 618 619 620
            'sparse_load_filter_slots',
        ]
        support_sparse_table_class = [
            'DownpourSparseTable',
            'DownpourSparseSSDTable',
621
        ]
622
        support_sparse_accessor_class = [
623 624 625 626 627 628
            'DownpourSparseValueAccessor',
            'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor',
            'DownpourUnitAccessor',
            'DownpourDoubleUnitAccessor',
            'DownpourCtrDymfAccessor',
629 630 631
        ]
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
632
        def add_graph_config(graph, strategy):
633 634 635
            graph.feature_learning_rate = strategy.get(
                'feature_learning_rate', 0.05
            )
D
danleifeng 已提交
636 637
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

638
        def sparse_optimizer_config(sgd, strategy, prefix):
639 640 641
            optimizer_name = strategy.get(
                prefix + "sparse_optimizer", "adagrad"
            )
642 643 644 645
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
646 647
                    prefix + 'sparse_learning_rate', 0.05
                )
648
                sgd.naive.initial_range = strategy.get(
649 650 651 652 653
                    prefix + 'sparse_initial_range', 1e-4
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
654 655 656 657
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
658 659
                    prefix + 'sparse_learning_rate', 0.05
                )
660
                sgd.adagrad.initial_range = strategy.get(
661 662
                    prefix + 'sparse_initial_range', 1e-4
                )
663 664 665
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
666 667 668 669 670
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
671 672 673 674
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
675 676
                    prefix + 'sparse_learning_rate', 0.05
                )
677
                sgd.adagrad.initial_range = strategy.get(
678 679
                    prefix + 'sparse_initial_range', 1e-4
                )
680 681 682
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
683 684 685 686 687
                    prefix + 'sparse_initial_g2sum', 3
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
688 689 690
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
691
                sgd.adam.learning_rate = strategy.get(
692 693
                    prefix + 'sparse_learning_rate', 0.001
                )
D
danleifeng 已提交
694
                sgd.adam.initial_range = strategy.get(
695 696
                    prefix + 'sparse_initial_range', 1e-4
                )
D
danleifeng 已提交
697
                sgd.adam.beta1_decay_rate = strategy.get(
698 699
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
D
danleifeng 已提交
700
                sgd.adam.beta2_decay_rate = strategy.get(
701 702
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
D
danleifeng 已提交
703
                sgd.adam.ada_epsilon = strategy.get(
704 705 706 707 708
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
D
danleifeng 已提交
709 710 711
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
712
                sgd.adam.learning_rate = strategy.get(
713 714
                    prefix + 'sparse_learning_rate', 0.001
                )
715
                sgd.adam.initial_range = strategy.get(
716 717
                    prefix + 'sparse_initial_range', 1e-4
                )
718
                sgd.adam.beta1_decay_rate = strategy.get(
719 720
                    prefix + 'sparse_beta1_decay_rate', 0.9
                )
721
                sgd.adam.beta2_decay_rate = strategy.get(
722 723
                    prefix + 'sparse_beta2_decay_rate', 0.999
                )
724
                sgd.adam.ada_epsilon = strategy.get(
725 726 727 728 729
                    prefix + 'sparse_ada_epsilon', 1e-8
                )
                bounds = strategy.get(
                    prefix + 'sparse_weight_bounds', [-10, 10]
                )
730 731 732 733 734 735
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
736 737 738
            table_class = config.get(
                "sparse_table_class", "DownpourSparseTable"
            )
739 740
            if table_class not in support_sparse_table_class:
                raise ValueError(
L
lxsbupt 已提交
741
                    "support sparse_table_class: ['DownpourSparseTable, DownpourSparseSSDTable'], but actual %s"
742 743
                    % (table_class)
                )
L
lxsbupt 已提交
744 745 746 747
            if table_class == "DownpourSparseSSDTable":
                table_data.table_class = 'SSDSparseTable'
            else:
                table_data.table_class = 'MemorySparseTable'
748
            table_data.shard_num = config.get('sparse_shard_num', 1000)
749
            table_data.enable_sparse_table_cache = config.get(
750 751
                'sparse_enable_cache', True
            )
752
            table_data.sparse_table_cache_rate = config.get(
753 754
                'sparse_cache_rate', 0.00055
            )
755
            table_data.sparse_table_cache_file_num = config.get(
756 757
                'sparse_cache_file_num', 16
            )
758

759 760 761
            accessor_class = config.get(
                "sparse_accessor_class", "DownpourCtrAccessor"
            )
762 763
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
764
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
765 766
                    % (accessor_class)
                )
767

768 769
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
770 771
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
772
            else:
773 774 775
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
776 777 778 779 780
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
781 782
                'sparse_embedx_threshold', 10
            )
783

784 785 786 787 788
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

789
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
790 791
                'sparse_nonclk_coeff', 0.1
            )
792
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
793 794
                'sparse_click_coeff', 1
            )
795
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
796 797
                'sparse_base_threshold', 1.5
            )
798
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
799 800
                'sparse_delta_threshold', 0.25
            )
801
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
802 803 804 805 806 807 808 809 810 811 812 813 814 815
                'sparse_delta_keep_days', 16
            )
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = (
                config.get('sparse_show_click_decay_rate', 0.98)
            )
            table_data.accessor.ctr_accessor_param.delete_threshold = (
                config.get('sparse_delete_threshold', 0.8)
            )
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = (
                config.get('sparse_delete_after_unseen_days', 30)
            )
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = (
                config.get('sparse_ssd_unseenday_threshold', 1)
            )
L
lxsbupt 已提交
816 817 818 819
            load_filter_slots = config.get('sparse_load_filter_slots', [])
            table_data.accessor.ctr_accessor_param.load_filter_slots.extend(
                load_filter_slots
            )
820 821 822 823 824 825 826 827 828 829 830 831 832
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

833 834 835 836 837 838 839 840 841 842
            if (
                accessor_class == 'DownpourCtrAccessor'
                or accessor_class == 'DownpourCtrDoubleAccessor'
            ):
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, ''
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, ''
                )
843
            else:
844 845 846 847 848 849
                sparse_optimizer_config(
                    table_data.accessor.embed_sgd_param, config, 'embed_'
                )
                sparse_optimizer_config(
                    table_data.accessor.embedx_sgd_param, config, 'embedx_'
                )
D
danleifeng 已提交
850
            add_graph_config(table_data.accessor.graph_sgd_param, config)
851 852

        if not configs:
853
            logger.info("fleet desc config is empty")
854 855
        else:
            for table_name in configs:
856 857 858 859
                if (
                    table_name == 'dense_table'
                    or table_name == 'datanorm_table'
                ):
860 861 862 863 864 865 866
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

867
    @property
868 869 870 871
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
872

873
        Examples:
1
123malin 已提交
874

875
          .. code-block:: python
876

877
            import paddle.distributed.fleet as fleet
878 879
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
880

881 882
        """
        return self.strategy.amp
883

884
    @amp.setter
885
    @is_strict_auto
886
    def amp(self, flag):
887
        if isinstance(flag, bool):
888
            self.strategy.amp = flag
889
        else:
890
            logger.warning("amp should have value of bool type")
891 892

    @property
893
    def amp_configs(self):
894
        """
895

896 897 898 899
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
915

916 917 918 919 920 921 922 923
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
924
            .. code-block:: python
1
123malin 已提交
925

926 927 928 929 930 931
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "custom_white_list": ['conv2d']}
932 933

        Examples 2:
934 935 936 937 938 939 940 941 942 943
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.amp = True
                # pure fp16
                strategy.amp_configs = {
                    "init_loss_scaling": 32768,
                    "use_pure_fp16": True
                }
944

945
        """
946
        return get_msg_dict(self.strategy.amp_configs)
947

948
    @amp_configs.setter
949
    @is_strict_auto
950 951 952
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
953

954 955 956
    @property
    def asp(self):
        """
957

958 959 960 961
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:
962
            .. code-block:: python
963

964 965 966
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.asp = True # by default this is false
967 968 969 970 971 972 973 974 975 976

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
977
            logger.warning("asp should have value of bool type")
978

979
    @property
980 981 982 983 984 985
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
986
            .. code-block:: python
1
123malin 已提交
987

988 989 990 991 992
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                # suppose x and y are names of checkpoint tensors for recomputation
                strategy.recompute_configs = {"checkpoints": ["x", "y"]}
993 994 995

        """
        return self.strategy.recompute
996

997 998
    @property
    def sync_nccl_allreduce(self):
999
        """
1000

1001 1002 1003 1004
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1005
            .. code-block:: python
1
123malin 已提交
1006

1007 1008 1009
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_nccl_allreduce = True
1010 1011

        """
1012 1013 1014
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
1015
    @is_strict_auto
1016 1017 1018 1019
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
1020
            logger.warning("sync_nccl_allreduce should have value of bool type")
1021

1022
    @property
1023
    def use_hierarchical_allreduce(self):
1024
        """
1025

1026 1027 1028 1029 1030
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1031
            .. code-block:: python
1
123malin 已提交
1032

1033 1034 1035
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.use_hierarchical_allreduce = True
1036 1037

        """
1038
        return self.strategy.use_hierarchical_allreduce
1039

1040
    @use_hierarchical_allreduce.setter
1041
    @is_strict_auto
1042
    def use_hierarchical_allreduce(self, flag):
1043
        if isinstance(flag, bool):
1044
            self.strategy.use_hierarchical_allreduce = flag
1045
        else:
1046 1047
            logger.warning(
                "use_hierarchical_allreduce should have value of bool type"
1048 1049 1050
            )

    @property
1051
    def hierarchical_allreduce_inter_nranks(self):
1052
        """
1053

1054 1055 1056 1057
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1058
            .. code-block:: python
1
123malin 已提交
1059

1060 1061 1062
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hierarchical_allreduce_inter_nranks = 8
1063 1064

        """
1065
        return self.strategy.hierarchical_allreduce_inter_nranks
1066

1067
    @hierarchical_allreduce_inter_nranks.setter
1068
    @is_strict_auto
1069 1070 1071
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
1072
        else:
1073 1074
            logger.warning(
                "hierarchical_allreduce_inter_nranks should have value of int type"
1075 1076
            )

1077
    @property
1078
    def sync_batch_norm(self):
1079
        """
1080

1081
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
1082

1083 1084 1085
        Default value: False

        Examples:
1086
            .. code-block:: python
1
123malin 已提交
1087

1088 1089 1090
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sync_batch_norm = True
1091 1092 1093

        """

1094
        return self.strategy.sync_batch_norm
1095

1096
    @sync_batch_norm.setter
1097
    @is_strict_auto
1098
    def sync_batch_norm(self, flag):
1099
        if isinstance(flag, bool):
1100
            self.strategy.sync_batch_norm = flag
1101
        else:
1102
            logger.warning("sync_batch_norm should have value of bool type")
1103 1104 1105

    @property
    def fuse_all_reduce_ops(self):
1106
        """
1107

1108 1109 1110 1111
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1112
            .. code-block:: python
1
123malin 已提交
1113

1114 1115 1116
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_all_reduce_ops = False
1117 1118

        """
1119 1120 1121
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
1122
    @is_strict_auto
1123 1124 1125 1126
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
1127
            logger.warning("fuse_all_reduce_ops should have value of bool type")
1128

1129 1130
    @property
    def fuse_grad_size_in_MB(self):
1131
        """
1132

1133 1134 1135 1136 1137
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1138
            .. code-block:: python
1
123malin 已提交
1139

1140 1141 1142
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_MB = 50
1
123malin 已提交
1143

1144
        """
1145 1146 1147
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
1148
    @is_strict_auto
1149 1150 1151 1152
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
1153
            logger.warning("fuse_grad_size_in_MB should have value of int type")
1154

1155 1156 1157
    @property
    def last_comm_group_size_MB(self):
        """
1158

1159 1160 1161
        Specifying the size of gradient to fuse in Mega-Bytes when
        the last group of each batch communicates. Making the last group
        small is useful to improve performance.
1162 1163 1164 1165

        Default value: 1

        Examples:
1166 1167 1168 1169 1170
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.last_comm_group_size_MB = 2
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1183 1184 1185
    @property
    def find_unused_parameters(self):
        """
1186

1187
        Indicating whether we are using find_unused_parameters to
1188 1189
        find unused parameters in DataParallel.

1190
        Default value: False
1191 1192

        Examples:
1193
            .. code-block:: python
1194

1195 1196 1197
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.find_unused_parameters = True
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
1209 1210
            logger.warning(
                "find_unused_parameters should have value of bool type"
1211
            )
1212

1213 1214 1215 1216 1217
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1218
    @is_strict_auto
1219 1220 1221 1222
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
1223 1224
            logger.warning(
                "fuse_grad_size_in_TFLOPS should have value of float type"
1225 1226
            )

1227
    @property
1228
    def nccl_comm_num(self):
1229
        """
1230

1231 1232 1233 1234 1235
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1236
            .. code-block:: python
1
123malin 已提交
1237

1238 1239 1240
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.nccl_comm_num = 2
1
123malin 已提交
1241

1242 1243
        """

1244
        return self.strategy.nccl_comm_num
1245

1246
    @nccl_comm_num.setter
1247
    @is_strict_auto
1248
    def nccl_comm_num(self, value):
1249
        if isinstance(value, int):
1250
            self.strategy.nccl_comm_num = value
1251
        else:
1252
            logger.warning("nccl_comm_num should have value of int type")
1253

1254
    @recompute.setter
1255
    @is_strict_auto
1256
    def recompute(self, flag):
1257
        if isinstance(flag, bool):
1258
            self.strategy.recompute = flag
1259
        else:
1260
            logger.warning("recompute should have value of bool type")
1261 1262

    @property
1263 1264
    def recompute_configs(self):
        """
1265

1266 1267
        Set recompute configurations.

J
JZ-LIANG 已提交
1268 1269 1270 1271
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

1272
        enable_offload(bool): enable recompute checkpoints offload feature. this feature
J
JZ-LIANG 已提交
1273 1274 1275 1276 1277 1278
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
1279
        specific here should be determined ("-1" is not allowed).
1280

1281
        Examples:
1282
            .. code-block:: python
1
123malin 已提交
1283

1284 1285 1286 1287 1288 1289 1290
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.recompute = True
                strategy.recompute_configs = {
                    "checkpoints": ["x", "y"],
                    "enable_offload": True,
                    "checkpoint_shape": [100, 512, 1024] }
1291 1292 1293 1294 1295

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1296
    @is_strict_auto
1297
    def recompute_configs(self, configs):
1298 1299 1300
        check_configs_key(
            self.strategy.recompute_configs, configs, "checkpoint_configs"
        )
1301
        assign_configs_value(self.strategy.recompute_configs, configs)
1302

1303 1304 1305
    @property
    def sharding(self):
        """
1306

1307
        Indicating whether we are using sharding Optimizer for memory
1308
        optimization. We implement the sharding optimizer following the ZeRO-DP
J
JZ-LIANG 已提交
1309 1310
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1311

1312 1313
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1314 1315 1316
        Default value: False

        Examples:
1317
            .. code-block:: python
1
123malin 已提交
1318

1319 1320 1321
                import paddle.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
1
123malin 已提交
1322

1323 1324 1325 1326 1327 1328 1329 1330 1331
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
1332
            logger.warning("sharding should have value of bool type")
1333 1334 1335 1336

    @property
    def sharding_configs(self):
        """
1337

1338
        Set sharding configurations.
1339 1340

        **Note**:
1341 1342
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and
1343 1344
            communication. Default is segment_broadcast_MB.

1345
            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and
1346 1347 1348 1349
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

1350
            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation.
1351 1352 1353 1354 1355 1356
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

1357
            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model.
1358 1359 1360 1361 1362
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1363
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1364

1365
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1366

1367
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on.
1368
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1369

1370 1371 1372
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1373

1374
        Examples:
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
            .. code-block:: python

                # sharding-DP, 2 nodes with 8 gpus per node
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.sharding = True
                strategy.sharding_configs = {
                    "sharding_segment_strategy": "segment_broadcast_MB",
                    "segment_broadcast_MB": 32,
                    "sharding_degree": 8,
                    "dp_degree": 2,
                    "gradient_merge_acc_step": 4,
                    }
1
123malin 已提交
1388

1389 1390 1391 1392 1393 1394
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
1395 1396 1397
        check_configs_key(
            self.strategy.sharding_configs, configs, "sharding_configs"
        )
1398 1399
        assign_configs_value(self.strategy.sharding_configs, configs)

1400 1401 1402
    @property
    def without_graph_optimization(self):
        """
1403

1404 1405 1406
        Run program using Executor other than ParallelExecutor.

        Examples:
1407
            .. code-block:: python
1408

1409 1410 1411
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.without_graph_optimization = True
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
1422 1423
            logger.warning(
                "without_graph_optimization should have value of bool type"
1424 1425
            )

1426 1427 1428
    @property
    def _calc_comm_same_stream(self):
        """
1429

1430 1431 1432
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
1433

1434
        Examples:
1435 1436 1437 1438 1439 1440
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.calc_comm_same_stream = True

1441 1442 1443 1444 1445 1446 1447 1448 1449
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
1450 1451
            logger.warning(
                "calc_comm_same_stream should have value of boolean type"
1452 1453
            )

1454 1455 1456
    @property
    def fuse_grad_merge(self):
        """
1457

1458 1459 1460
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
1461

1462
        Examples:
1463 1464 1465 1466 1467 1468
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.fuse_param_grad = True

1469 1470 1471 1472 1473 1474 1475 1476 1477
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
1478
            logger.warning("fuse_grad_merge should have value of boolean type")
1479

1480 1481 1482
    @property
    def fuse_grad_size_in_num(self):
        """
1483

1484
        This based on raw_program_optimizer program and allreduce the num of the fused op
1485

1486
        Examples:
1487 1488 1489 1490 1491 1492 1493
            .. code-block:: python

                import paddle.distributed.fleet as fleet

                strategy = fleet.DistributedStrategy()
                strategy.fuse_grad_size_in_num = 2

1494 1495 1496 1497 1498 1499 1500 1501 1502
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
1503 1504
            logger.warning(
                "fuse_grad_size_in_num should have value of int32 type"
1505
            )
1506

1507
    @property
1508 1509
    def pipeline(self):
        """
1510

1511 1512 1513 1514 1515 1516
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1517
            .. code-block:: python
1
123malin 已提交
1518

1519 1520 1521
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
1522 1523 1524

        """
        return self.strategy.pipeline
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
1536
            logger.warning("is_fl_ps_mode should have value of bool type")
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
1548
            logger.warning("with_coordinator should have value of bool type")
1549

1550
    @pipeline.setter
1551
    @is_strict_auto
1552
    def pipeline(self, flag):
1553
        if isinstance(flag, bool):
1554
            self.strategy.pipeline = flag
1555
        else:
1556
            logger.warning("pipeline should have value of bool type")
1557 1558

    @property
1559 1560
    def pipeline_configs(self):
        """
1561

1562 1563
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
1564
        There are Tensor queue buffer between each pair of neighborhood GPUS
1565 1566 1567
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
1568
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
1569
        so that we will have a faster producer for downstream consumers.
1570

1571 1572
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1573

1574
            **micro_batch_size**: the number of small batches in each user defined batch
1575

1576
        Examples:
1577
            .. code-block:: python
1
123malin 已提交
1578

1579 1580 1581 1582
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.pipeline = True
                strategy.pipeline_configs = {"micro_batch_size": 12}
1583

1584
        """
1585

1586
        return get_msg_dict(self.strategy.pipeline_configs)
1587

1588
    @pipeline_configs.setter
1589
    @is_strict_auto
1590
    def pipeline_configs(self, configs):
1591 1592 1593
        check_configs_key(
            self.strategy.pipeline_configs, configs, "pipeline_configs"
        )
1594
        assign_configs_value(self.strategy.pipeline_configs, configs)
1595

L
lilong12 已提交
1596 1597 1598
    @property
    def tensor_parallel(self):
        """
1599

L
lilong12 已提交
1600 1601 1602
        Indicating whether we are using tensor parallel for distributed training.

        Examples:
1603
            .. code-block:: python
L
lilong12 已提交
1604

1605 1606 1607
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
L
lilong12 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
1618
            logger.warning("tensor_parallel should have value of bool type")
L
lilong12 已提交
1619 1620 1621 1622

    @property
    def tensor_parallel_configs(self):
        """
1623

L
lilong12 已提交
1624 1625 1626 1627
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
1628

L
lilong12 已提交
1629
            **tensor_parallel_degree**: degree of tensor parallel
1630

1631 1632
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1633 1634

        Examples:
1635
            .. code-block:: python
L
lilong12 已提交
1636

1637 1638 1639 1640 1641
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.tensor_parallel = True
                strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                    "tensor_init_seed": 123}
L
lilong12 已提交
1642 1643 1644 1645 1646 1647 1648

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
1649 1650 1651 1652 1653
        check_configs_key(
            self.strategy.tensor_parallel_configs,
            configs,
            "tensor_parallel_configs",
        )
L
lilong12 已提交
1654 1655
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1656 1657 1658
    @property
    def hybrid_configs(self):
        """
1659

1660
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism
1661 1662 1663 1664 1665
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
1666
            **dp_degree(int)**: set number of GPUs in a data parallel group. Default -1.
1667
                                    This value should be an integer greater than 0.
1668
                                    If it is not set, or set to -1, its value will be inferred
1669 1670
                                    based on the total number of cards.

1671 1672 1673
            **mp_degree(int)**: set number of GPUs in a model parallel group. Default 1

            **pp_degree(int)**: set number of GPUs in a pipeline parallel group. Default 1
1674

1675 1676
            **order(list(string))**: set hybrid parallel dimensions, the order is from outside to inside. Default ['dp','pp','sharding','mp']

1677
        Examples:
1678 1679 1680 1681 1682 1683 1684
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.hybrid_configs = {
                    "dp_degree": 1,
                    "mp_degree": 2,
1685 1686
                    "pp_degree": 1,
                    "order":['dp','pp','sharding','mp']}
1687

1688 1689 1690 1691 1692
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
1693 1694 1695 1696 1697
        hybrid_config = copy.deepcopy(configs)
        if "order" in hybrid_config:
            self.hybrid_parallel_order = hybrid_config["order"]
            hybrid_config.pop('order')

1698
        check_configs_key(
1699
            self.strategy.hybrid_configs, hybrid_config, "hybrid_configs"
1700
        )
1701 1702

        if "mp_configs" in configs:
W
wuhuachaocoding 已提交
1703 1704 1705 1706
            if "sync_param_name" in configs["mp_configs"]:
                self.sync_param_name = configs["mp_configs"]["sync_param_name"]
                configs["mp_configs"].pop("sync_param_name")

1707 1708 1709 1710
            assign_configs_value(
                self.strategy.hybrid_configs.mp_configs, configs["mp_configs"]
            )
            configs.pop("mp_configs")
1711 1712 1713 1714 1715 1716
        if "pp_configs" in configs:
            assign_configs_value(
                self.strategy.hybrid_configs.pp_configs, configs["pp_configs"]
            )
            configs.pop("pp_configs")

1717 1718
        assign_configs_value(self.strategy.hybrid_configs, configs)

1719
    @property
1720
    def localsgd(self):
1721
        """
1722

M
mapingshuo 已提交
1723 1724 1725
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1726 1727 1728


        Examples:
1729
            .. code-block:: python
1
123malin 已提交
1730

1731 1732 1733
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True # by default this is false
1734 1735

        """
1736
        return self.strategy.localsgd
1737

1738
    @localsgd.setter
1739
    @is_strict_auto
1740 1741 1742
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1743
        else:
1744
            logger.warning("localsgd should have value of bool type")
1745 1746

    @property
1747
    def localsgd_configs(self):
1748
        """
1749

1750 1751 1752 1753
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1754
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1755
            begin_step(int) The step of beginning training by localsgd. Default 1.
1756 1757

        Examples:
1758
            .. code-block:: python
1
123malin 已提交
1759

1760 1761 1762 1763 1764
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.localsgd = True
                strategy.localsgd_configs = {"k_steps": 4,
                                            "begin_step": 30}
1765 1766 1767

        """

1768
        return get_msg_dict(self.strategy.localsgd_configs)
1769

1770
    @localsgd_configs.setter
1771
    @is_strict_auto
1772
    def localsgd_configs(self, configs):
1773 1774 1775
        check_configs_key(
            self.strategy.localsgd_configs, configs, "localsgd_configs"
        )
1776
        assign_configs_value(self.strategy.localsgd_configs, configs)
1777

1778 1779 1780
    @property
    def adaptive_localsgd(self):
        """
1781

1782
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
1783
        For more details, please refer to `Adaptive Communication Strategies to Achieve
1784 1785 1786
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.

        Examples:
1787
            .. code-block:: python
1
123malin 已提交
1788

1789 1790 1791
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True # by default this is false
1792 1793

        """
1794
        return self.strategy.adaptive_localsgd
1795 1796 1797 1798 1799

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1800
            self.strategy.adaptive_localsgd = flag
1801
        else:
1802
            logger.warning("adaptive_localsgd should have value of bool type")
1803 1804 1805 1806

    @property
    def adaptive_localsgd_configs(self):
        """
1807

1808 1809 1810 1811 1812 1813 1814
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1815

1816
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1817 1818

        Examples:
1819
            .. code-block:: python
1
123malin 已提交
1820

1821 1822 1823 1824 1825
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.adaptive_localsgd = True
                strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                    "begin_step": 30}
1826 1827 1828 1829 1830 1831 1832 1833

        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
1834 1835 1836 1837 1838
        check_configs_key(
            self.strategy.adaptive_localsgd_configs,
            configs,
            "adaptive_localsgd_configs",
        )
1839 1840
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1841
    @property
1842
    def dgc(self):
1843
        """
1844

1845 1846 1847 1848 1849 1850
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1851
            .. code-block:: python
1
123malin 已提交
1852

1853 1854 1855
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True # by default this is false
1856 1857

        """
1858
        return self.strategy.dgc
1859

1860
    @dgc.setter
1861
    @is_strict_auto
1862 1863 1864
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1865
        else:
1866
            logger.warning("dgc should have value of bool type")
1867 1868

    @property
1869
    def dgc_configs(self):
1870
        r"""
1871

1872 1873 1874 1875
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1886 1887

        Examples:
1888
            .. code-block:: python
1
123malin 已提交
1889

1890 1891 1892 1893
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.dgc = True
                strategy.dgc_configs = {"rampup_begin_step": 1252}
1894 1895

        """
1896
        return get_msg_dict(self.strategy.dgc_configs)
1897

1898
    @dgc_configs.setter
1899
    @is_strict_auto
1900 1901 1902
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1903

1904 1905 1906
    @property
    def fp16_allreduce(self):
        """
1907

1908 1909 1910 1911
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1912
            .. code-block:: python
1
123malin 已提交
1913

1914
                import paddle.distributed.fleet as fleet
1915

1916 1917
                strategy = fleet.DistributedStrategy()
                strategy.fp16_allreduce = True # by default this is false
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1929
    @property
1930
    def gradient_merge(self):
1931
        """
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1943
            .. code-block:: python
1
123malin 已提交
1944

1945 1946 1947 1948
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1949

1950
        """
1951
        return self.strategy.gradient_merge
1952

1953
    @gradient_merge.setter
1954
    @is_strict_auto
1955
    def gradient_merge(self, flag):
1956
        if isinstance(flag, bool):
1957
            self.strategy.gradient_merge = flag
1958
        else:
1959
            logger.warning("gradient_merge should have value of bool type")
1960 1961 1962

    @property
    def gradient_merge_configs(self):
1963
        """
1964

1965
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1966 1967 1968 1969 1970 1971 1972

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1973
            .. code-block:: python
1
123malin 已提交
1974

1975 1976 1977 1978
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.gradient_merge = True
                strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
M
mapingshuo 已提交
1979

1980
        """
1981 1982 1983
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1984
    @is_strict_auto
1985
    def gradient_merge_configs(self, configs):
1986 1987 1988
        check_configs_key(
            self.strategy.gradient_merge_configs, configs, "gradient_configs"
        )
1989
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1990 1991

    @property
1992
    def lars(self):
1993
        """
1994

1995 1996
        Set lars configurations. lars is used to deal with the convergence problems when the global
        batch size is larger than 8k.  For more details, please refer to
1997 1998 1999 2000 2001
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
2002
            .. code-block:: python
1
123malin 已提交
2003

2004 2005 2006
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True # by default this is false
2007 2008

        """
2009
        return self.strategy.lars
2010

2011
    @lars.setter
2012
    @is_strict_auto
2013
    def lars(self, flag):
2014
        if isinstance(flag, bool):
2015
            self.strategy.lars = flag
2016
        else:
2017
            logger.warning("lars should have value of bool type")
2018

2019 2020
    @property
    def lars_configs(self):
2021
        """
2022

2023 2024 2025 2026 2027
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
2028 2029
        **epsilon (float)**: argument is used to avoid potential devision-by-zero
        when compute the local lr;
2030 2031 2032 2033
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
2034
            .. code-block:: python
1
123malin 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lars = True
                strategy.lars_configs = {
                            "lars_coeff": 0.01,
                            "lars_weight_decay": 0.0005,
                            "epsilon": 0,
                            "exclude_from_weight_decay": ['batch_norm', '.b_0']
                        }
M
mapingshuo 已提交
2045

2046
        """
2047 2048 2049
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
2050
    @is_strict_auto
2051 2052 2053 2054
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

2055
    @property
2056
    def lamb(self):
2057
        """
2058

2059 2060 2061
        Set lamb configurations. lamb is used to deal with the convergence problems for large
        batch size training, specially for attention-related model like BERT. For more details,
        please refer to
2062 2063 2064
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
2065

2066
        Examples:
2067
            .. code-block:: python
1
123malin 已提交
2068

2069 2070 2071
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True # by default this is false
2072 2073 2074

        """

2075
        return self.strategy.lamb
2076

2077
    @lamb.setter
2078
    @is_strict_auto
2079
    def lamb(self, flag):
2080
        if isinstance(flag, bool):
2081
            self.strategy.lamb = flag
2082
        else:
2083
            logger.warning("lamb should have value of bool type")
2084

2085 2086
    @property
    def lamb_configs(self):
2087
        """
2088

2089 2090 2091 2092 2093 2094 2095 2096
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
2097 2098 2099 2100 2101 2102 2103 2104 2105
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.lamb = True
                strategy.lamb_configs = {
                        'lamb_weight_decay': 0.01,
                        'exclude_from_weight_decay': [],
                    }
1
123malin 已提交
2106

2107
        """
2108 2109 2110
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
2111
    @is_strict_auto
2112 2113 2114 2115
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

2116 2117
    @property
    def elastic(self):
2118
        """
2119

2120 2121
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
2122

2123
        """
2124 2125 2126
        return self.strategy.elastic

    @elastic.setter
2127
    @is_strict_auto
2128 2129 2130 2131
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
2132
            logger.warning("elastic should have value of bool type")
2133 2134 2135

    @property
    def auto(self):
2136
        """
2137

2138
        Indicating whether we are using auto-parallel configuration
2139
        This feature is currently an experimental feature. Currently,
2140 2141 2142 2143 2144 2145
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2146
            .. code-block:: python
1
123malin 已提交
2147

2148 2149 2150
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2151

2152 2153 2154 2155
                strategy = fleet.DistributedStrategy()
                strategy.auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2156

2157 2158
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2159 2160

        """
2161 2162 2163 2164 2165 2166 2167
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
2168
            logger.warning("auto should have value of bool type")
2169

2170 2171 2172
    @property
    def semi_auto(self):
        """
2173

2174
        Indicating whether we are using semi-auto parallel function
2175
        This feature is currently an experimental feature. Currently,
2176 2177 2178 2179 2180 2181
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
2182
            .. code-block:: python
2183

2184 2185 2186
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2187

2188 2189 2190 2191
                strategy = fleet.DistributedStrategy()
                strategy.semi_auto = True
                # if set other strategy at the same time, auto will not apply
                # strategy.amp = True
2192

2193 2194
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2195 2196 2197 2198 2199 2200 2201 2202 2203

        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
2204
            logger.warning("semi-auto should have value of bool type")
2205

Z
zhaoyingli 已提交
2206 2207 2208
    @property
    def auto_search(self):
        """
2209

Z
zhaoyingli 已提交
2210 2211 2212
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
2213

Z
zhaoyingli 已提交
2214
        Examples:
2215 2216 2217 2218 2219 2220 2221 2222 2223
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.auto_search = True

Z
zhaoyingli 已提交
2224 2225 2226 2227 2228 2229 2230 2231
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
2232
            logger.warning("auto-search should have value of bool type")
Z
zhaoyingli 已提交
2233

2234 2235 2236
    @property
    def split_data(self):
        """
2237

2238 2239
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
2240

2241
        Examples:
2242 2243 2244 2245 2246 2247 2248 2249 2250
            .. code-block:: python

                import paddle

                paddle.enable_static()
                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                strategy.split_data = True

2251 2252 2253 2254 2255 2256 2257 2258
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
2259
            logger.warning("split_data should have value of bool type")
2260

2261 2262 2263
    @property
    def qat(self):
        """
2264

2265 2266
        Indicating whether we are using quantization training
        Default Value: False
2267

2268 2269 2270 2271 2272 2273 2274 2275
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
2276
            logger.warning("qat should have value of bool type")
2277 2278 2279 2280

    @property
    def qat_configs(self):
        """
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

2292
            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope,
2293 2294 2295 2296 2297
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:
2298
            .. code-block:: python
2299

2300
                import paddle.distributed.fleet as fleet
2301

2302 2303 2304 2305 2306 2307 2308
                strategy = fleet.DistributedStrategy()
                strategy.qat = True
                strategy.qat_configs = {
                    "channel_wise_abs_max": True,
                    "weight_bits": 8,
                    "activation_bits: 8,
                    "not_quant_pattern": ['skip_quant']}
2309 2310 2311 2312 2313 2314 2315 2316 2317

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2318 2319 2320
    @property
    def heter_ccl_mode(self):
        """
2321

K
kuizhiqing 已提交
2322 2323 2324 2325 2326 2327
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:
2328
            .. code-block:: python
K
kuizhiqing 已提交
2329

2330 2331
                import paddle
                import paddle.distributed.fleet as fleet
K
kuizhiqing 已提交
2332

2333 2334
                strategy = fleet.DistributedStrategy()
                strategy.heter_ccl_mode = True
K
kuizhiqing 已提交
2335

2336 2337 2338
                # for initialize parallel env, only need to call
                paddle.distributed.init_parallel_env()
                # then the heterogenous context will be created.
K
kuizhiqing 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347

        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
2348
            logger.warning("heter_ccl_mode should have value of bool type")
K
kuizhiqing 已提交
2349

2350 2351
    @property
    def cudnn_exhaustive_search(self):
2352
        """
2353

2354 2355 2356 2357 2358 2359 2360
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
2361
            .. code-block:: python
1
123malin 已提交
2362

2363 2364 2365
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2366

2367 2368 2369 2370 2371
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_exhaustive_search = False

                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2372 2373

        """
2374 2375 2376
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2377
    @is_strict_auto
2378 2379 2380 2381
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
2382 2383
            logger.warning(
                "cudnn_exhaustive_search should have value of bool type"
2384 2385 2386 2387
            )

    @property
    def conv_workspace_size_limit(self):
2388
        """
2389

2390
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
C
co63oc 已提交
2391
        The inner function of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
2392 2393 2394 2395 2396
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
2397
            .. code-block:: python
1
123malin 已提交
2398

2399 2400 2401
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2402

2403 2404
                strategy = fleet.DistributedStrategy()
                strategy.conv_workspace_size_limit = 1024
2405

2406 2407
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2408

2409
        """
2410 2411 2412
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2413
    @is_strict_auto
2414 2415 2416 2417
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
2418 2419
            logger.warning(
                "conv_workspace_size_limit should have value of int type"
2420 2421 2422 2423
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2424
        """
2425

2426 2427 2428 2429 2430
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
2431
            .. code-block:: python
1
123malin 已提交
2432

2433 2434 2435
                import paddle
                paddle.enable_static()
                import paddle.distributed.fleet as fleet
2436

2437 2438
                strategy = fleet.DistributedStrategy()
                strategy.cudnn_batchnorm_spatial_persistent = True
2439

2440 2441
                optimizer = paddle.optimizer.SGD(learning_rate=0.01)
                optimizer = fleet.distributed_optimizer(optimizer, strategy)
2442 2443

        """
2444 2445 2446
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2447
    @is_strict_auto
2448 2449 2450 2451
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
2452 2453
            logger.warning(
                "cudnn_batchnorm_spatial_persistent should have value of bool type"
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2476 2477
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2478

2479 2480 2481 2482 2483 2484
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2485
    def __repr__(self):
2486 2487 2488 2489 2490 2491
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

2492
        h1_format = "    " + f"|{{:^{length}s}}|\n"
2493
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
2494 2495
            max_k, " " * spacing, max_v
        )
2496 2497 2498 2499 2500 2501 2502 2503 2504

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2505
        fields = self.strategy.DESCRIPTOR.fields
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
2520
                                f"{f.name}=True <-> {f.name}_configs"
2521
                            )
2522
                            draws += line + "\n"
2523 2524 2525
                            my_configs = getattr(
                                self.strategy, f.name + "_configs"
                            )
2526
                            config_fields = my_configs.DESCRIPTOR.fields
R
risemeup1 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535
                            protobuf_version = google.protobuf.__version__
                            if protobuf_version >= "4.21.0":
                                RepeatedScalarContainer = (
                                    google._upb._message.RepeatedScalarContainer
                                )
                            else:
                                RepeatedScalarContainer = (
                                    google.protobuf.pyext._message.RepeatedScalarContainer
                                )
2536 2537
                            for ff in config_fields:
                                if isinstance(
2538
                                    getattr(my_configs, ff.name),
R
risemeup1 已提交
2539
                                    RepeatedScalarContainer,
2540
                                ):
2541 2542 2543
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2544
                                            draws += h2_format.format(
2545 2546
                                                ff.name, str(v)
                                            )
2547
                                        else:
2548
                                            draws += h2_format.format(
2549 2550
                                                "", str(v)
                                            )
2551 2552 2553
                                else:
                                    draws += h2_format.format(
                                        ff.name,
2554 2555
                                        str(getattr(my_configs, ff.name)),
                                    )
2556 2557
                    else:
                        env_draws += h2_format.format(
2558 2559
                            f.name, str(getattr(self.strategy, f.name))
                        )
2560 2561
                else:
                    env_draws += h2_format.format(
2562 2563 2564 2565 2566 2567 2568 2569 2570
                        f.name, str(getattr(self.strategy, f.name))
                    )

        result_res = (
            draws
            + border
            + "\n"
            + h1_format.format("Environment Flags, Communication Flags")
        )
2571 2572 2573 2574 2575 2576 2577
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2578
        for f in fields:
2579
            build_strategy_str += h2_format.format(
2580 2581
                f.name, str(getattr(self.strategy.build_strategy, f.name))
            )
2582 2583 2584 2585 2586 2587 2588 2589
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
2590 2591
                f.name, str(getattr(self.strategy.execution_strategy, f.name))
            )
2592 2593 2594 2595
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res