analysis_predictor.cc 113.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/operator.h"
36
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
37
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/framework/var_type_traits.h"
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/inference/analysis/helper.h"
41
#include "paddle/fluid/inference/analysis/pass_result_info.h"
42
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
43
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
44
#include "paddle/fluid/inference/api/helper.h"
45
#include "paddle/fluid/inference/api/infer_context.h"
46
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
47
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
48
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
49
#include "paddle/fluid/inference/api/resource_manager.h"
50
#include "paddle/fluid/inference/utils/io_utils.h"
51
#include "paddle/fluid/inference/utils/model_utils.h"
52
#include "paddle/fluid/inference/utils/singleton.h"
53
#include "paddle/fluid/memory/memcpy.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
55
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
56
#include "paddle/fluid/platform/device_context.h"
57
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
58
#include "paddle/fluid/platform/profiler.h"
59
#include "paddle/phi/api/include/tensor.h"
60 61
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
62
#include "paddle/phi/common/place.h"
W
Wilber 已提交
63
#include "paddle/phi/core/enforce.h"
64
#include "paddle/phi/core/generator.h"
65
#include "paddle/phi/kernels/funcs/data_type_transform.h"
66 67
#include "paddle/utils/string/split.h"

68
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
69 70 71 72
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
73

74 75 76 77
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

82 83 84 85
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

86
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
87
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
88
#include "paddle/fluid/inference/tensorrt/helper.h"
89
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

96
namespace paddle {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
namespace {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
void UpdatePrivateDeviceContext(InferGPUContext *gpu_context,
                                GPUContextResource *gpu_resource,
                                Place place_) {
  gpu_context->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                                .GetAllocator(place_, gpu_resource->GetStream())
                                .get());
  gpu_context->SetPinnedAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
  gpu_context->SetHostAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetAllocator(platform::CPUPlace())
                                    .get());
  gpu_context->SetZeroAllocator(memory::allocation::AllocatorFacade::Instance()
                                    .GetZeroAllocator(place_)
                                    .get());
  gpu_context->SetHostZeroAllocator(
      memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(platform::CPUPlace())
          .get());
  gpu_context->SetGenerator(
      phi::DefaultCUDAGenerator(place_.GetDeviceId()).get());
  gpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());

  gpu_context->SetStream(gpu_resource->GetStream());
  gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
  gpu_context->SetBlasTensorCoreHandle(
      gpu_resource->GetBlasTensorCoreHandleCreator());
  gpu_context->SetBlasTF32Handle(
      gpu_resource->GetBlasTF32TensorCoreHandleCreator());
  gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
  gpu_context->SetSolverHandle(gpu_resource->GetSolverDnHandleCreator());
  gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
  gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDevice());

  gpu_context->SetComputeCapability(gpu_resource->GetGpuComputeCapability());
  gpu_context->SetMaxThreadsPerBlock(gpu_resource->GetGpuMaxThreadsPerBlock());
  gpu_context->SetMaxThreadsPerMultiProcessor(
      gpu_resource->GetGpuMaxThreadsPerMp());
  gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
  gpu_context->SetMultiProcessors(gpu_resource->GetGPUMultiProcessors());
  gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
  gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
  VLOG(1) << "thread id is " << std::this_thread::get_id() << ", stream id is "
          << reinterpret_cast<void *>(gpu_resource->GetStream())
          << ", allotor ptr is "
          << reinterpret_cast<void *>(
                 memory::allocation::AllocatorFacade::Instance()
                     .GetAllocator(place_, gpu_resource->GetStream())
                     .get());
}
#endif
}  // namespace
152

N
nhzlx 已提交
153
using inference::Singleton;
154
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
155 156
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
157
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
158
#endif
159

160 161
int AnalysisPredictor::clone_num_ = 1;

162 163 164 165
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
166 167
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
168 169 170 171
    return true;
  }
  return false;
}
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

191
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
192
  switch (backend) {
193
    case paddle_infer::PlaceType::kGPU:
194 195
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
196
    case paddle_infer::PlaceType::kXPU:
197
      return phi::Backend::XPU;
198
    case paddle_infer::PlaceType::kCPU:
199
      return phi::Backend::CPU;
200 201
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
202 203
    case paddle_infer::PlaceType::kCUSTOM:
      return phi::Backend::CUSTOM;
204 205
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
206 207
          "Paddle Inference not support backend, we now only support GPU, XPU "
          "and CPU."));
208 209 210
      return phi::Backend::CPU;
  }
}
211

212 213 214
bool PaddleTensorToDenseTensor(const PaddleTensor &pt,
                               phi::DenseTensor *t,
                               const platform::Place &place) {
215
  framework::DDim ddim = phi::make_ddim(pt.shape);
216 217 218 219 220 221 222
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
223 224
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
225 226 227 228
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
229 230 231
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
232 233 234
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
235 236 237 238 239 240 241 242
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
243 244
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
245
        t->numel() * phi::SizeOf(t->dtype()),
246 247
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
248
  }
249 250 251

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
252 253 254 255
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
256 257
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
258 259
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
260 261 262 263
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
264
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
265 266
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
267 268
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
271
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
272
    auto dst_gpu_place = place;
C
ccrrong 已提交
273 274 275 276 277
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
278 279 280 281 282
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
283 284
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
285
    auto dst_xpu_place = place;
C
ccrrong 已提交
286 287 288 289 290
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
291 292 293
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    memory::Copy(custom_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUSTOM_DEVICE, should not reach here."));
311 312 313
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
314 315
        "The analysis predictor supports CPU, GPU, XPU and CUSTOM_DEVICE "
        "now."));
316 317 318 319 320 321 322 323 324
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}
325
}  // namespace
326

Y
Yan Chunwei 已提交
327
bool AnalysisPredictor::Init(
328 329
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
330
  VLOG(3) << "Predictor::init()";
331 332
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
333 334
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
335
    platform::EnableProfiler(tracking_device);
336
  } else {
337 338
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
339 340
  }

341 342 343 344
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

345
  // no matter with or without MKLDNN
L
luotao1 已提交
346
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
347

348 349 350
  if (!PrepareScope(parent_scope)) {
    return false;
  }
351 352 353

  InitPlace();

354 355 356 357 358 359 360
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

361 362 363
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

364 365 366
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
367
  }
368

369 370 371 372 373 374 375 376 377 378 379 380 381
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
382
        static_cast<phi::GPUContext *>(
383 384 385 386 387 388
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
389
  }
C
csy0225 已提交
390 391
#endif
#if defined(PADDLE_WITH_XPU)
392
  if (config_.use_xpu_) {
C
csy0225 已提交
393
    private_context_ = true;
394
    if (!status_is_cloned_ && config_.external_stream_enabled()) {
C
csy0225 已提交
395 396
      predictor_stream_ = config_.GetExecStream();
    }
397 398 399 400 401
    auto *global_context = static_cast<phi::XPUContext *>(
        platform::DeviceContextPool::Instance().Get(place_));
    auto global_stream = global_context->stream();
    if (predictor_stream_ == nullptr) {
      predictor_stream_ = global_stream;
C
csy0225 已提交
402
    }
403
    InitDeviceContexts();
C
csy0225 已提交
404
  }
405
#endif
406

407
  inference::DisplayMemoryInfo(place_, "Init predictor");
408 409
  return true;
}
410

411
void AnalysisPredictor::InitPlace() {
412
  if (config_.use_gpu()) {
C
ccrrong 已提交
413 414
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
415 416
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
417
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
418
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
419
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
420 421
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
422 423
    }
#endif
424
  } else if (config_.use_xpu()) {
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
464 465 466 467 468 469 470
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
471 472 473
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
474 475
    place_ = paddle::platform::CustomPlace(config_.custom_device_type(),
                                           config_.custom_device_id());
476 477 478 479 480
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
481
#endif
482 483 484
  } else {
    place_ = paddle::platform::CPUPlace();
  }
485 486 487 488 489 490 491 492 493 494 495
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
496
  // Init GPUContext.
497 498 499 500 501
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
502
          auto *gpu_context = new InferGPUContext(place_);
503
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
504 505 506
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
C
csy0225 已提交
507
#endif
508
#ifdef PADDLE_WITH_XPU
C
csy0225 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  if (place_.GetType() == phi::AllocationType::XPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto &instance = memory::allocation::AllocatorFacade::Instance();
          auto *xpu_context = new InferXPUContext(place_);
          xpu_context->SetAllocator(instance.GetAllocator(place_).get());
          xpu_context->SetGenerator(
              phi::DefaultXPUGenerator(place_.GetDeviceId()).get());
          xpu_context->SetHostAllocator(
              instance.GetAllocator(platform::CPUPlace()).get());
          xpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());
          xpu_context->SetZeroAllocator(
              instance.GetZeroAllocator(place_).get());
          xpu_context->SetHostZeroAllocator(
              instance.GetZeroAllocator(platform::CPUPlace()).get());
524
          xpu_context->SetStream(predictor_stream_);
C
csy0225 已提交
525 526 527
          return std::unique_ptr<phi::DeviceContext>(xpu_context);
        }));
  }
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
#endif
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  }
543 544 545
#endif
#if defined(PADDLE_WITH_XPU)
  if (place_.GetType() == phi::AllocationType::XPU) {
C
csy0225 已提交
546 547 548 549 550 551 552 553
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::XPUContext *>(pool.Get(place_))
          ->stream();
    }
554
  }
555 556 557 558 559 560 561 562
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (place_.GetType() == phi::AllocationType::CUSTOM) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    return reinterpret_cast<const phi::CustomContext *>(pool.Get(place_))
        ->stream();
  }
563
#endif
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  // TODO(inference): Support other backends.
  return nullptr;
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
581 582 583 584 585
#ifdef PADDLE_WITH_XPU
  // Set "XPU_PADDLE_L3_SIZE" to "0" to avoid malloc l3 cache when xpu_context
  // init.
  setenv("XPU_PADDLE_L3_SIZE", "0", 0);
#endif
586 587 588 589 590 591 592 593
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
594
    paddle::framework::InitMemoryMethod();
595
    paddle::framework::InitDevices();
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
621 622
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
623 624 625 626 627
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
628 629 630 631 632
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
633 634 635 636 637 638
  }
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
  return true;
}

bool AnalysisPredictor::CreateExecutor() {
639 640 641
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
661 662
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
663 664 665 666 667 668 669 670 671
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
672 673
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
674 675
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
676 677 678
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
679 680 681
  }
}

682
bool AnalysisPredictor::PrepareExecutor() {
683
  if (config_.dist_config().use_dist_model()) {
684
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
685 686
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
687 688 689 690
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use FleetExecutor since it's not compiled with PSCORE,"
        "Please recompile or reinstall Paddle with PSCORE support."));
691
#endif
692
  }
W
wenbin 已提交
693 694
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
695 696
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
697

698 699 700 701 702 703 704 705 706
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

707 708 709
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
710

711 712 713
  return true;
}

714
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
751 752 753 754 755 756 757
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
794 795 796 797 798 799
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
800 801 802 803 804 805 806 807 808 809 810
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
811 812 813 814 815
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
  } else if (config_.use_xpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_bkcl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else if (config_.use_custom_device()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_xccl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
904 905 906
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
907 908 909 910 911 912 913 914 915 916 917 918 919
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
920 921
      static_cast<bool>(fin.is_open()),
      true,
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

994 995
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
996 997 998 999 1000 1001 1002 1003
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<paddle::Tensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(phi::vectorize<int>(inputs[i].dims()));
  }
  MkldnnPreSet(inputs_shape);
#endif
}

W
Wilber 已提交
1015 1016 1017 1018
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
1019
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
1020 1021 1022
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
1023 1024
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
1025 1026
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
1027 1028 1029
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
1030 1031 1032
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
1033
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
1034
  }
1035
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
1036 1037
      config_.mkldnn_cache_capacity_);

1038 1039 1040 1041 1042 1043
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
1044
  if (config_.mkldnn_cache_capacity_ > 0 &&
1045
      static_cast<phi::OneDNNContext *>(
1046 1047
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
1048
    if (VLOG_IS_ON(2)) {
1049
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
1050 1051 1052 1053 1054 1055
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
1056 1057 1058
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
1059 1060 1061 1062
  }
#endif
}

1063 1064 1065
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
1066
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
1067 1068 1069
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
1070
  VLOG(3) << "Predictor::predict";
1071 1072 1073 1074
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
1075 1076 1077
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
1078 1079
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
1080
    return false;
1081
  }
M
Michal Gallus 已提交
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1092 1093 1094
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
1095

1096 1097 1098 1099
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
1100
  }
Y
Yan Chunwei 已提交
1101

M
minqiyang 已提交
1102
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
1103

Y
Yan Chunwei 已提交
1104 1105 1106 1107 1108
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
1109 1110 1111
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
1112
  tensor_array_batch_cleaner_.ResetNoTensorVars();
1113 1114 1115 1116

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1117 1118
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
1119
#endif
1120
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1121 1122 1123 1124
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
1125
#endif
1126 1127
  return true;
}
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
bool AnalysisPredictor::Run(const std::vector<paddle::Tensor> &inputs,
                            std::vector<paddle::Tensor> *outputs) {
  inference::DisplayMemoryInfo(place_, "before run");
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
  VLOG(3) << "predict start";
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();

  inference::DisplayMemoryInfo(place_, "after run");

  // get fetch variable
  if (!GetFetch(outputs, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
  }

  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
  tensor_array_batch_cleaner_.ResetNoTensorVars();

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
#if defined(PADDLE_WITH_MKLML)
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
  return true;
}

1193 1194
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
1195
  VLOG(3) << "Predictor::set_feed";
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1206
    phi::DenseTensor *input = &feed_tensors_[i];
1207
    if (!PaddleTensorToDenseTensor(inputs[i], input, place_)) {
1208 1209 1210
      return false;
    }
    int idx = -1;
1211
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1212 1213
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1214 1215
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1216 1217
      }
      idx = feed_names_[name];
1218
    } else {
R
Ruibiao Chen 已提交
1219
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1220
    }
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    framework::SetFeedVariable(scope, *input, framework::kFeedOpType, idx);
  }
  return true;
}

bool AnalysisPredictor::SetFeed(const std::vector<paddle::Tensor> &inputs,
                                framework::Scope *scope) {
  VLOG(3) << "Predictor::set_feed";
  PADDLE_ENFORCE_EQ(inputs.size(),
                    feeds_.size(),
                    platform::errors::InvalidArgument(
                        "wrong feed input size, need %d but get %d.",
                        feeds_.size(),
                        inputs.size()));
  for (size_t i = 0; i < inputs.size(); ++i) {
Y
Yuanle Liu 已提交
1236
    PADDLE_ENFORCE_EQ(inputs[i].defined(),
1237 1238
                      true,
                      paddle::platform::errors::InvalidArgument(
Y
Yuanle Liu 已提交
1239 1240 1241 1242 1243 1244
                          "The input Tensor expected to be defined."));
    PADDLE_ENFORCE_EQ(
        inputs[i].is_dense_tensor(),
        true,
        paddle::platform::errors::InvalidArgument(
            "The input Tensor expected to be type of dense tensor."));
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
  }

  if (std::all_of(inputs.cbegin(), inputs.cend(), [&](const paddle::Tensor &t) {
        return !t.name().empty() && feed_names_.count(t.name());
      })) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, inputs[i].name());
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
  } else {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, idx2feeds_[i]);
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
1261 1262 1263 1264 1265
  }
  return true;
}

template <typename T>
1266
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1267 1268
                                    PaddleTensor *output) {
  // set shape.
1269
  auto shape = phi::vectorize(fetch.dims());
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1287
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1288 1289
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1290
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1291
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1292 1293
        static_cast<size_t>(idx),
        i,
1294
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1295 1296
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1297
            i));
1298
    framework::FetchType &fetch_var =
1299
        framework::GetFetchVariable(*scope, framework::kFetchOpType, idx);
1300
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1301
    auto type = framework::TransToProtoVarType(fetch.dtype());
1302
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1303
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1304
    if (type == framework::proto::VarType::FP32) {
1305 1306
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1307
    } else if (type == framework::proto::VarType::INT64) {
1308 1309
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1310 1311 1312
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1313 1314 1315
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1316
    } else {
1317 1318
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1319 1320
    }
  }
Y
Yan Chunwei 已提交
1321 1322
  return true;
}
1323

1324 1325 1326 1327 1328 1329 1330
bool AnalysisPredictor::GetFetch(std::vector<paddle::Tensor> *outputs,
                                 framework::Scope *scope) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    auto const &name = idx2fetches_[i];
    auto &t = framework::GetVariableTensor(*scope, name);
Y
Yuanle Liu 已提交
1331
    (*outputs)[i] = paddle::Tensor(std::make_shared<phi::DenseTensor>(t), name);
1332 1333 1334 1335
  }
  return true;
}

1336
void AnalysisPredictor::PrepareArgument() {
1337
  VLOG(3) << "AnalysisPredictor::PrepareArgument";
1338 1339 1340
  // Init std::unique_ptr argument_.
  argument_.reset(new Argument);
  argument_->SetUseGPU(config_.use_gpu());
1341
  argument_->SetUseCutlass(config_.use_cutlass_);
1342 1343 1344 1345 1346
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1347
  // Analyze inference_program
1348 1349
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
1350
  argument_->SetSaveOptimizedModel(config_.save_optimized_model_);
1351
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1352
  if (!config_.model_dir().empty()) {
1353
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1354
  } else {
C
ccrrong 已提交
1355 1356
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1357 1358
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1359

1360 1361
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1362
  }
1363
  // For JITLayer
1364 1365
  argument_->SetSkipLoadParams(config_.skip_load_params_);

1366 1367
  argument_->SetTensorRtPrecisionMode(static_cast<int>(
      paddle::ConvertPrecision(config_.tensorrt_precision_mode_)));
1368 1369 1370 1371 1372 1373 1374 1375
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1376
      config_.tuned_tensorrt_dynamic_shape());
1377
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1378
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1379 1380 1381 1382 1383 1384 1385 1386 1387
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
W
Wilber 已提交
1388
    argument_->SetTensorRtUseCudaGraph(config_.trt_use_cuda_graph_);
1389 1390 1391
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1392
        config_.trt_allow_build_at_runtime());
1393 1394
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1395
  }
1396

D
denglin-github 已提交
1397 1398
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1399 1400 1401 1402 1403 1404
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1405
        config_.dlnne_disable_nodes_by_outputs_);
1406 1407
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
1408 1409
    argument_->SetDlnnePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.dlnne_precision_mode_)));
D
denglin-github 已提交
1410 1411
  }

Z
zhupengyang 已提交
1412
  argument_->SetUseXpu(config_.use_xpu_);
石晓伟 已提交
1413
  if (config_.lite_engine_enabled()) {
1414
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1415
        config_.cpu_math_library_num_threads());
1416 1417
    argument_->SetLitePrecisionMode(static_cast<int>(
        paddle::ConvertPrecision(config_.lite_precision_mode_)));
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
    argument_->SetXpuLocked(config_.xpu_locked_);
    argument_->SetXpuAutotune(config_.xpu_autotune_);
    argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_->SetXpuPrecision(config_.xpu_precision_);
    argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
    argument_->SetXpuDeviceId(config_.xpu_device_id_);
    argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
    argument_->SetUseOpenCL(config_.use_opencl_);
1430
    // NNAdapter related
1431 1432
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1433
        config_.NNAdapter().nnadapter_device_names);
1434
    argument_->SetNNAdapterContextProperties(
1435
        config_.NNAdapter().nnadapter_context_properties);
1436
    argument_->SetNNAdapterModelCacheDir(
1437
        config_.NNAdapter().nnadapter_model_cache_dir);
1438
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1439
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1440
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1441 1442 1443 1444 1445 1446 1447
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1448 1449
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1450 1451 1452
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1453
#ifdef PADDLE_WITH_IPU
1454 1455 1456 1457 1458 1459 1460 1461
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1462
      config_.ipu_available_memory_proportion_);
1463 1464
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1465
      config_.ipu_enable_model_runtime_executor_);
1466 1467
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1468
#endif
J
jianghaicheng 已提交
1469

1470
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1471
    LOG(INFO) << "MKLDNN is enabled";
1472
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1473 1474
  }

1475
  if (config_.use_cinn_compiler_) {
1476
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1477 1478
  }

1479 1480 1481
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1482
    argument_->SetQuantizeEnabledOpTypes(
1483
        config_.mkldnn_quantizer_config()->enabled_op_types());
1484
    argument_->SetQuantizeExcludedOpIds(
1485 1486
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1487 1488
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1489
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1490
  }
B
baoachun 已提交
1491 1492 1493

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1494 1495 1496
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1497
  }
1498 1499
#endif

1500
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1501
  argument_->SetUseCustomDevice(config_.use_custom_device());
1502 1503
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1504 1505
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1506 1507
  }
#endif
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
#ifdef PADDLE_WITH_XPU
  argument_->SetUseXpu(config_.use_xpu_);
  argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
  argument_->SetXpuLocked(config_.xpu_locked_);
  argument_->SetXpuAutotune(config_.xpu_autotune_);
  argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
  argument_->SetXpuPrecision(config_.xpu_precision_);
  argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
  argument_->SetXpuDeviceId(config_.xpu_device_id_);
  argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
Z
zhupengyang 已提交
1519 1520
  argument_->SetXpuQuantPostDynamicWeightBits(
      config_.xpu_quant_post_dynamic_weight_bits_);
1521
  argument_->SetXpuQuantPostDynamicOpTypes(
Z
zhupengyang 已提交
1522
      config_.xpu_quant_post_dynamic_op_types_);
1523 1524
#endif

1525
  auto *pass_builder = config_.pass_builder();
1526 1527
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1528 1529
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
Z
zhupengyang 已提交
1530
              << ", we will use a new PassStrategy. Note that only GPU/XPU "
1531
                 "backend is supported for now.";
1532 1533 1534
    if (!config_.use_cinn_compiler_) {
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
1535
        pass_builder->ClearPasses();
1536 1537 1538 1539 1540
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
1541
        pass_builder->ClearPasses();
1542 1543 1544 1545
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1546 1547 1548 1549
      } else if (config_.use_xpu()) {
        // All passes support fp16. Not reset pass_builder.
      } else {
        pass_builder->ClearPasses();
1550 1551 1552
      }
    }
  }
1553

Y
Yan Chunwei 已提交
1554
  if (!config_.ir_optim()) {
1555
    argument_->SetEnableIrOptim(false);
1556
    if (config_.enable_gpu_mixed_) {
1557
      argument_->SetEnableIrOptim(true);
1558
      pass_builder->ClearPasses();
1559
      pass_builder->AppendPass("auto_mixed_precision_pass");
1560 1561
      LOG(INFO) << "This model run in GPU mixed precision mode with no ir "
                   "optimization.";
1562
    } else {
1563 1564
      LOG(INFO)
          << "Ir optimization is turned off, no ir pass will be executed.";
1565 1566 1567 1568 1569
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1570
    if (config_.enable_gpu_mixed_) {
1571
      LOG(INFO) << "This model run in GPU mixed precision mode.";
1572
    }
Y
Yan Chunwei 已提交
1573
  }
1574 1575 1576 1577 1578 1579 1580 1581 1582

  argument_->SetEnableCustomDeviceMixed(config_.enable_custom_device_mixed());
  if (config_.enable_custom_device_mixed_) {
    argument_->SetEnableIrOptim(true);
    pass_builder->ClearPasses();
    pass_builder->AppendPass("auto_mixed_precision_pass");
    LOG(INFO) << "This model run in Custom Device mixed precision mode.";
  }

1583 1584 1585 1586
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1587

1588
  // mixed precison.
1589 1590 1591 1592
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1593
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1594
  argument_->SetEnableLowPrecisionIO(config_.enable_low_precision_io_);
1595 1596 1597 1598 1599
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1600 1601 1602 1603 1604 1605 1606 1607
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif
1608
  Analyzer().Run(argument_.get());
1609
  PADDLE_ENFORCE_EQ(
1610
      argument_->scope_valid(),
C
ccrrong 已提交
1611
      true,
1612
      platform::errors::InvalidArgument("The argument scope should be valid."));
1613
  VLOG(5) << "to prepare executor";
1614
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1615
  inference_program_.reset(
1616
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1617 1618 1619
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1620
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1621 1622 1623 1624
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1625
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1626
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1627
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1639 1640 1641
#endif
        delete prog;
      });
1642 1643 1644
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1645
#if defined(PADDLE_WITH_TESTING)
1646
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1647 1648
#endif

1649 1650 1651
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1652 1653 1654
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1655 1656 1657 1658 1659
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1660
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1661
}
1662 1663

template <>
1664 1665 1666
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1667
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1668 1669
      config.is_valid(),
      true,
1670 1671
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1672

1673 1674 1675 1676
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1677
                 []() { inference::RegisterAllCustomOperator(); });
1678

1679 1680 1681 1682 1683 1684
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1685
          platform::errors::InvalidArgument(
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
      FLAGS_logtostderr = 1;
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1726

1727 1728 1729 1730 1731 1732 1733 1734
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1735

1736 1737 1738
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1739
        }
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1753
      }
1754
    }
1755 1756 1757 1758
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1759 1760

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1761 1762
  // Each config can only be used for one predictor.
  config.SetInValid();
1763 1764
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1765 1766 1767 1768
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1769 1770 1771 1772 1773
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1774 1775
    return nullptr;
  }
1776

G
Gabor Buella 已提交
1777
  return predictor;
1778 1779
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1792
void AnalysisPredictor::PrepareFeedFetch() {
1793 1794 1795
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1796
  CreateFeedFetchVar(sub_scope_);
1797
  for (auto *op : inference_program_->Block(0).AllOps()) {
1798
    if (op->Type() == framework::kFeedOpType) {
R
Ruibiao Chen 已提交
1799
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1800 1801 1802 1803 1804
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1805
      idx2feeds_[idx] = op->Output("Out")[0];
1806
    } else if (op->Type() == framework::kFetchOpType) {
R
Ruibiao Chen 已提交
1807
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1808 1809
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1810
      }
Y
Yan Chunwei 已提交
1811
      fetches_[idx] = op;
N
nhzlx 已提交
1812
      idx2fetches_[idx] = op->Input("X")[0];
1813 1814 1815 1816
    }
  }
}

1817
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1818 1819 1820
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1821
  auto *var = scope->Var(framework::kFeedOpType);
1822
  var->GetMutable<framework::FeedList>();
1823
  var = scope->Var(framework::kFetchOpType);
1824
  var->GetMutable<framework::FetchList>();
1825 1826
}

N
nhzlx 已提交
1827 1828 1829 1830 1831 1832 1833 1834
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1835 1836 1837 1838 1839 1840
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1841 1842 1843
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1844 1845 1846 1847 1848
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1880 1881 1882 1883 1884 1885 1886 1887
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1933 1934
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1935
  framework::Scope *scope;
1936
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1937 1938 1939
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1940
    scope = executor_->GetScope();
1941 1942
  }
#else
1943
  scope = executor_->GetScope();
1944
#endif
1945
  PADDLE_ENFORCE_NOT_NULL(
1946
      scope->FindVar(name),
1947
      platform::errors::PreconditionNotMet(
1948
          "The variable named %s is not found in the scope of the executor.",
1949
          name));
1950 1951
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1952 1953
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1954 1955
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1956 1957 1958 1959
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1960
  } else if (platform::is_xpu_place(place_)) {
1961 1962 1963 1964 1965 1966 1967 1968
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1969
      auto xpu_place = place_;
1970 1971
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
1972 1973 1974 1975
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1976 1977
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1978 1979
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1980
  } else {
1981
    auto gpu_place = place_;
N
nhzlx 已提交
1982 1983
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1984 1985 1986 1987 1988
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1989
  framework::Scope *scope;
1990
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1991 1992 1993
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1994
    scope = executor_->GetScope();
1995 1996
  }
#else
1997
  scope = executor_->GetScope();
1998
#endif
1999
  PADDLE_ENFORCE_NOT_NULL(
2000
      scope->FindVar(name),
2001
      platform::errors::PreconditionNotMet(
2002
          "The variable named %s is not found in the scope of the executor.",
2003
          name));
2004 2005
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
2006 2007
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
2008 2009
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
2010 2011 2012 2013
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
2014
  } else if (platform::is_xpu_place(place_)) {
2015 2016 2017 2018 2019 2020 2021 2022
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
2023
      auto xpu_place = place_;
2024 2025
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
2026 2027 2028 2029
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
2030 2031
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
2032 2033
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
2034
  } else {
2035
    auto gpu_place = place_;
N
nhzlx 已提交
2036 2037
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
2038 2039 2040 2041
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
2042
  inference::DisplayMemoryInfo(place_, "before run");
2043
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
2054 2055 2056
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
2057
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

2079
  executor_->Run();
2080
  inference::DisplayMemoryInfo(place_, "after run");
2081 2082 2083 2084 2085

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
2086
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
2087
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
2088
  tensor_array_batch_cleaner_.ResetTensorArray();
2089 2090 2091 2092

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
2093 2094 2095
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
2096 2097 2098
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
2099
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
2100 2101 2102 2103 2104
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
2105 2106 2107
  return true;
}

W
Wilber 已提交
2108 2109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
2122
    ResourceManager::Instance().GpuResourceSwitchStream(predictor_stream_,
W
Wilber 已提交
2123 2124 2125
                                                        stream);
    predictor_stream_ = stream;

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    auto *dev_ctxs = const_cast<
        std::map<phi::Place,
                 std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        reinterpret_cast<const std::map<
            phi::Place,
            std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
            this->GetDeviceContexts()));

    dev_ctxs->erase(place_);
    dev_ctxs->emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
          auto *gpu_context = new InferGPUContext(place_);
          UpdatePrivateDeviceContext(gpu_context, gpu_resource, place_);
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
W
Wilber 已提交
2143 2144
  }

W
Wilber 已提交
2145 2146 2147 2148
  return ZeroCopyRun();
}
#endif

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
bool AnalysisPredictor::ExpRunWithRuntimeConfig(void *config) {
#ifdef PADDLE_WITH_XPU
  PADDLE_ENFORCE(
      private_context_,
      paddle::platform::errors::Fatal(
          "Must use private context if run predictor with external config."));

  auto *dev_ctxs = reinterpret_cast<const std::map<
      phi::Place,
      std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
      this->GetDeviceContexts());
  auto *dev_ctx =
      static_cast<InferXPUContext *>(dev_ctxs->at(place_).get().get());

  auto xpu_runtime_config =
      reinterpret_cast<paddle_infer::experimental::XpuRuntimeConfig *>(config);
  auto *stream = xpu_runtime_config->stream;
  if (stream != nullptr && stream != predictor_stream_) {
C
csy0225 已提交
2167 2168 2169 2170 2171
    paddle::platform::XPUStreamSync(
        static_cast<paddle::xpuStream>(predictor_stream_));
    predictor_stream_ = stream;
    dev_ctx->SetStream(stream);
  }
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

  size_t l3_size = xpu_runtime_config->l3_size;
  void *l3_ptr = xpu_runtime_config->l3_ptr;
  size_t l3_autotune_size = xpu_runtime_config->l3_autotune_size;
  PADDLE_ENFORCE_LE(
      l3_autotune_size,
      l3_size,
      phi::errors::InvalidArgument(
          "l3_autotune_size(%zu) should be less than or equal to l3_size(%zu).",
          l3_autotune_size,
          l3_size));
  dev_ctx->SetL3Info(l3_size, l3_ptr, l3_autotune_size);

  bool ret = ZeroCopyRun();
  dev_ctx->L3CacheAutotune();
  return ret;
C
csy0225 已提交
2188 2189 2190 2191
#endif
  return false;
}

2192 2193
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
2194 2195
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
2196 2197
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2198 2199
    auto *dev_ctx = pool.Get(place_);
    auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream();
2200
#ifdef PADDLE_WITH_HIP
2201
    hipStreamSynchronize(stream);
2202
#else
2203
    cudaStreamSynchronize(stream);
2204 2205 2206 2207 2208 2209 2210
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
2211
    if (!var->IsType<phi::DenseTensor>()) {
2212 2213
      continue;
    }
2214
    auto tensor = var->Get<phi::DenseTensor>();
2215
    if (!tensor.initialized()) continue;
2216
    framework::DDim dim = tensor.dims();
2217 2218 2219
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
2220 2221 2222 2223 2224 2225 2226

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
2227 2228
    if ((tensor.dtype() == phi::DataType::INT32 ||
         tensor.dtype() == phi::DataType::INT64) &&
2229 2230
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

      if (platform::is_cpu_place(tensor.place())) {
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          auto *cpu_ctx = pool.Get(platform::CPUPlace());
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::CPUContext &>(*cpu_ctx),
              tensor,
              DataType::INT32);
        }
2241 2242 2243
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
2244 2245 2246
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int));
      } else if (platform::is_gpu_place(tensor.place())) {
2247
#if defined(PADDLE_WITH_CUDA)
2248 2249 2250 2251 2252 2253 2254 2255
        auto *dev_ctx = pool.Get(tensor.place());
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::GPUContext &>(*dev_ctx),
              tensor,
              DataType::INT32);
        }
2256 2257
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
2258 2259 2260
                             int32_tensor.place(),
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int),
2261 2262 2263 2264 2265
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
2266 2267 2268 2269 2270 2271 2272
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2328 2329
}

2330 2331
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2332
  std::string filename;
2333 2334
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2335
  } else if (!config_.prog_file().empty()) {
2336 2337 2338
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2339
    filename = config_.prog_file();
2340
  } else {
2341
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2342 2343 2344 2345
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2346
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2347 2348
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2349
        config_.params_file());
2350 2351
    return false;
  }
2352 2353 2354

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2355
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2356 2357 2358
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2359
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2360 2361
        static_cast<bool>(fin.is_open()),
        true,
2362 2363 2364
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2365 2366 2367 2368 2369 2370 2371 2372
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2373
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2374
  }
2375 2376 2377 2378 2379 2380
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2381 2382
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2383

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2404
      if (!config_.params_file().empty()) {
2405 2406 2407 2408 2409 2410
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2411
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2412 2413 2414 2415 2416
        op->CheckAttrs();
      }
    }
  }

2417
  if (!config_.params_file().empty()) {
2418 2419 2420 2421 2422 2423
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2424
    op->SetAttr("file_path", {config_.params_file()});
2425 2426 2427 2428
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2429
  framework::NaiveExecutor e(place_);
2430 2431 2432 2433
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2434 2435
  return true;
}
2436

2437 2438 2439 2440 2441
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2442 2443 2444 2445 2446 2447 2448 2449
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2450
      auto *variable = executor_->GetScope()->FindVar(name);
2451
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2452
          name != framework::kFeedOpType && name != framework::kFetchOpType) {
2453
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2454
        auto *t = variable->GetMutable<phi::DenseTensor>();
2455 2456 2457 2458 2459 2460
        t->clear();
      }
    }
  }
}

2461
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2462
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2463 2464
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2465 2466
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2467 2468 2469
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2470
      std::string engine_name = PADDLE_GET_CONST(
2471
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2472
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2473 2474 2475 2476
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2477 2478
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2479
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2480
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2481 2482
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2483 2484 2485
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2486

N
nhzlx 已提交
2487
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2488 2489 2490
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2491

N
nhzlx 已提交
2492
      std::string model_opt_cache_dir =
2493 2494 2495
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2496

N
nhzlx 已提交
2497
      std::string calibration_table_data_path =
N
nhzlx 已提交
2498 2499 2500 2501
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2502 2503 2504 2505 2506

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2507 2508 2509 2510
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2511
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2512 2513
  return true;
}
N
nhzlx 已提交
2514
#endif
N
nhzlx 已提交
2515

2516
AnalysisPredictor::~AnalysisPredictor() {
2517
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2518
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2519 2520
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2521 2522
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2523
#endif
2524
  if (config_.with_profile_) {
2525 2526 2527 2528
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2538 2539
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2540

2541 2542 2543 2544 2545 2546
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2547

2548 2549 2550
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2551 2552 2553 2554 2555
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
C
csy0225 已提交
2556

W
Wilber 已提交
2557 2558 2559
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2560
  device_contexts_.clear();
2561 2562 2563 2564 2565 2566 2567

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2568 2569
}

2570
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
2571
  VLOG(3) << "AnalysisPredictor::Clone";
Y
Yan Chunwei 已提交
2572
  std::lock_guard<std::mutex> lk(clone_mutex_);
2573
  auto *x = new AnalysisPredictor(config_);
2574
  x->status_is_cloned_ = true;
2575
  x->root_predictor_id_ = this->root_predictor_id_;
2576
  x->config_.apply_optim_ = false;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2587
  x->Init(scope_, inference_program_);
2588
#ifdef PADDLE_WITH_TENSORRT
2589
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2590
#endif
2591 2592 2593
  return std::unique_ptr<PaddlePredictor>(x);
}

2594
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2595 2596 2597
  return inference_program_->Proto()->SerializeAsString();
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
void AnalysisPredictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  static std::once_flag register_hook_flag;
  std::call_once(register_hook_flag, [this] {
    executor_->RegisterOutputHook([this](framework::OperatorBase *op) {
      for (auto &output : op->Outputs()) {
        for (auto &var_name : output.second) {
          auto *var = this->sub_scope_->FindVar(var_name);
          if (!var || !var->IsType<phi::DenseTensor>()) continue;
          auto dense_tensor = var->Get<phi::DenseTensor>();
          if (!dense_tensor.initialized()) continue;
          auto tensor = this->GetOutputTensor(var_name);
          for (auto &hookfunc : this->hookfuncs_) {
            hookfunc(op->Type(), var_name, *tensor);
          }
        }
      }
    });
  });
  hookfuncs_.push_back(hookfunc);
}

Y
Yan Chunwei 已提交
2658
template <>
2659 2660
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2661
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2662 2663
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2664 2665
}

2666
}  // namespace paddle
2667

2668
#ifdef PADDLE_WITH_TENSORRT
2669
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2670 2671 2672
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2673 2674
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2675
USE_TRT_CONVERTER(elementwise_pow_weight);
2676
USE_TRT_CONVERTER(elementwise_mod_weight);
W
wenbin 已提交
2677
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2678 2679 2680 2681 2682 2683 2684
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2685
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2686
USE_TRT_CONVERTER(elementwise_mod_tensor);
2687 2688 2689 2690 2691 2692
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2693
USE_TRT_CONVERTER(greater_equal);
2694
USE_TRT_CONVERTER(transpose);
2695
USE_TRT_CONVERTER(transpose2);
2696
USE_TRT_CONVERTER(flatten);
2697
USE_TRT_CONVERTER(flatten_contiguous_range);
2698
USE_TRT_CONVERTER(matrix_multiply);
2699
USE_TRT_CONVERTER(bmm);
2700 2701 2702 2703 2704 2705 2706 2707 2708
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2709 2710 2711
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(pad3d);
#endif
2712 2713
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2714
USE_TRT_CONVERTER(split);
2715
USE_TRT_CONVERTER(fill_any_like);
2716 2717
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2718
USE_TRT_CONVERTER(leaky_relu);
2719
USE_TRT_CONVERTER(shuffle_channel);
2720
USE_TRT_CONVERTER(where);
2721
USE_TRT_CONVERTER(bitwise_not);
2722 2723
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2724
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2725
USE_TRT_CONVERTER(silu);
2726
USE_TRT_CONVERTER(group_norm);
2727
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2728 2729 2730
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2731
USE_TRT_CONVERTER(multihead_matmul_roformer);
2732
USE_TRT_CONVERTER(skip_layernorm);
2733
USE_TRT_CONVERTER(slice);
2734
USE_TRT_CONVERTER(scale);
2735
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2736
USE_TRT_CONVERTER(clip);
2737
USE_TRT_CONVERTER(gather);
2738
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2739
USE_TRT_CONVERTER(yolo_box);
2740
USE_TRT_CONVERTER(yolo_box_head);
2741
USE_TRT_CONVERTER(arg_max);
2742
USE_TRT_CONVERTER(arg_min);
2743
USE_TRT_CONVERTER(roi_align);
2744
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2745
USE_TRT_CONVERTER(multiclass_nms);
2746
USE_TRT_CONVERTER(multiclass_nms3);
2747
USE_TRT_CONVERTER(nearest_interp);
2748
USE_TRT_CONVERTER(nearest_interp_v2);
2749
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2750
USE_TRT_CONVERTER(reshape);
2751
USE_TRT_CONVERTER(reshape2);
2752
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2753
USE_TRT_CONVERTER(reduce_mean);
2754
USE_TRT_CONVERTER(reduce_max);
2755
USE_TRT_CONVERTER(reduce_min);
2756
USE_TRT_CONVERTER(reduce_sum);
2757
USE_TRT_CONVERTER(reduce_prod);
2758 2759
USE_TRT_CONVERTER(reduce_any);
USE_TRT_CONVERTER(reduce_all);
W
wenbin 已提交
2760
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2761 2762
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2763
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2764
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2765
USE_TRT_CONVERTER(pool3d)
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2792
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2793
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2794
USE_TRT_CONVERTER(preln_skip_layernorm)
W
Wang Bojun 已提交
2795
USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm)
2796
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2797
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2798
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2799 2800
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2801
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2802
USE_TRT_CONVERTER(cast)
2803 2804
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2805
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2806
USE_TRT_CONVERTER(not_equal);
2807 2808
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2809
USE_TRT_CONVERTER(range)
2810 2811
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2812 2813
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2814
USE_TRT_CONVERTER(fill_constant)
2815
USE_TRT_CONVERTER(fused_token_prune)
2816
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2817
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2818
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2819
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2820
USE_TRT_CONVERTER(merge_layernorm)
2821
USE_TRT_CONVERTER(trans_layernorm)
W
wenbin 已提交
2822
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2823 2824
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2825
USE_TRT_CONVERTER(fuse_eleadd_transpose)
2826 2827
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2828
USE_TRT_CONVERTER(lookup_table)
2829
USE_TRT_CONVERTER(expand_v2)
2830
USE_TRT_CONVERTER(expand_as_v2)
2831
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2832 2833
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2834
USE_TRT_CONVERTER(cumsum)
2835 2836 2837
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
2838
USE_TRT_CONVERTER(qk_multihead_matmul)
2839
#endif
2840 2841 2842
#if IS_TRT_VERSION_GE(8510)
USE_TRT_CONVERTER(grid_sampler)
#endif
X
xjmxyt 已提交
2843 2844
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
X
xjmxyt 已提交
2845
USE_TRT_CONVERTER(index_select);
2846
USE_TRT_CONVERTER(temporal_shift)
X
xjmxyt 已提交
2847
#endif
2848 2849 2850 2851
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2852
#endif
W
Wilber 已提交
2853 2854 2855 2856 2857 2858

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2859 2860 2861 2862 2863 2864 2865
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
C
cyberslack_lee 已提交
2866
          << "Paddle2ONNX do't support convert the Model, fall back to using "
2867 2868
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2869 2870 2871 2872
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2873 2874 2875 2876 2877 2878 2879 2880 2881
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2882 2883 2884 2885
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2886 2887 2888 2889 2890
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2891

2892 2893 2894 2895
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2896 2897 2898
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2899 2900

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2901
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2902 2903 2904 2905 2906 2907 2908
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2909
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2910 2911
}

2912 2913 2914 2915 2916 2917 2918 2919
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
2920 2921
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2922 2923 2924 2925 2926
bool Predictor::Run(const std::vector<paddle::Tensor> &inputs,
                    std::vector<paddle::Tensor> *outputs) {
  return predictor_->Run(inputs, outputs);
}

2927 2928
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2929 2930 2931 2932 2933 2934 2935 2936
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2937 2938
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2939 2940 2941 2942
void Predictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}

2943 2944
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2979 2980 2981 2982
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2983 2984 2985 2986 2987
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2988
                             paddle_infer::PlaceType backend,
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
3014 3015
      size,
      1UL,
W
Wilber 已提交
3016 3017 3018 3019 3020 3021 3022 3023
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
3024
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
3025
    } else {
3026
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
3027 3028 3029 3030 3031 3032
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
3033 3034
      idx,
      preds_.size() + 1,
W
Wilber 已提交
3035
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
3036 3037
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
3038 3039 3040 3041 3042 3043 3044
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
3065 3066 3067

bool InternalUtils::RunWithRuntimeConfig(paddle_infer::Predictor *p,
                                         void *config) {
C
csy0225 已提交
3068
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
3069
  return pred->ExpRunWithRuntimeConfig(config);
C
csy0225 已提交
3070
}
W
Wilber 已提交
3071

3072 3073 3074 3075 3076 3077
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
3093 3094 3095 3096 3097
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
3098
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
3108
}  // namespace experimental
W
Wilber 已提交
3109
}  // namespace paddle_infer