linalg.py 121.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21 22
from ..fluid.data_feeder import (
    check_dtype,
23 24
    check_type,
    check_variable_and_dtype,
25
)
26
from ..framework import LayerHelper, in_dygraph_mode
27
from ..static import Variable
28
from .creation import full
29 30 31
from .logic import logical_not
from .manipulation import cast
from .math import add, multiply
32

33 34
__all__ = []

35 36 37
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
    if in_dygraph_mode():
90
        return _C_ops.transpose(x, perm)
91
    else:
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'transpose',
106
        )
107 108 109 110
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
111
            raise ValueError(
112 113 114 115
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
                "but received dimension of Input(x) is %s, "
                "the length of Input(perm) is %s." % (len(x.shape), len(perm))
116
            )
117 118 119 120 121 122 123
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
124

125 126 127 128 129 130 131 132 133 134
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
135 136


S
ShenLiang 已提交
137
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
138
    """
139 140
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
141
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
142

S
ShenLiang 已提交
143 144
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
145 146 147 148 149

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
150 151
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
152 153 154 155 156 157 158 159
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

160 161
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
162
      After the matrix multiply, the prepended dimension is removed.
163 164

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
165 166
      the matrix-vector product is obtained.

167 168 169 170 171 172 173 174 175
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
176
      out will be a (j, k, n, p) tensor.
177 178

    Args:
S
ShenLiang 已提交
179 180
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
181 182 183
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
184 185 186
            will be named automatically.

    Returns:
S
ShenLiang 已提交
187
        Tensor: The output Tensor.
188 189 190

    Examples:

C
Chen Long 已提交
191 192 193 194 195 196 197 198 199
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
200
            # (1,)
C
Chen Long 已提交
201 202 203 204 205 206

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
207
            # (10,)
C
Chen Long 已提交
208 209 210 211 212 213

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
214
            # (10, 5)
C
Chen Long 已提交
215 216 217 218 219 220

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
221
            # (10, 5, 5)
C
Chen Long 已提交
222 223 224 225 226 227

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
228
            # (10, 3, 5, 5)
229 230

    """
231
    if in_dygraph_mode():
232
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
233 234 235 236 237
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
254

255
        __check_input(x, y)
256

257 258 259 260 261 262 263 264 265
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
266 267


myq406450149's avatar
myq406450149 已提交
268
def norm(x, p='fro', axis=None, keepdim=False, name=None):
269
    """
S
swtkiwi 已提交
270

271 272 273
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

274
    Note:
275 276 277 278 279
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

280
    Args:
myq406450149's avatar
myq406450149 已提交
281
        x (Tensor): The input tensor could be N-D tensor, and the input data
282
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
283
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
284
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
285
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
286 287
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
288
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
289
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
290
            Default value is `None`.
291 292 293 294 295 296 297 298
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
299
        Tensor: results of norm operation on the specified axis of input tensor,
300
        it's data type is the same as input's Tensor.
301

302 303
    Examples:
        .. code-block:: python
304

305
            import paddle
306 307 308 309 310 311 312 313 314
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
315

316
            # compute frobenius norm along last two dimensions.
317
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
318 319
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
320

321
            # compute 2-order vector norm along last dimension.
322
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
323 324 325
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
326 327

            # compute 2-order  norm along [0,1] dimension.
328
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
329 330
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
331 332

            # compute inf-order  norm
333 334 335 336 337 338 339 340 341
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            # out_pnorm  = Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    [12.])

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
342 343

            # compute -inf-order  norm
344 345 346 347 348 349 350 351 352
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            # out_pnorm: Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [0.])

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
353 354
    """

myq406450149's avatar
myq406450149 已提交
355
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
356 357 358 359 360 361 362 363 364 365 366
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
367 368 369

        if in_dygraph_mode():
            if dim is None:
370 371
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
372 373
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
374
            if dim is None:
375 376 377
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
378
            )
379

380 381 382 383
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
384

385 386 387 388 389 390 391
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
392

393 394 395
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
396 397 398 399 400 401 402 403
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
404
        if in_dygraph_mode():
405 406
            if axis is None:
                axis = -1
407
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
408 409 410 411 412 413 414 415
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'p_norm'
            )
416

417 418 419 420 421 422 423 424 425 426 427
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
428

429 430 431 432 433 434 435
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
436

437 438 439
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
440
        if in_dygraph_mode():
441
            out = _C_ops.abs(input)
442
            if porder == np.float64('inf'):
443
                return _C_ops.max(out, axis, keepdim)
444
            else:
445
                return _C_ops.min(out, axis, keepdim)
446 447 448 449 450 451 452 453 454 455 456
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
457

458 459 460 461
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
462

463 464 465 466 467 468 469 470 471 472 473 474 475
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
476

477
            return reduce_out
myq406450149's avatar
myq406450149 已提交
478

479
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
480 481 482 483
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
484
        if in_dygraph_mode():
485 486 487
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
488
            out = _C_ops.pow(sum_out, float(1.0 / porder))
489 490
            return out

myq406450149's avatar
myq406450149 已提交
491 492
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
493 494
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
495
        abs_out = block.create_variable_for_type_inference(
496 497 498 499 500
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
501
        pow_out = block.create_variable_for_type_inference(
502 503
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
504

505 506 507 508 509 510
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
511
        sum_out = block.create_variable_for_type_inference(
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
530 531
        return out

532 533 534
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
535
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
536 537
            else:
                raise ValueError(
538 539
                    "only valid string values are 'fro', found {}".format(p)
                )
540
        elif isinstance(p, (int, float)):
541 542 543 544 545 546 547 548
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
549
        else:
550
            raise ValueError(
551 552
                "only valid p type is string or float, found {}".format(type(p))
            )
553

myq406450149's avatar
myq406450149 已提交
554 555
    if isinstance(axis, tuple):
        axis = list(axis)
556 557 558
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

559
    # calculate vector norm, where axis is int or list with only one integer
560
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
561 562
        if isinstance(p, str):
            if p == "fro":
563 564 565 566 567 568 569 570
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
571 572 573

            else:
                raise ValueError(
574 575
                    "only valid string values are 'fro', found {}".format(p)
                )
myq406450149's avatar
myq406450149 已提交
576
        elif isinstance(p, (int, float)):
577 578 579 580 581 582 583 584
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
585 586
        else:
            raise ValueError(
587 588 589 590 591
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
592 593
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
594 595 596
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
597 598
        elif p == 0:
            raise ValueError(
599 600 601 602
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".format(
                    axis
                )
            )
603
        else:
604 605 606
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
607 608
    else:
        raise ValueError(
609 610 611 612
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
613 614


615
def dist(x, y, p=2, name=None):
616
    r"""
S
swtkiwi 已提交
617

618
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
619
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
620
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
621

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
645 646 647 648 649 650 651

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
652
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
653 654 655 656 657

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
658
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
659 660 661 662 663 664 665 666 667 668 669 670

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
671 672
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
673
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
674 675
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
676 677

    Returns:
678
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
679 680 681 682 683 684

    Examples:
        .. code-block:: python

            import paddle

685 686
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
687 688
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
689

690 691
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
692

693 694
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
695

696 697
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
698
    """
H
hong 已提交
699
    if in_dygraph_mode():
700
        return _C_ops.dist(x, y, p)
H
hong 已提交
701

Z
Zhang Ting 已提交
702 703 704 705 706 707 708 709 710
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
711 712 713
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
714
    return out
L
liuwei1031 已提交
715 716


717 718 719 720 721 722
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
723 724
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
743 744
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
745 746 747

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
748 749
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.16227770])
750 751 752

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
753 754
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [9.24263859])
755 756 757

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
758 759
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
760 761 762

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
763 764
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])
765 766 767

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
768 769
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.41421342])
770 771 772

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
773 774
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.70710683])
775 776

            # compute conditional number when order of the norm is inf
777 778 779
            out_inf = paddle.linalg.cond(x, p=float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.])
780 781

            # compute conditional number when order of the norm is -inf
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.])

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

798
            a_cond_fro = paddle.linalg.cond(a, p='fro')
799 800 801 802 803 804 805 806 807 808 809 810
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
811
            b_cond_2 = paddle.linalg.cond(b, p=2)
812 813
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
814 815 816

    """

817
    def mat_norm(input, porder=1.0, axis=None):
818 819 820 821 822
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
823 824
        if in_dygraph_mode():
            abs_out = _C_ops.abs(input)
825
            sum_out = _C_ops.sum(abs_out, axis, None, False)
826 827

            if porder == 1 or porder == np.inf:
828
                return _C_ops.max(sum_out, [-1], False)
829
            if porder == -1 or porder == -np.inf:
830
                return _C_ops.min(sum_out, [-1], False)
831
        else:
832 833
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
834 835
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
836 837
                dtype=block.input_dtype()
            )
838
            sum_out = block.create_variable_for_type_inference(
839 840
                dtype=block.input_dtype()
            )
841
            out = block.create_variable_for_type_inference(
842 843 844 845 846 847 848 849 850 851 852
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
853
                    'keep_dim': False,
854 855 856
                    'reduce_all': reduce_all,
                },
            )
857
            if porder == 1 or porder == np.inf:
858 859 860 861 862 863
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
864
                        'keep_dim': False,
865 866 867
                        'reduce_all': reduce_all,
                    },
                )
868
            if porder == -1 or porder == -np.inf:
869 870 871 872 873 874
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
875
                        'keep_dim': False,
876 877 878
                        'reduce_all': reduce_all,
                    },
                )
879
            return out
880 881 882 883 884 885

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
886
        if in_dygraph_mode():
887
            pow_out = _C_ops.pow(input, porder)
888 889
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
890
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
891
        else:
892
            reduce_all = True if axis is None or axis == [] else False
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
939 940 941 942 943 944 945 946 947

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

948
        if in_dygraph_mode():
949
            if porder == "nuc":
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
973
                )
974 975 976 977 978 979 980
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
981
            block.append_op(
982
                type='reduce_max',
983
                inputs={'X': s},
984
                outputs={'Out': max_out},
985 986
                attrs={
                    'dim': axis,
987
                    'keep_dim': False,
988 989 990 991
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
992 993 994 995 996 997 998 999
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1000
            )
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1017 1018

    def empty_tensor(input, shape):
1019
        if in_dygraph_mode():
1020 1021 1022 1023 1024
            return input.reshape(shape)
        raise ValueError("only support x is nonempty tensor in static mode")

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1025
        raise ValueError(
1026 1027 1028
            "input should be a matrix or batches of matrices, "
            + "but the dimention of received input is {}".format(len(x_shape))
        )
1029
    if p is None:
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1042
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1043 1044
                    x_inv, porder=p, axis=[-2]
                )
1045
            if p in (np.inf, -np.inf):
1046
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1047 1048
                    x_inv, porder=p, axis=[-1]
                )
1049
        else:
1050 1051 1052 1053
            raise ValueError(
                "only support p is {} when input is a ".format(p)
                + "square matrix or batches of square matrices"
            )
1054 1055 1056 1057 1058 1059
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1060 1061 1062
            "unsupported {} for p, only supporting ('fro', 'nuc', ".format(p)
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1063 1064


L
liuwei1031 已提交
1065 1066 1067
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1068

1069
    Note:
1070 1071
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1072 1073

    Parameters:
S
ShenLiang 已提交
1074 1075
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1076 1077
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1078
    Returns:
1079
        Tensor: the calculated result Tensor.
1080

L
liuwei1031 已提交
1081 1082 1083 1084 1085
    Examples:

    .. code-block:: python

        import paddle
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
        print(z)  # [32]

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1096
        z = paddle.dot(x, y)
1097
        print(z)  # [[32], [64]]
L
liuwei1031 已提交
1098 1099

    """
1100 1101
    if in_dygraph_mode():
        return _C_ops.dot(x, y)
1102 1103
    else:
        op_type = 'dot'
1104

1105 1106
        assert x is not None, 'x cannot be None in {}'.format(op_type)
        assert y is not None, 'y cannot be None in {}'.format(op_type)
L
liuwei1031 已提交
1107

1108 1109 1110 1111 1112 1113
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type
        )
L
liuwei1031 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1124
        )
1125
        return out
1126 1127


Z
zhiboniu 已提交
1128 1129 1130 1131 1132
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1133
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

        xt = paddle.rand((3,4))
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1167 1168
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1182 1183
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1184 1185 1186
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1187 1188 1189 1190
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1191 1192 1193
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1194 1195
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1196 1197 1198 1199 1200 1201 1202 1203
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1204 1205 1206 1207 1208
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1209 1210 1211
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1212 1213 1214 1215
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1216 1217 1218
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1219 1220
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1239
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1251 1252
def t(input, name=None):
    """
1253 1254
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1255
    the paddle.transpose function which perm dimensions set 0 and 1.
1256

1257
    Args:
1258
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1259
        name(str, optional): The default value is None.  Normally there is no need for
1260 1261
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1262
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1263

1264
    Examples:
1265

1266 1267 1268
        .. code-block:: python
           :name: code-example
             import paddle
1269

1270
             # Example 1 (0-D tensor)
1271 1272
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1273

1274
             # Example 2 (1-D tensor)
1275 1276 1277
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1278 1279

             # Example 3 (2-D tensor)
1280 1281 1282 1283 1284 1285 1286 1287
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1288

1289 1290 1291 1292 1293
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1294 1295
            "tensor.transpose() instead." % len(input.shape)
        )
1296 1297 1298 1299 1300
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
1301
        out = _C_ops.transpose(input, perm)
1302
        return out
1303 1304 1305 1306 1307 1308 1309
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1310

1311 1312 1313
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1314
        if len(input.shape) == 1:
1315 1316 1317 1318 1319 1320 1321 1322
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1323 1324
        return out

1325

W
wanghuancoder 已提交
1326
def cross(x, y, axis=9, name=None):
1327
    """
1328
    Computes the cross product between two tensors along an axis.
1329

1330 1331
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1332

1333
    Args:
1334 1335
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
W
wanghuancoder 已提交
1336
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1337
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1338 1339

    Returns:
1340
        Tensor. A Tensor with same data type as `x`.
1341

1342 1343
    Examples:
        .. code-block:: python
1344

1345
            import paddle
1346

Z
Zhou Wei 已提交
1347 1348 1349 1350 1351 1352
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1363
    """
J
Jiabin Yang 已提交
1364
    if in_dygraph_mode():
1365
        axis = K_DEFAULT_DIM if axis is None else axis
1366
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1367
    else:
1368 1369 1370 1371
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        attrs = dict()
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1372

1373 1374 1375 1376 1377 1378 1379
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1380 1381


1382
def cholesky(x, upper=False, name=None):
1383
    r"""
G
Guo Sheng 已提交
1384
    Computes the Cholesky decomposition of one symmetric positive-definite
1385 1386
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1387 1388 1389 1390 1391 1392
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1393
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1394 1395 1396 1397 1398
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1399 1400
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1401 1402

    Returns:
1403 1404
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1405

G
Guo Sheng 已提交
1406 1407 1408 1409 1410
    Examples:
        .. code-block:: python

            import paddle

1411 1412 1413 1414
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1415
            out = paddle.linalg.cholesky(x, upper=False)
1416
            print(out)
G
Guo Sheng 已提交
1417
    """
H
hong 已提交
1418
    if in_dygraph_mode():
1419
        return _C_ops.cholesky(x, upper)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1432 1433


1434 1435 1436 1437
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1438
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1439
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1440 1441

    Args:
1442 1443 1444 1445
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1446
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1447 1448
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1449
            the lower triangular of the matrix to compute.
1450 1451 1452 1453
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
            # b = [10]

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1471

1472
    """
1473 1474 1475 1476 1477 1478 1479
    if in_dygraph_mode():
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1480 1481 1482
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1483

1484 1485 1486 1487 1488 1489
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
1490
        return _C_ops.matrix_rank(x, tol_attr, hermitian, use_default_tol)
1491 1492 1493 1494 1495
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1496
        if tol is None:
1497
            attrs['use_default_tol'] = True
1498
        elif isinstance(tol, Variable):
1499
            attrs['use_default_tol'] = False
1500
            if tol.dtype != x.dtype:
1501
                inputs['TolTensor'] = cast(tol, x.dtype)
1502
            else:
1503
                inputs['TolTensor'] = tol
1504
        else:
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1517 1518


1519 1520 1521 1522 1523 1524 1525 1526 1527
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1528 1529
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1530 1531 1532 1533
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1534
        Tensor: The product Tensor.
1535 1536

    Examples:
S
sunzhongkai588 已提交
1537 1538 1539
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1540

S
sunzhongkai588 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1550 1551 1552 1553 1554 1555
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1556

1557
    """
Y
yaoxuefeng 已提交
1558 1559 1560 1561
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
1562 1563 1564 1565
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1566 1567
    if x_shape[2] != y_shape[1]:
        raise ValueError(
1568 1569 1570 1571
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1572 1573
    if x_shape[0] != y_shape[0]:
        raise ValueError(
1574 1575 1576 1577
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
1578

1579
    if in_dygraph_mode():
1580
        return _C_ops.bmm(x, y)
1581 1582 1583 1584 1585 1586 1587
    else:
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1588 1589


1590
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1591
    """
1592
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1593 1594 1595
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1596
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1597
            should be float32, float64, int32, int64.
1598 1599 1600 1601
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1602 1603

    Returns:
1604
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1605

1606
    Examples:
Q
Qi Li 已提交
1607
        .. code-block:: python
1608

Q
Qi Li 已提交
1609
            import paddle
1610

1611
            inputs = paddle.to_tensor([1, 2, 1])
1612 1613
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1614
    """
H
hong 已提交
1615
    if in_dygraph_mode():
1616
        return _C_ops.histogram(input, bins, min, max)
1617 1618 1619 1620
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1621
        )
1622 1623 1624 1625 1626 1627 1628 1629
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1630 1631 1632 1633


def bincount(x, weights=None, minlength=0, name=None):
    """
1634
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1662 1663
    if in_dygraph_mode():
        return _C_ops.bincount(x, weights, minlength)
1664 1665
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1666

1667
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1668

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1684
        )
1685
        return out
1686 1687 1688 1689 1690 1691 1692


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1693
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1694
            should be one of float32, float64.
F
furnace 已提交
1695
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1711 1712
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1713
            out = paddle.mv(x, vec)
1714 1715 1716
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1717
    """
J
Jiabin Yang 已提交
1718
    if in_dygraph_mode():
1719
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1720
    else:
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1734
                    )
1735 1736 1737 1738 1739
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1740
                    )
1741
                )
J
Jiabin Yang 已提交
1742

1743
        __check_input(x, vec)
J
Jiabin Yang 已提交
1744

1745 1746 1747 1748 1749 1750
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1751 1752


1753
def det(x, name=None):
H
huangxu96 已提交
1754
    """
1755

H
huangxu96 已提交
1756
    Calculates determinant value of a square matrix or batches of square matrices.
1757

H
huangxu96 已提交
1758
    Args:
1759
        x (Tensor): the input matrix of size `(n, n)` or the
1760 1761
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1762 1763
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1764

H
huangxu96 已提交
1765
    Returns:
1766
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1767

1768
    Examples:
H
huangxu96 已提交
1769 1770
        .. code-block:: python

1771
            import paddle
H
huangxu96 已提交
1772

1773
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1774

1775
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1776

1777
            print(A)
1778

1779
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1780

1781

H
huangxu96 已提交
1782
    """
C
chentianyu03 已提交
1783
    if in_dygraph_mode():
1784
        return _C_ops.det(x)
1785 1786
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
C
chentianyu03 已提交
1787

1788 1789 1790 1791 1792
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1793

1794 1795 1796 1797 1798 1799 1800 1801
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1802

1803 1804 1805 1806
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1807 1808


1809
def slogdet(x, name=None):
H
huangxu96 已提交
1810
    """
1811

H
huangxu96 已提交
1812
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1813
    The determinant can be computed with ``sign * exp`` (logabsdet)
1814

H
huangxu96 已提交
1815 1816 1817
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1818

H
huangxu96 已提交
1819 1820 1821 1822 1823
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1824
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1825 1826
        of the absolute value of determinant, respectively.

1827
    Examples:
1828
        .. code-block:: python
H
huangxu96 已提交
1829

1830
            import paddle
H
huangxu96 已提交
1831

1832
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1833

1834
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1835

1836
            print(A)
1837

1838 1839
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1840 1841

    """
1842
    if in_dygraph_mode():
1843
        return _C_ops.slogdet(x)
1844 1845
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1846

1847 1848 1849 1850 1851
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1852

1853 1854 1855 1856 1857 1858 1859 1860
        assert (
            input_shape[-1] == input_shape[-2]
        ), "Expect squared input," "but received %s by %s matrix.\n" % (
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1861

1862 1863 1864 1865 1866 1867
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1868 1869


1870 1871
def svd(x, full_matrices=False, name=None):
    r"""
1872 1873 1874 1875 1876
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1877 1878
        X = U * diag(S) * VT

1879 1880
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1881
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1882 1883
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1884
        full_matrices (bool, optional): A flag to control the behavor of svd.
1885
            If full_matrices = True, svd op will compute full U and V matrics,
1886
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1887
            If full_matrices = False, svd op will use a economic method to store U and V.
1888
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1889
            Default value is False.
1890
        name (str, optional): Name for the operation (optional, default is None).
1891
            For more information, please refer to :ref:`api_guide_Name`.
1892 1893

    Returns:
Z
Zman 已提交
1894 1895 1896 1897 1898
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1899

1900 1901 1902 1903
    Examples:
        .. code-block:: python

            import paddle
1904 1905 1906

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1907
            u, s, vh = paddle.linalg.svd(x)
1908 1909 1910 1911 1912
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1913
            print (s)
1914
            #S = [8.14753743, 0.78589688]
1915
            print (vh)
1916 1917
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1918

1919
            # one can verify : U * S * VT == X
1920
            #                  U * UH == I
1921
            #                  V * VH == I
1922
    """
1923
    if in_dygraph_mode():
1924
        return _C_ops.svd(x, full_matrices)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1941 1942


1943 1944
def matrix_power(x, n, name=None):
    r"""
1945

1946
    Computes the n-th power of a square matrix or a batch of square matrices.
1947

1948 1949 1950 1951 1952
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1953

1954 1955
    Specifically,

1956
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1957

1958 1959
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1960
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1961 1962 1963 1964 1965 1966

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1967
        name (str, optional): Name for the operation (optional, default is None).
1968 1969 1970
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1971 1972
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1973 1974 1975 1976 1977 1978 1979 1980 1981

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
1982
            print(paddle.linalg.matrix_power(x, 2))
1983 1984 1985 1986
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

1987
            print(paddle.linalg.matrix_power(x, 0))
1988 1989 1990 1991
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

1992
            print(paddle.linalg.matrix_power(x, -2))
1993 1994 1995 1996
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
H
hong 已提交
1997
    if in_dygraph_mode():
1998
        return _C_ops.matrix_power(x, n)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2013 2014


2015 2016 2017 2018 2019 2020 2021
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2022 2023
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2024
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2025
            If mode = "reduced", qr op will return reduced Q and R matrices,
2026
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2027
            If mode = "complete", qr op will return complete Q and R matrices,
2028 2029 2030 2031 2032
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2033

2034
    Returns:
2035
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2036
        If mode = "r", qr will return a tensor which represents R.
2037 2038

    Examples:
2039 2040
        .. code-block:: python

2041
            import paddle
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2054 2055

            # one can verify : X = Q * R ;
2056
    """
Y
Yulong Ao 已提交
2057
    if in_dygraph_mode():
2058
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2059 2060 2061 2062
        if mode == "r":
            return r
        else:
            return q, r
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
        attrs = dict()
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2074 2075 2076 2077 2078 2079
        if mode == "r":
            return r
        else:
            return q, r


2080 2081
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2082
    Computes the LU factorization of an N-D(N>=2) matrix x.
2083

2084
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2085 2086 2087 2088
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2089 2090 2091 2092 2093 2094

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2106

2107
    Returns:
2108
        factorization (Tensor), LU matrix, the factorization of input X.
2109

2110 2111 2112
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2113

2114 2115 2116
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2117

2118 2119

    Examples:
2120 2121
        .. code-block:: python

2122
            import paddle
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2138

2139 2140 2141 2142 2143 2144
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2145
            # [1., 0., 0.]]),
2146 2147 2148 2149
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2150
            # [0.60000000, 0.50000000]]),
2151 2152 2153 2154 2155
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2156 2157

            # one can verify : X = P @ L @ U ;
2158
    """
L
Lin Manhui 已提交
2159 2160

    if in_dygraph_mode():
2161
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2162 2163 2164 2165 2166 2167 2168 2169
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
        attrs = dict()
        attrs['pivot'] = pivot
2170 2171 2172 2173 2174 2175
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2176 2177 2178 2179 2180 2181 2182 2183
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2184
    Unpack L U and P to single matrix tensor .
2185 2186 2187
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2188 2189 2190 2191 2192

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2206

2207
    Returns:
2208
        P (Tensor), Permutation matrix P of lu factorization.
2209

2210
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2211

2212
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2213

2214 2215

    Examples:
2216 2217
        .. code-block:: python

2218
            import paddle
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2234

2235 2236 2237 2238 2239 2240
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2241
            # [1., 0., 0.]]),
2242 2243 2244 2245
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2246
            # [0.60000000, 0.50000000]]),
2247 2248 2249 2250 2251
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2252
            # one can verify : X = P @ L @ U ;
2253 2254
    """

2255
    if in_dygraph_mode():
2256
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2257
        return P, L, U
2258 2259 2260
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2261
        )
2262 2263 2264 2265
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
        attrs = dict()
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2277 2278


L
Lijunhui 已提交
2279 2280
def eig(x, name=None):
    """
2281
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2282

2283 2284 2285 2286 2287 2288
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2289 2290 2291 2292

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2293
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2307
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2308
                               [9.956216,  8.749598,  6.066444 ],
2309
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2310
            w, v = paddle.linalg.eig(x)
2311
            print(v)
L
Lijunhui 已提交
2312 2313 2314 2315 2316 2317 2318 2319
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2320
            print(w)
L
Lijunhui 已提交
2321 2322 2323 2324
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2325
    if in_dygraph_mode():
2326
        return _C_ops.eig(x)
2327 2328 2329 2330 2331
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2332

2333 2334
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2335

2336 2337 2338
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2339

2340
        return w, v
L
Lijunhui 已提交
2341 2342


2343 2344 2345
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2346 2347 2348

    Warning:
        The gradient kernel of this operator does not yet developed.
2349 2350 2351 2352
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2353
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2354
            Its data type should be float32, float64, complex64, or complex128.
2355
        name (str, optional): Name for the operation (optional, default is None).
2356
            For more information, please refer to :ref:`api_guide_Name`.
2357

2358
    Returns:
2359 2360
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2361 2362 2363 2364 2365

    Examples:
        .. code-block:: python

            import paddle
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

2379 2380 2381
    check_variable_and_dtype(
        x, 'dtype', ['float32', 'float64', 'complex64', 'complex128'], 'eigvals'
    )
2382 2383 2384 2385

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2386 2387 2388 2389
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2390 2391 2392

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2393 2394 2395 2396
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2397

R
Ruibiao Chen 已提交
2398
    if in_dygraph_mode():
2399
        return _C_ops.eigvals(x)
2400 2401 2402 2403 2404
    else:
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2405 2406


2407 2408 2409 2410
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2411
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2448 2449
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2450
        out = paddle.linalg.multi_dot([A, B])
2451
        print(out.shape)
2452 2453 2454
        # [3, 5]

        # A * B * C
2455 2456 2457
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2458
        out = paddle.linalg.multi_dot([A, B, C])
2459
        print(out.shape)
2460 2461 2462
        # [10, 7]

    """
2463
    if in_dygraph_mode():
2464
        return _C_ops.multi_dot(x)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
                ['float16', 'float32', 'float64'],
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2478

2479 2480 2481 2482 2483
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2484
        )
2485
        return out
2486 2487 2488 2489


def eigh(x, UPLO='L', name=None):
    """
2490
    Compute the eigenvalues and eigenvectors of a
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2502 2503 2504 2505
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2506 2507 2508 2509 2510 2511

    Examples:
        .. code-block:: python

            import paddle

2512
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2513
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2514 2515 2516 2517 2518 2519 2520
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
H
hong 已提交
2521
    if in_dygraph_mode():
2522
        return _C_ops.eigh(x, UPLO)
2523
    else:
H
hong 已提交
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
2541
                )
2542

2543
        __check_input(x, UPLO)
2544

2545 2546 2547 2548 2549 2550 2551
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2552

2553 2554
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2555

2556 2557 2558 2559 2560 2561 2562
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2563 2564 2565 2566


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2567
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2578

A
andyjpaddle 已提交
2579 2580 2581
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2582 2583 2584
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2585 2586 2587 2588
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2589
        rcond(Tensor, optional): the tolerance value to determine
2590
            when is a singular value zero. Default:1e-15.
2591 2592

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2593
            if complex or symmetric if real. Default: False.
2594 2595

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2596
            the layer will be named automatically.
2597

A
andyjpaddle 已提交
2598
    Returns:
2599
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2600
        pseudo inverse of x. Its shape should be (*, n, m).
2601

A
andyjpaddle 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2628 2629 2630
    if in_dygraph_mode():
        if not hermitian:
            # combine svd and matmul op
2631 2632
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2633 2634 2635 2636
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2637

2638 2639 2640 2641 2642 2643
            condition = s > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2644
            st = _C_ops.unsqueeze(singular, [-2])
2645 2646 2647

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2648
            v = _C_ops.transpose(vt, perm)
2649 2650

            out_1 = v * st
2651
            out_2 = _C_ops.matmul(out_1, u, False, True)
2652 2653 2654
            return out_2
        else:
            # combine eigh and matmul op
2655
            s, u = _C_ops.eigh(x, 'UPLO')
2656
            s_abs = paddle.abs(s)
2657
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

            condition = s_abs > cutoff
            cond_int = cast(condition, s.dtype)
            cond_not_int = cast(logical_not(condition), s.dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
2669
            st = _C_ops.unsqueeze(singular, [-2])
2670 2671

            out_1 = u * st
2672 2673
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2674
            return out_2
A
andyjpaddle 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2687
                outputs={'U': u, 'VH': vt, 'S': s},
2688 2689
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2690 2691

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2692 2693 2694 2695 2696 2697
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2698

2699
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2700 2701
            cutoff = rcond * max_singular_val
            y = float('inf')
2702
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2703 2704

            condition = s > cutoff
2705 2706 2707 2708 2709
            cond_int = cast(condition, dtype)
            cond_not_int = cast(logical_not(condition), dtype)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2710 2711 2712

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2713 2714 2715 2716 2717 2718
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2719 2720 2721 2722 2723

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2724 2725 2726 2727 2728 2729
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2730 2731

            out_1 = helper.create_variable_for_type_inference(dtype)
2732 2733 2734 2735 2736 2737
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2738 2739 2740 2741 2742
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2743
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2744
                outputs={'Out': out_2},
2745
                attrs={'trans_x': False, 'trans_y': True},
2746
            )
A
andyjpaddle 已提交
2747 2748 2749 2750 2751
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2752 2753 2754 2755 2756
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2767 2768 2769 2770 2771 2772
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2773
            s_abs = helper.create_variable_for_type_inference(s_type)
2774 2775 2776
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2777
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2778 2779 2780 2781 2782 2783
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2784

2785
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2786 2787
            cutoff = rcond * max_singular_val
            y = float('inf')
2788
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2789 2790

            condition = s_abs > cutoff
2791 2792 2793 2794 2795
            cond_int = cast(condition, s_type)
            cond_not_int = cast(logical_not(condition), s_type)
            out1 = multiply(1 / s, cond_int)
            out2 = multiply(1 / y, cond_not_int)
            singular = add(out1, out2)
A
andyjpaddle 已提交
2796 2797 2798

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2799 2800 2801 2802 2803 2804
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2805 2806

            out_1 = helper.create_variable_for_type_inference(dtype)
2807 2808 2809 2810 2811 2812
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2813 2814 2815
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2816 2817 2818
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2819 2820 2821 2822

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2823
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2824
                outputs={'Out': out_2},
2825
                attrs={'trans_x': False, 'trans_y': True},
2826
            )
A
andyjpaddle 已提交
2827
            return out_2
W
Weilong Wu 已提交
2828 2829 2830 2831


def solve(x, y, name=None):
    r"""
2832

W
Weilong Wu 已提交
2833
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2834
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2835
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2836

W
Weilong Wu 已提交
2837 2838
    .. math::
        Out = X^-1 * Y
2839 2840

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2841

W
Weilong Wu 已提交
2842
    Args:
2843
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2844
            more batch dimensions. Its data type should be float32 or float64.
2845
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2846
            more batch dimensions. Its data type should be float32 or float64.
2847
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2848
            For more information, please refer to :ref:`api_guide_Name`.
2849

W
Weilong Wu 已提交
2850
    Returns:
2851
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2852
        Its data type should be the same as that of `x`.
2853

W
Weilong Wu 已提交
2854
    Examples:
2855

2856
        .. code-block:: python
2857

2858 2859 2860
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2861

2862 2863 2864 2865 2866
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2867

2868 2869
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2870
    """
2871
    if in_dygraph_mode():
2872
        return _C_ops.solve(x, y)
2873 2874 2875 2876 2877 2878
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2879

2880 2881 2882 2883
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2884 2885


2886 2887 2888
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2889
    r"""
2890 2891
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2905 2906 2907 2908

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2909
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2910
            zero or more batch dimensions. Its data type should be float32 or float64.
2911
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2912 2913
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2914
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2915 2916 2917 2918 2919 2920 2921 2922
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2923
        .. code-block:: python
2924

2925 2926 2927 2928
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2929

2930 2931 2932 2933 2934 2935
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2936

2937 2938
            print(out)
            # [7, -2, -5]
2939
    """
H
hong 已提交
2940
    if in_dygraph_mode():
2941
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2942 2943 2944 2945 2946
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2947
        )
2948 2949 2950 2951
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2964 2965


Z
zhiboniu 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2976
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
2986
        .. code-block:: python
Z
zhiboniu 已提交
2987

2988
            import paddle
Z
zhiboniu 已提交
2989

2990 2991 2992 2993 2994
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
2995

2996 2997
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
2998
    """
H
hong 已提交
2999
    if in_dygraph_mode():
3000
        return _C_ops.cholesky_solve(x, y, upper)
3001 3002 3003 3004 3005 3006 3007 3008 3009
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3010

3011 3012 3013 3014 3015 3016 3017
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3018 3019


3020 3021
def eigvalsh(x, UPLO='L', name=None):
    """
3022
    Computes the eigenvalues of a
3023 3024 3025
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3026
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3040
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3041 3042
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3043 3044
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3045
    """
3046
    if in_dygraph_mode():
3047
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3048
        return values
3049
    else:
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
                    "UPLO must be L or U. But received UPLO is: {}".format(UPLO)
3067
                )
3068

3069
        __check_input(x, UPLO)
3070

3071 3072 3073 3074 3075 3076 3077
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3078

3079 3080
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3081

3082 3083 3084 3085 3086 3087 3088 3089
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3090 3091


3092 3093 3094 3095 3096 3097 3098 3099
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3100
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3101
            should be one of float32, float64.
3102 3103
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3104
            machine precision of x_dtype.
3105 3106 3107
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3108
            for CUDA inputs.
3109
        name(str, optional): The default value is None. Normally there is no need for user to set
3110 3111 3112
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3113 3114 3115 3116 3117 3118 3119
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3152 3153 3154
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3155 3156 3157 3158
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3159 3160 3161 3162
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3163 3164 3165 3166
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3167 3168 3169 3170
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
    if x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64):
        pass
    else:
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3184 3185 3186 3187
    if in_dygraph_mode():
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3188 3189 3190 3191 3192 3193 3194
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3209

3210 3211 3212 3213 3214 3215
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3238

3239
        return solution, residuals, rank, singular_values
3240 3241 3242 3243


def corrcoef(x, rowvar=True, name=None):
    """
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3283 3284
            "length of Input(input) is %s." % len(x.shape)
        )
3285 3286 3287
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3288
    if c.ndim == 0:
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3303 3304 3305
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3306 3307 3308 3309
    else:
        c = paddle.clip(c, -1, 1)

    return c