backward.py 103.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import logging
23
from . import unique_name
24
from . import log_helper
L
liym27 已提交
25
import paddle.fluid
26
from .data_feeder import check_type
27
import warnings
28

29
from collections.abc import Sequence
30

31 32
import re

M
mapingshuo 已提交
33 34 35 36 37
__all__ = [
    'append_backward',
    'gradients',
]

38 39 40
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
41

M
mapingshuo 已提交
42

43
class ProgramStats:
M
mapingshuo 已提交
44 45 46 47 48 49 50 51 52
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
53 54 55 56
            if (
                len(self.var_op_deps[name]["var_as_output_ops"]) == 0
                and len(self.var_op_deps[name]["var_as_input_ops"]) > 0
            ):
M
mapingshuo 已提交
57 58 59 60 61 62 63 64 65 66 67
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
68
            if op.desc.type() == "seed":
M
mapingshuo 已提交
69 70 71 72 73 74 75 76 77 78 79
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
80 81 82 83 84
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
109

M
mapingshuo 已提交
110 111
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
118 119 120 121
            return (
                op.desc.type() == 'cast'
                and self.block.var(op.desc.input_arg_names()[0]).persistable
            )
J
JZ-LIANG 已提交
122 123 124 125 126

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
127 128 129 130 131 132
                _logger.info(
                    "found amp-cast op: {}, : {}".format(
                        self.ops[idx_].desc.type(),
                        self.ops[idx_].desc.input_arg_names()[0],
                    )
                )
J
JZ-LIANG 已提交
133 134 135 136 137 138 139
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
140 141 142 143 144
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
145
                    self.op_deps[i]["in_ops"].extend(
146 147
                        self.var_op_deps[name]["var_as_output_ops"]
                    )
M
mapingshuo 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

167 168 169 170
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
171
                _logger.info(
172
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
173 174
                    % name
                )
175 176 177 178 179
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
180 181
                    (name, max(self.var_op_deps[name]["var_as_output_ops"]))
                )
182 183 184
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
185 186 187 188 189 190
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
191
        while op_idx < len(self.ops):
M
mapingshuo 已提交
192 193 194 195
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
196 197 198 199
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
200 201
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
202 203 204
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
M
mapingshuo 已提交
205 206 207 208 209
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
210 211
                stop_gradient=False,
            )
M
mapingshuo 已提交
212
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
213

214 215
            op_device_attr_name = (
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
216 217 218 219 220
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

221
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
222
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
223 224 225 226 227 228 229
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed, 'op_device': op_device, 'force_cpu': True},
            )
M
mapingshuo 已提交
230 231 232 233 234 235 236 237
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
238 239

def _pretty_op_desc_(op_desc, prefix):
240 241 242 243 244 245 246 247
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % (
        prefix + "_op",
        str(op_desc.type()),
        prefix + "_input",
        " ".join(op_desc.input_arg_names()),
        prefix + "_output",
        " ".join(op_desc.output_arg_names()),
    )
M
mapingshuo 已提交
248 249 250
    return out_s


251 252 253
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, grad_op_id_to_fwd_op=None
):
M
mapingshuo 已提交
254 255 256
    if len(descs) == 0:
        return []
    result_descs = []
257
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
258 259
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
260 261
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
262 263
        if isinstance(desc, framework.Operator):
            desc = desc.desc
264
            origin_is_operator = True
M
mapingshuo 已提交
265 266 267 268 269 270 271 272 273
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
274 275
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
276 277 278
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
279 280
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
281 282 283 284
            result_descs.append(new_op_desc)
    return result_descs


285
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
286 287 288
    if len(descs) == 0:
        return []
    result_descs = []
289
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
290 291 292
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
293 294 295
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
296 297 298 299 300 301
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
302 303
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
304 305 306 307 308 309 310
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
311 312 313 314
        if (
            len(op.output_arg_names) == 1
            and op.output_arg_names[0] == loss.name
        ):
M
mapingshuo 已提交
315 316 317
            loss.op = op
            break
    if loss.op is None:
C
co63oc 已提交
318
        raise ValueError("loss.op is None. Should not happen")
319 320


321 322
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
323
    Traverse all ops in op_descs[begin_idx : end_idx],
324 325
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
326 327 328
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
329
        end_idx = len(op_descs)
330 331 332 333 334 335 336 337 338 339 340 341 342
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
343 344


F
fengjiayi 已提交
345
def _create_op_desc_(op_type, inputs, outputs, attrs):
346 347 348
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
349 350
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
351
    for para, args in inputs.items():
352 353 354
        op_desc.set_input(
            para,
            list(
355 356 357 358 359 360
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
361
    for para, args in outputs.items():
362 363 364
        op_desc.set_output(
            para,
            list(
365 366 367 368 369 370
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
Y
yuyang18 已提交
371 372

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
373
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
374 375 376

    if op_role_attr_name not in attrs:
        attrs[
377 378
            op_role_attr_name
        ] = core.op_proto_and_checker_maker.OpRole.Backward
379 380
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
381
    for name, val in attrs.items():
F
fengjiayi 已提交
382 383 384
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
385
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
386 387 388
    return op_desc


M
mapingshuo 已提交
389
def _create_loss_op_desc_(loss):
390
    # 0-D Tensor or 0-Size Tensor
391 392 393 394
    if len(loss.shape) == 0 or 0 in loss.shape:
        create_shape = loss.shape
    else:
        create_shape = [1]
M
mapingshuo 已提交
395
    op_desc = _create_op_desc_(
396 397 398 399
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
400
            "shape": create_shape,
401 402 403 404 405 406
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName(): int(
                core.op_proto_and_checker_maker.OpRole.Backward
            )
407
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
408 409 410 411 412
            core.op_proto_and_checker_maker.kOpDeviceAttrName(): loss.op.attr(
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
            ),
        },
    )
M
mapingshuo 已提交
413 414 415
    return op_desc


416
def _infer_var_data_type_shape_(grad_var_name, block):
417
    """
418
    Infer the data type and shape of given grad variable
419
    """
420
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
421
    fwd_name = _strip_grad_suffix_(grad_var_name)
422 423
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
424
        grad_var.set_dtype(fwd_var.dtype())
425
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
426
    else:
427 428
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
429 430 431 432
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".format(
                grad_var_name
            )
        )
433
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
434 435


F
fengjiayi 已提交
436
def _all_in_set_(cands, s):
437 438 439
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
440 441
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
442 443 444 445 446 447
    for c in cands:
        if not c in s:
            return False
    return True


448 449 450 451 452 453
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
454 455
    for c in cands:
        if c in s:
456 457 458 459
            return True
    return False


F
fengjiayi 已提交
460
def _strip_grad_suffix_(name):
461
    """
M
mapingshuo 已提交
462
    Strip the grad suffix from the given variable name
463
    e.g. x@GRAD ==> x
464
         x@GRAD@GRAD ==> x
465
         y@GRAD@RENAME@1 ==> y
466
         z@GRAD_slice_0@GRAD ==> z@GRAD_slice_0
467
         grad/grad/z@GRAD@RENAME@block0@1@GRAD ==> z
468
    """
469 470
    pos = re.search(f'{core.grad_var_suffix()}+@', name) or re.search(
        f'{core.grad_var_suffix()}$', name
471 472
    )
    new_name = name[: pos.start()] if pos is not None else name
473
    new_pos = name.rfind('grad/')
474
    return new_name[new_pos + 5 :] if new_pos != -1 else new_name
F
fengjiayi 已提交
475 476 477


def _append_grad_suffix_(name):
478 479 480 481
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
482
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
483 484


485 486 487
def _accumulate_gradients_by_sum_op_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
488 489 490 491 492 493
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
494 495 496 497 498 499 500
        _create_op_desc_(
            "sum",
            {"X": renamed_vars[var_name]},
            {"Out": [var_name]},
            {"use_mkldnn": False, "op_device": op_device},
        )
    )
501 502 503
    renamed_vars[var_name] = [var_name]


504 505 506
def _accumulate_gradients_by_add_ops_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
507 508 509 510 511 512 513 514 515 516 517 518 519 520
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
521 522 523 524 525 526 527
            _create_op_desc_(
                "grad_add",
                {"X": [x_name], "Y": [y_name]},
                {"Out": [out_name]},
                {"use_mkldnn": False, "op_device": op_device},
            )
        )
528 529 530
    renamed_vars[var_name] = [var_name]


531 532 533
def _addup_repetitive_outputs_(
    op_descs, block_idx, grad_var_to_var=None, grad_op_id_to_fwd_op=None
):
534 535
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
536 537
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
538
    `sum_op`s are added to implement the accumulate.
539 540 541 542

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
543
    """
544

545
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
546
    # pending_sum_ops = []
547
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
548
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
549
    renamed_vars = collections.defaultdict(list)
550
    renamed_var_start_idx = collections.defaultdict(list)
551
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
552
    for idx, op_desc in enumerate(op_descs):
553 554
        op_device_attr_name = (
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
T
tangwei12 已提交
555 556 557 558
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
559
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
560 561
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
562
            if len(renamed_vars[var_name]) > 1:
563
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
564 565 566 567 568 569 570
                    _accumulate_gradients_by_sum_op_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
571
                else:
572 573 574 575 576 577 578
                    _accumulate_gradients_by_add_ops_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
579

F
update  
fengjiayi 已提交
580
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
581 582
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
583 584
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
585
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
586
                #    continue
587 588 589 590
                if (
                    var_name == core.empty_var_name()
                    or var_name in op_desc.input_arg_names()
                ):
F
fengjiayi 已提交
591 592 593 594 595
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
596
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
597 598
                else:
                    if len(renamed_vars[var_name]) == 1:
599 600 601 602 603 604 605
                        new_name = (
                            var_name
                            + "@RENAME@block"
                            + str(block_idx)
                            + "@"
                            + str(var_rename_count[var_name])
                        )
F
fengjiayi 已提交
606
                        var_rename_count[var_name] += 1
607 608 609 610
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
611 612
                                    var_name
                                ]
613 614
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
615 616
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
617 618 619 620
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
621 622 623 624 625 626 627
                        _rename_arg_(
                            op_descs,
                            var_name,
                            new_name,
                            renamed_var_start_idx[var_name],
                            idx,
                        )
F
fengjiayi 已提交
628 629
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
630 631 632
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
633 634 635 636 637 638 639
                                op_desc.set_output(
                                    p,
                                    [
                                        new_name if x == var_name else x
                                        for x in p_arg_names
                                    ],
                                )
F
update  
fengjiayi 已提交
640 641 642 643 644 645

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

646 647 648 649 650 651 652
                    new_name = (
                        var_name
                        + "@RENAME@block"
                        + str(block_idx)
                        + "@"
                        + str(var_rename_count[var_name])
                    )
F
fengjiayi 已提交
653
                    var_rename_count[var_name] += 1
654 655 656 657
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
658 659
                                var_name
                            ]
660 661
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
662 663 664
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
665
                    # record the latest device
666
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
667

668
    for var_name, inputs in renamed_vars.items():
669 670
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
671 672 673 674 675 676 677
                _accumulate_gradients_by_sum_op_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
678
            else:
679 680 681 682 683 684 685
                _accumulate_gradients_by_add_ops_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
686

687
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
688
    # sum_op descs are sorted according to their insert position
689
    for key, value in collections.OrderedDict(
690 691
        reversed(list(pending_sum_ops.items()))
    ).items():
692 693 694 695 696 697 698

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
699 700
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
701 702 703 704 705 706 707
            if (
                grad_op_id_to_fwd_op is not None
                and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None
                )
                is not None
            ):
708
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
709 710
                    op_descs[target_idx].original_id()
                ]
711
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
712 713 714 715

    return op_descs


716 717 718
def _remove_no_grad_branch_(
    op_descs, no_grad_set, grad_op_id_to_fwd_op=None, target_vars=[]
):
719 720 721 722
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
723
        2. all grad inputs of the grad op are in 'no_grad_set'
724
    NOTE: we will skip target_vars's grad name.
725
    """
F
fengjiayi 已提交
726 727

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
728 729
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
730
            return True
731 732 733 734
        if _all_in_set_(
            [
                name
                for name in op_desc.input_arg_names()
735
                if name.find(core.grad_var_suffix()) != -1
736 737 738
            ],
            no_grad_set,
        ):
739
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
740 741 742
            return True
        return False

F
fengjiayi 已提交
743
    # Remove ops whose outputs are all in no_grad_dict
744
    target_grad_var_names = set(
745 746
        [var.name + core.grad_var_suffix() for var in target_vars]
    )
747
    op_descs = [
748 749
        op_desc
        for op_desc in op_descs
750 751
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
752
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
753
    to_insert = []
F
fengjiayi 已提交
754
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
755
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
756
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
757
            if core.grad_var_suffix() in arg and arg in no_grad_set:
758
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
759 760
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
761 762 763 764 765 766
                new_op_desc = _create_op_desc_(
                    "fill_any_like",
                    {"X": [x_in]},
                    {"Out": [arg]},
                    {'value': 0, 'dtype': -1},
                )
767
                # update the mapping between fwd and bwd
768 769 770 771 772 773 774 775
                if (
                    grad_op_id_to_fwd_op is not None
                    and grad_op_id_to_fwd_op.get(op_desc.original_id(), None)
                    is not None
                ):
                    grad_op_id_to_fwd_op[
                        new_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
776
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
777

778
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
779 780 781 782

    return op_descs


C
chengduo 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
798
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
799 800
    """

801
    class Var:
C
chengduo 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

816
    class Op:
C
chengduo 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
857 858 859
    forward_vars_set = (
        set() if input_grad_names_set is None else set(input_grad_names_set)
    )
C
chengduo 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
899 900 901
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
902
    # not_need_op_descs will be whole graph, this IF clause avoids it.
903 904 905
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
906 907


Y
Yang Yang 已提交
908 909
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
910
    proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang 已提交
911 912 913
    return proto.__str__()


914 915 916 917 918 919 920 921 922 923
def _append_backward_ops_with_checkpoints_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    checkpoints,
    grad_op_id_to_fwd_op=None,
):
M
mapingshuo 已提交
924 925 926 927 928 929
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
930
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
931 932 933 934 935 936 937
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
938
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
939 940 941 942 943
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
944 945 946
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
947 948
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
949 950
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
951 952
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
953
    """
M
mapingshuo 已提交
954 955

    checkpoints_name = [x.name for x in checkpoints]
956
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
957 958
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
959
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
960
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
961
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
962
    program_stat.build_stats()
M
mapingshuo 已提交
963 964

    # 1) find ops between checkpoints, i.e. recompute_segments
965
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
966 967
    segments = []

968
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
969 970 971 972 973 974 975
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
976
            # only count the last generate op
M
mapingshuo 已提交
977 978 979 980 981 982
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
983
        pre_segment_end_idx = -1
M
mapingshuo 已提交
984 985 986
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
987 988
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
989
            flag, min_idx, max_idx = program_stat.is_subgraph(
990 991
                [checkpoints_name[start_idx]], [checkpoints_name[start_idx + 1]]
            )
M
mapingshuo 已提交
992
            if flag:
J
JZ-LIANG 已提交
993 994
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
995 996
                    min_idx, pre_segment_end_idx
                )
M
mapingshuo 已提交
997
                segments.append([min_idx, max_idx + 1])
998
            else:
999 1000 1001 1002 1003
                _logger.info(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
J
JZ-LIANG 已提交
1004

M
mapingshuo 已提交
1005 1006 1007 1008 1009 1010
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
1011

J
JZ-LIANG 已提交
1012
    for i, (idx1, idx2) in enumerate(recompute_segments):
1013
        _logger.info("recompute segment[{}]".format(i))
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
1024
        _logger.info("recompute segment[{}]".format(i))
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
J
JZ-LIANG 已提交
1035

M
mapingshuo 已提交
1036
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
1037
    vars_should_be_hold = []
1038
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
1039 1040
    for segment in recompute_segments:
        vars_should_be_hold.extend(
1041 1042
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1])
        )
J
JZ-LIANG 已提交
1043 1044

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
1045 1046 1047 1048 1049
    _logger.info(
        "found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format(
            len(cross_vars), cross_vars
        )
    )
J
JZ-LIANG 已提交
1050

M
mapingshuo 已提交
1051
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
1052
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
1053
    # c. input variables are checkpoints
M
mapingshuo 已提交
1054 1055 1056
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
1057
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
1058 1059 1060 1061 1062 1063
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
1064
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
1065 1066 1067 1068
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1069 1070 1071 1072 1073
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1074
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1075 1076
                op.desc, no_grad_dict[block.idx], []
            )
1077 1078 1079 1080 1081 1082

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1083 1084 1085 1086 1087
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1088 1089 1090
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1091 1092 1093 1094
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
1095
        gap_ops = ops[segment[1] : max_calculated_op_position]
M
mapingshuo 已提交
1096 1097 1098
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1099 1100 1101 1102 1103
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1104
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1105 1106
                op.desc, no_grad_dict[block.idx], []
            )
1107 1108 1109 1110 1111 1112

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1113 1114 1115 1116 1117
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1118 1119 1120
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1121 1122 1123
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

1124
        ff_ops = ops[segment[0] : segment[1]]
M
mapingshuo 已提交
1125 1126 1127 1128
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
1129 1130 1131 1132 1133
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1144 1145 1146

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1147 1148 1149 1150 1151 1152 1153 1154
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient,
                    )
1155

M
mapingshuo 已提交
1156
        # 3.a. add ops in current recompute_segment as forward recomputation ops
1157 1158 1159 1160 1161 1162
        buffer_descs = _add_needed_descs_to_block(
            ff_ops, buffer_block, block, vars_in_memory, grad_op_id_to_fwd_op
        )
        added_descs = _add_descs_to_block(
            ff_ops, local_block, grad_op_id_to_fwd_op
        )
M
mapingshuo 已提交
1163

M
mapingshuo 已提交
1164
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1165 1166 1167 1168 1169 1170
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1171
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1172 1173
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1174 1175
                op_desc, no_grad_dict[block.idx], []
            )
1176

1177 1178 1179
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
1180 1181 1182
                    grad_op_id_to_fwd_op[
                        g_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
1183

1184 1185 1186 1187 1188 1189
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1190 1191 1192 1193 1194
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1195
    # 3.d. add sum op for repetitive_outputs
1196
    grad_op_descs = _addup_repetitive_outputs_(
1197 1198
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op
    )
M
mapingshuo 已提交
1199
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
    added_descs = _add_descs_to_block(
        grad_op_descs, target_block, grad_op_id_to_fwd_op
    )
    return (
        program_stat,
        checkpoints_name,
        vars_should_be_hold,
        recompute_segments,
    )


def _get_sub_block_path(
    sub_block,
    sub_block_op_desc,
    no_grad_set,
    op_path_dict,
    sub_block_target_names=None,
):
1224 1225
    """
    Get output vars in subblock which will be assigned to parent block.
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1238
    """
1239

1240
    assert sub_block_op_desc.has_attr(
1241 1242
        "sub_block"
    ) and sub_block.idx == sub_block_op_desc._block_attr_id("sub_block")
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1255
            for op_desc in sub_block.ops:
1256
                if var in op_desc.output_arg_names:
1257
                    for name in op_desc.input_arg_names:
1258
                        sub_outputs.append(sub_block._var_recursive(name))
1259

1260 1261
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1262 1263 1264
        sub_block_op_path = _find_op_path_(
            sub_block, sub_outputs, [], no_grad_set, op_path_dict, is_while
        )
1265 1266 1267 1268
        return sub_block_op_path
    return sub_block.ops


1269 1270 1271
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
1272 1273 1274
    if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
        op.all_attrs()[op_maker.kOpRoleAttrName()]
    ) == int(backward):
1275 1276 1277 1278 1279 1280 1281 1282
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
def _append_backward_ops_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    callbacks=None,
    input_grad_names_set=None,
    op_path_dict=None,
    distop_context=None,
    rename_var_map=None,
    grad_op_id_to_fwd_op=None,
):
1297 1298 1299 1300 1301
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1302
        ops(Op): the forward operators whose backward ops need to be added
1303
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1304
        target_block(Block): the block which is going to hold new generated grad ops
1305
        no_grad_dict(dict):
1306
            key(int)  block index
T
tianshuo78520a 已提交
1307
            val(set) a set of variable names. These variables have no gradient
1308 1309 1310
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1311 1312 1313 1314
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1315 1316 1317
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1318 1319
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1320
    """
1321 1322

    # Build the mapping between the forward op and backward op (Only for auto parallel)
1323 1324 1325
    def update_distop_context(
        distop_context, op_grad_to_var, appending_grad_times
    ):
1326
        distop_context.grad_var_to_var[appending_grad_times].update(
1327 1328
            op_grad_to_var
        )
1329
        for op_desc in grad_op_desc:
1330 1331 1332
            assert (
                op_desc.original_id() not in distop_context.grad_op_id_to_op_id
            )
1333
            distop_context.grad_op_id_to_op_id[
1334 1335
                op_desc.original_id()
            ] = op.desc.original_id()
1336

Y
Yang Yang 已提交
1337
    if callbacks is not None:
1338
        assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1339 1340 1341
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1342

F
fengjiayi 已提交
1343
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1344 1345
    grad_op_descs = []
    program = block.program
1346

1347 1348 1349
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1350

1351 1352
    if core._is_bwd_prim_enabled():
        composite_block = program.clone().current_block()
1353 1354
        # Create output and infer shape for operators whose output haven't
        # been created.
1355
        for op in composite_block.ops:
1356 1357 1358 1359 1360 1361 1362 1363
            for name in op.output_arg_names:
                if not (
                    composite_block.desc.has_var_recursive(name.encode())
                    or name == core.empty_var_name()
                ):
                    composite_block.create_var(name=name)
            op.desc.infer_var_type(composite_block.desc)
            op.desc.infer_shape(composite_block.desc)
1364

1365
    # add grad_op_desc by reversed ops
1366
    for op in reversed(ops):
F
fengjiayi 已提交
1367 1368 1369
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1370
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1371
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1372
            grad_sub_block._set_forward_block_idx(sub_block.idx)
C
co63oc 已提交
1373
            # see following comments for why set None here.
1374 1375
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1376
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            _append_backward_ops_(
                sub_block,
                sub_block_path,
                target_vars,
                grad_sub_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
                input_grad_names_set,
                op_path_dict,
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1389
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1390

W
Wu Yi 已提交
1391
            program._rollback()
F
fengjiayi 已提交
1392
            grad_sub_block_list.append(grad_sub_block.desc)
1393 1394
        # In primitive mode, raw phi GradOp will be split into multiple small
        # primitive operators, and the split rules are defined in c++ level,
C
co63oc 已提交
1395
        # see details: paddle/fluid/prim/api/manual/backward/composite_backward_api.h
1396 1397 1398 1399 1400 1401 1402
        # It means that the output's shape and dtype of previous operators which
        # maybe used as the input of next operators must be known. Therefore,
        # we infer shape and dtype in a sandbox block(named composite_block) for
        # used in c++ level.
        # For example:
        #   forward:
        #       z = multiply(x, y) //maybe broadcast in kernel
C
co63oc 已提交
1403
        #   backward:
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        #       x_grad_unreduce = z_grad * y // maybe unreduce
        #       reduced_axes = get_reduced_axes(x_grad.shape, x.shape) // need known shape
        #       x_grad = reduce_sum(x_grad_unreduce)
        grad_op_desc = []
        op_grad_to_var = {}
        if core._is_bwd_prim_enabled():

            def find_op_index(block_desc, cur_op_desc):
                for idx in range(block_desc.op_size()):
                    if cur_op_desc == block_desc.op(idx):
                        return idx
                return -1
F
fengjiayi 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                composite_block.desc.op(find_op_index(block.desc, op.desc)),
                no_grad_dict[composite_block.idx],
                grad_sub_block_list,
            )
            for desc in grad_op_desc:
                infershape_for_composite(composite_block, desc)
        else:
            # Getting op's corresponding grad_op
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, no_grad_dict[block.idx], grad_sub_block_list
            )
1429

1430 1431 1432 1433 1434
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1435
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1436
        if distop_context is not None:
1437 1438 1439
            update_distop_context(
                distop_context, op_grad_to_var, program._appending_grad_times
            )
1440
        else:
1441
            default_ctx = getattr(
1442
                paddle.distributed.auto_parallel.static.dist_context,
1443 1444 1445
                '_g_default_distributed_context',
                None,
            )
1446 1447
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
1448 1449 1450 1451 1452
                update_distop_context(
                    distop_context,
                    op_grad_to_var,
                    program._appending_grad_times,
                )
Y
Yang Yu 已提交
1453

1454 1455
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1456 1457 1458 1459
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1471 1472 1473 1474
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1475 1476 1477 1478 1479
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
1480 1481
                            name, program._appending_grad_times
                        )
1482 1483 1484 1485
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1486 1487 1488
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
1489 1490
                                    program._appending_grad_times
                                ][new_name] = op_grad_to_var[name]
1491 1492 1493
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1494 1495 1496 1497 1498
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1499 1500 1501 1502
            is_grad_name = (
                lambda name: name.find(core.grad_var_suffix()) != -1
                or name in input_grad_names_set
            )
1503
            is_append_grad = False
1504 1505 1506 1507 1508 1509 1510 1511 1512

            # NOTE: In primitive mode, the intermediate variable generated by
            # decompositing raw grad op are not satisfied the rule of 'XX@GRAD',
            # which will cause it be pruned according to current pruning logic.
            # For simplicity, we treate all prmitive operators as one raw
            # operator, and keep the pruning logic consistent with currently
            # logic. The drawback of this solution is may lead to some primitive
            # operators are not pruned, which is needed to fixed.
            # FIXME: Optimize pruning logic from the perspective of whole graph.
1513
            input_grad_names = []
1514
            for op_desc in grad_op_desc:
1515
                input_grad_names += [
1516 1517
                    name
                    for name in op_desc.input_arg_names()
1518
                    if is_grad_name(name)
1519
                ]
1520 1521 1522

            # some code of gradient ops, like increment, are not very
            # standard, there is no @GRAD in these ops' inputs.
1523 1524
            if len(input_grad_names) == 0:
                is_append_grad = True
1525
                continue
1526

1527 1528 1529
            if _some_in_set_(input_grad_names, input_grad_names_set):
                is_append_grad = True
                for op_desc in grad_op_desc:
1530 1531 1532
                    grad_op_descs.append(op_desc)
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
1533

1534 1535 1536 1537 1538
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1539

C
co63oc 已提交
1540
    # record mapping between grad var name and var name (Only for auto parallel)
1541 1542 1543
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
1544 1545
            program._appending_grad_times
        ]
M
mapingshuo 已提交
1546
    # sum parameter's gradients' var given multiple var gradient
1547 1548 1549 1550
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
1551 1552
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
    )
F
fengjiayi 已提交
1553

M
mapingshuo 已提交
1554 1555
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
1556 1557 1558 1559 1560 1561
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
F
fengjiayi 已提交
1562

M
mapingshuo 已提交
1563
    # remove some backward ops
1564
    # TODO(Jiabin): Support this in prime later, it will prune add_grad, fix this problem
1565
    if not core._is_bwd_prim_enabled():
1566 1567 1568 1569 1570 1571
        not_need_ops = _find_not_need_ops(
            grad_op_descs, ops, input_grad_names_set
        )
        grad_op_descs = [
            op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
        ]
1572
    else:
C
co63oc 已提交
1573 1574 1575
        logging.debug(
            "Running backward composite and disable find_not_need_ops"
        )
1576

F
fengjiayi 已提交
1577
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1578 1579
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1580
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1581 1582
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1583
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1584
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1585
        if callbacks is not None:
1586
            assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1587 1588
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1589

F
fengjiayi 已提交
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
1603
    for block_id in range(program.num_blocks):
1604
        block_desc = program.block(block_id).desc
1605
        for op_idx in range(block_desc.op_size()):
1606
            op = block_desc.op(op_idx)
1607 1608 1609 1610
            if (
                op.has_attr("sub_block")
                and op._block_attr_id("sub_block") == sub_block_id
            ):
1611 1612
                return op

1613
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1614 1615 1616 1617
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1618
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1631
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1632
    """
1633 1634
    ops_to_remove = []
    '''
1635 1636 1637 1638 1639
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1650 1651 1652
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1653
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1654
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1655 1656 1657 1658 1659 1660 1661 1662 1663

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
1664 1665
            var
            for var in op_desc.input_arg_names()
1666 1667 1668
            if var != core.empty_var_name()
        ]
        outputs = [
1669 1670
            var
            for var in op_desc.output_arg_names()
1671 1672 1673
            if var != core.empty_var_name()
        ]

1674
        # If the outputs of grad op is empty, just remove it
1675 1676 1677 1678 1679
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1680
            If the output is not empty and there is any grad input, find
1681 1682 1683 1684
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
1685 1686
                    var
                    for var in grad_var_ins
1687
                    if block.desc.has_var_recursive(var.encode())
1688
                    or var in parent_op_vars
1689 1690 1691 1692
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1693 1694
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1695
                    work to this op! If I do not add the following code, this op
1696 1697
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1698 1699 1700
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1701
                        continue
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        # sum may create invalid variable, here to deal with it.
        if op_desc.type() == 'sum':
            new_inputs = []
            for grad_var_name in op_desc.input_arg_names():
                if block.desc.has_var_recursive(grad_var_name.encode()):
                    # meet invalid sum variables, remove the invalid operand.
                    new_inputs.append(grad_var_name)
            assert (
                len(new_inputs) > 0
            ), "After remove invalid variables, sum op have no inputs."
            op_desc.set_input("X", new_inputs)

F
fengjiayi 已提交
1715 1716 1717
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1718 1719 1720 1721
            if (
                block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
F
fengjiayi 已提交
1722
                continue
1723
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1724
            new_vars.add(grad_var_name)
1725
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1726 1727 1728
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1729
        op_desc.check_attrs()
F
fengjiayi 已提交
1730 1731
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1732

F
fengjiayi 已提交
1733 1734
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1735
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1736

1737 1738 1739
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1740

1741
def infershape_for_composite(block, grad_op_desc):
1742
    # NOTE: why pruning the operator with empty output here ?
C
co63oc 已提交
1743
    # Some backward operator will output empty var, which will cause infer
1744
    # shape error, such assign with input's stop_gradient=True
1745 1746 1747
    if len(grad_op_desc.output_arg_names()) == 0:
        return

1748
    # create output variable
1749
    new_vars = set()
1750
    for grad_var_name in grad_op_desc.output_arg_names():
1751 1752 1753 1754
        if not (
            block.desc.has_var_recursive(grad_var_name.encode())
            or grad_var_name == core.empty_var_name()
        ):
1755 1756 1757
            # NOTE: stop_gradient will be set in append_op
            desc = block.desc.var(grad_var_name.encode())
            block.create_var(name=grad_var_name, desc=desc, type=desc.type())
1758 1759
            new_vars.add(grad_var_name)

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
    # NOTE For the primitive operator generated by decompositing phi grad kernel,
    # we Operator to reconstruct the op_desc for reusing some complex logic, such
    # as processing dispensable input, intermediate output, extra attrs, etc...
    if framework.OpProtoHolder.instance().has_op_proto(grad_op_desc.type()):
        op = block.append_op(
            type=grad_op_desc.type(),
            inputs={
                name: [block._find_var_recursive(arg) for arg in args]
                for name, args in grad_op_desc.inputs().items()
            },
            outputs={
                name: [block._find_var_recursive(arg) for arg in args]
                for name, args in grad_op_desc.outputs().items()
            },
            # NOTE Runtime attr will be ignore as the c++ GetRuntimeAttr
C
co63oc 已提交
1775
            # interface cann't be exported to python. Please note the WARNING
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
            # message logged in RuntimeAttrs of composite_grad_desc_maker.h
            attrs=grad_op_desc.get_attr_map(),
        )
        op.desc._set_attr(
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.OpRole.Backward,
        )
        grad_op_desc.copy_from(op.desc)
    # For the backward operator, we reuse the logic of _append_backward_var
    else:
        op_desc = block.desc.append_op()
        op_desc.copy_from(grad_op_desc)
        op_desc._set_attr(
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.OpRole.Backward,
        )
        op_desc.check_attrs()
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        grad_op_desc.copy_from(op_desc)
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    if not framework.OpProtoHolder.instance().has_op_proto(grad_op_desc.type()):
        # NOTE: Some raw fluid grad operators which hadn't been decomposed may not
        # implement InferVarType method, such as elementwise_xx_grad, and it will
        # cause the dtype or shape of corresponding cotangent incorrect. This
        # patch set the cotangent dtype and shape same with corresponding
        # forward variable. For primitive operators, we have ensure all
        # InferVarType method to be executed correctly in PR#52818, we skip
        # this patch for primitive operators.
        for arg in grad_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, block)
1808 1809 1810 1811 1812


def _rename_grad_(
    block, start_op_idx, grad_to_var, target_grad_map, skip_rename_var_list
):
1813 1814 1815 1816 1817
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1818
                op_desc._rename_input(name, var_map[name])
1819 1820

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1821 1822
            if "@GRAD" not in name:
                continue
1823
            if block.desc.find_var(name.encode("ascii")):
1824 1825
                if name in skip_rename_var_list:
                    continue
Y
Yu Yang 已提交
1826
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1827
                op_desc._rename_output(name, new_name)
1828 1829
                var_map[name] = new_name

1830
    for g, ng in var_map.items():
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1842
        for var in list(block.vars.values()):
1843 1844 1845 1846 1847 1848 1849
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1861 1862 1863 1864 1865 1866 1867
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
1868
                elif isinstance(no_grad_var, str):
1869 1870 1871 1872
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
1873 1874
                        % (type(no_grad_var))
                    )
1875 1876
        else:
            raise TypeError(
1877 1878 1879 1880
                "The type of no_grad_set should be set or list or tuple, but received {}".format(
                    type(no_grad_set)
                )
            )
1881 1882 1883
    return no_grad_set_name


1884
@framework.static_only
1885 1886 1887 1888 1889 1890 1891 1892
def append_backward(
    loss,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
1893
    """
1894 1895
    :api_attr: Static Graph

1896
    This function appends backward part to main_program.
F
fengjiayi 已提交
1897

1898 1899
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1900 1901
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1902

1903 1904
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1905

1906
    Parameters:
1907
        loss(Tensor): The loss Tensor of the network.
1908
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1909
                                           that need to be updated by optimizers.
1910
                                           If it is None, all parameters
F
fengjiayi 已提交
1911
                                           will be updated.
1912
                                           Default: None.
1913 1914
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1915
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1916
                               be automatically added into this set.
1917
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1918
                               Default: None.
1919
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1920
                                               The callbacks are used for
1921 1922 1923 1924 1925 1926
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1927
                                               object must have two input
1928 1929
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1930
                                               the new gradient operator will
1931
                                               be added to. The ``context`` is a
1932
                                               map, whose keys are gradient
1933 1934 1935
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1936
                                               has another special key-value pair:
1937
                                               the key is string ``__current_op_desc__``
1938 1939 1940
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1941
                                               Default: None.
F
fengjiayi 已提交
1942 1943

    Returns:
1944 1945
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1946 1947

    Raises:
1948
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1949 1950 1951 1952

    Examples:
        .. code-block:: python

1953 1954
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1955

1956 1957 1958 1959 1960
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1961
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1962 1963
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1964 1965

            # Get all weights in main_program, not include bias.
1966
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1967 1968 1969
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1970
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1971 1972
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1973 1974
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1975 1976 1977
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1978
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1979 1980
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1981 1982
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1983 1984
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1985 1986
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1987 1988 1989
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1990
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1991

1992
    """
1993 1994 1995
    grad_op_id_to_fwd_op = (
        {}
    )  # for cuda graph usage, recording the mapping between grad op original id to fwd op
1996

1997 1998 1999
    check_type(
        loss, 'loss', framework.Variable, 'paddle.static.append_backward'
    )
Y
yuyang18 已提交
2000

Y
Fix bug  
yuyang18 已提交
2001 2002
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
2003
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
2004

2005 2006 2007
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
2008 2009
        | int(core.op_proto_and_checker_maker.OpRole.Loss),
    )
Y
yuyang18 已提交
2010

Y
Yang Yang 已提交
2011
    if callbacks is not None:
2012 2013 2014 2015 2016 2017
        check_type(
            callbacks,
            'callbacks',
            (list, tuple),
            'paddle.static.append_backward',
        )
Y
Yu Yang 已提交
2018

F
fengjiayi 已提交
2019
    program = loss.block.program
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
2030

F
fengjiayi 已提交
2031
    if no_grad_set is None:
2032
        no_grad_set = set()
2033 2034
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2035
    no_grad_dict = _get_stop_gradients_(program)
2036 2037
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
2038
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
2039

2040 2041 2042 2043 2044 2045 2046
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
2047 2048
            parent_idx=current_block.parent_idx
        )
2049 2050 2051 2052 2053 2054
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
2055 2056
        program, current_block_idx
    )
2057 2058 2059 2060

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
2061

F
fengjiayi 已提交
2062 2063
    grad_to_var = dict()

2064
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
2065
    op_desc = _create_loss_op_desc_(loss)
2066
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
2067 2068 2069 2070 2071 2072
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
2073 2074
            map(_strip_grad_suffix_, no_grad_dict[block_idx])
        )
2075 2076

        op_path_dict = dict()
2077 2078 2079
        op_path = _find_op_path_(
            block, [loss], [], block_no_grad_set, op_path_dict
        )
2080

2081 2082 2083
        no_grad_vars = _find_no_grad_vars(
            block, op_path, [loss], block_no_grad_set
        )
2084 2085 2086

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
2087 2088
            list(map(_append_grad_suffix_, block_no_grad_set))
        )
2089 2090 2091 2092 2093

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

2094
        # TODO(liym27): need a better design.
2095 2096 2097 2098 2099
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

2100
        # TODO: support _append_backward_ops_with_checkpoints_ in
2101
        #  sub-block (control flow)
J
JZ-LIANG 已提交
2102
        is_recompute = False
2103
        if (
2104
            checkpoints is not None
2105 2106 2107
            and isinstance(checkpoints, list)
            and len(checkpoints) > 0
        ):
J
JZ-LIANG 已提交
2108
            is_recompute = True
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
            (
                program_stat,
                checkpoint_names,
                vars_should_be_hold,
                recompute_segments,
            ) = _append_backward_ops_with_checkpoints_(
                root_block,
                op_path,
                [loss],
                root_block,
                no_grad_dict,
                grad_to_var,
                checkpoints,
                grad_op_id_to_fwd_op,
            )
2124 2125 2126 2127
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
2128
                [loss],
2129 2130 2131 2132
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
2133
                input_grad_names_set=input_grad_names_set,
2134
                op_path_dict=op_path_dict,
2135
                distop_context=distop_context,
2136 2137
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
2138 2139 2140 2141 2142

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
2143 2144 2145 2146 2147
    fwd_op_num = (
        block_fwd_op_num_dict[current_block_idx]
        if not is_in_control_flow
        else 0
    )
2148 2149

    # Because append_backward may be called multiple times,
2150 2151
    # we need rename the internal gradient variables so that they have
    # different names.
2152
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {}, [])
2153

2154 2155 2156
    _append_backward_vars_(
        target_grad_block, fwd_op_num, grad_to_var, grad_info_map
    )
F
fengjiayi 已提交
2157

F
fengjiayi 已提交
2158
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
2159
    program._sync_with_cpp()
F
fengjiayi 已提交
2160

2161 2162 2163 2164 2165 2166
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

2167
    if parameter_list is not None:
2168 2169 2170 2171 2172 2173
        check_type(
            parameter_list,
            'parameter_list',
            (list, tuple, set),
            'fluid.backward.append_backward',
        )
2174 2175
        parameters = []
        for i, param in enumerate(parameter_list):
2176 2177 2178 2179 2180 2181
            check_type(
                param,
                'parameter_list[%s]' % i,
                (framework.Variable, str),
                'fluid.backward.append_backward',
            )
2182 2183
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
2184
            elif isinstance(param, str):
2185
                parameters.append(param)
2186
    else:
F
fengjiayi 已提交
2187
        params = program.global_block().all_parameters()
C
chengduo 已提交
2188
        parameters = [param.name for param in params if param.trainable]
2189

2190
    params_and_grads = []
2191
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
2192
    for param in parameters:
2193
        if param not in grad_info_map:
F
fengjiayi 已提交
2194
            continue
F
update  
fengjiayi 已提交
2195
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
2196
        grad_block = grad_info[1]
2197
        if not grad_block.has_var(grad_info[0]):
2198 2199 2200 2201 2202
            raise ValueError(
                "grad block[{0}] did not have grad var {1}".format(
                    grad_info[1], grad_info[0]
                )
            )
2203
        # Get the param var from the global block
F
fengjiayi 已提交
2204
        param_var = program.global_block().var(param)
2205
        grad_var = grad_block.var(grad_info[0])
2206 2207 2208 2209 2210
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
2211
        else:
2212
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
2213 2214 2215 2216

    for p, g in params_and_grads:
        if g is None:
            continue
2217 2218 2219
        ops = (
            grad_block.ops if is_in_control_flow else program.global_block().ops
        )
2220
        for op in reversed(ops):
Y
yuyang18 已提交
2221 2222 2223 2224 2225 2226 2227
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
2228
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
2229 2230
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
2231
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
2232

J
JZ-LIANG 已提交
2233 2234 2235 2236
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
2237 2238 2239 2240 2241


def _as_list(x):
    if x is None:
        return []
2242
    return list(x) if isinstance(x, Sequence) else [x]
2243 2244


2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

2271 2272 2273 2274 2275 2276
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
2277 2278 2279 2280 2281 2282 2283 2284 2285
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
2286 2287 2288
                    if not block.desc.find_var(
                        name.encode()
                    ) and parent_block.desc.find_var(name.encode()):
2289 2290 2291 2292 2293 2294 2295 2296
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


2297 2298 2299
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
2300
    those vars belong to no_grad_var.
2301
    """
2302
    output_names = _get_output_names(block, targets)
2303 2304 2305 2306 2307
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
2308 2309 2310 2311 2312
                if (
                    out_var not in output_names
                    and out_var not in op.desc.input_arg_names()
                    and not block.vars[out_var].stop_gradient
                ):
2313 2314 2315 2316 2317 2318 2319
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


2320 2321 2322
def _find_op_path_(
    block, targets, inputs, no_grad_set, op_path_dict=None, is_while=False
):
2323
    """
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
2337
    """
2338

2339
    input_names = set([inp.name for inp in inputs])
2340 2341 2342
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
2343 2344 2345 2346 2347 2348

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
2349 2350
            if _some_in_set_(
                op.desc.input_arg_names(), input_names
2351
            ) and not core.has_empty_grad_op_maker(op.type):
2352 2353 2354 2355 2356 2357 2358
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2359 2360 2361 2362
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2363 2364 2365
            sub_block_path = _get_sub_block_path(
                sub_block, op, set(), op_path_dict, sub_block_target_names
            )
2366 2367
            op_path_dict[sub_block_id] = sub_block_path

2368 2369
        if _some_in_set_(
            op.desc.output_arg_names(), output_names
2370
        ) and not core.has_empty_grad_op_maker(op.type):
2371 2372 2373 2374 2375 2376
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2377 2378 2379 2380
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
2381 2382 2383
            if relevant_op_flags[i] == False and _some_in_set_(
                op.desc.output_arg_names(), output_names
            ):
2384
                relevant_op_flags[i] = True
2385
                if not core.has_empty_grad_op_maker(op.type):
H
hong 已提交
2386 2387 2388
                    for name in op.desc.input_arg_names():
                        if name not in no_grad_set:
                            output_names.add(name)
2389

2390 2391 2392 2393 2394 2395 2396
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2397
                if name not in input_names and block.vars[name].stop_gradient:
2398 2399 2400 2401 2402
                    no_grad_set.add(name)

    return op_path


2403 2404 2405 2406 2407 2408
def calc_gradient_helper(
    targets, inputs, target_gradients=None, no_grad_set=None
):
    '''
    Calculate gradient and return grad_info_map
    '''
2409 2410 2411 2412 2413 2414
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2415 2416
    # increase appending gradients times
    prog._appending_grad_times += 1
2417 2418 2419 2420 2421 2422 2423
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
2424 2425
            "Should have the same number of target_gradients as targets"
        )
2426 2427 2428

    if no_grad_set is None:
        no_grad_set = set()
2429 2430
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2431
    no_grad_dict = _get_stop_gradients_(prog)
2432
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2433 2434 2435

    fwd_op_num = block.desc.op_size()

2436 2437
    input_grad_names_set = set()

2438
    target_grad_map = {}
2439
    rename_var_map = {}
2440
    skip_rename_var_list = []
2441 2442
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2443
        grad_name = _append_grad_suffix_(target.name)
2444
        if grad is None:
2445
            op_desc = _create_op_desc_(
2446 2447
                "fill_any_like",
                {"X": [target.name]},
2448 2449 2450 2451 2452 2453
                {"Out": [grad_name]},
                {
                    "value": 1.0,
                    "dtype": target.dtype,
                },
            )
2454
            block.desc.append_op().copy_from(op_desc)
2455
            block.program._sync_with_cpp()
2456
            input_grad_names_set.add(grad_name)
2457
            skip_rename_var_list.append(grad_name)
2458 2459 2460 2461 2462
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2463 2464 2465
                    "The shapes of target and grad are different: %s %s"
                    % (target.name, grad.name)
                )
2466
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2467
            input_grad_names_set.add(grad.name)
2468
            rename_var_map[grad_name] = grad.name
2469

2470 2471 2472
    if core._is_bwd_prim_enabled():
        core._set_prim_target_grad_name(target_grad_map)

2473
    # For double backward, input_grad_names is used for filter
2474 2475
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2476 2477
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2478
        rename_var_map = {}
2479 2480 2481 2482 2483 2484

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2485 2486

    op_path_dict = dict()
2487 2488 2489
    op_path = _find_op_path_(
        block, targets, inputs, block_no_grad_set, op_path_dict
    )
2490 2491

    # find no grad var by op_path
2492 2493 2494
    no_grad_vars = _find_no_grad_vars(
        block, op_path, targets, block_no_grad_set
    )
2495 2496
    block_no_grad_set.update(no_grad_vars)

2497
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2498 2499
    grad_to_var = dict()
    grad_info_map = dict()
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
    _append_backward_ops_(
        block,
        op_path,
        targets,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map,
    )
2511 2512 2513 2514

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
2515 2516 2517
    _rename_grad_(
        block, fwd_op_num, grad_to_var, target_grad_map, skip_rename_var_list
    )
2518 2519

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2520
    prog._sync_with_cpp()
2521
    return grad_info_map
2522

2523 2524 2525

def _get_grad_vars(grad_info_map, inputs):
    inputs = _as_list(inputs)
2526 2527 2528 2529 2530 2531 2532 2533 2534
    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    return grad_vars


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the gradients of targets to inputs.

    Args:
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
            of targets which has the same shape with targets, If None, ones will
            be created for them.
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
                               Default: None.

    Return:
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
        will be None
    """

    # NOTE: If you want to modify the logic of calc_gradient, please modify
    # it inside the calc_gradient_helper and _get_grad_vars functions
    # to ensure the correctness of dy2st mode.
    grad_info_map = calc_gradient_helper(
        targets,
        inputs,
        target_gradients=target_gradients,
        no_grad_set=no_grad_set,
    )

    grad_vars = _get_grad_vars(grad_info_map, inputs)
2572 2573 2574 2575 2576

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2577 2578


2579
@framework.static_only
2580 2581
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2582

2583 2584 2585
    Backpropagate the gradients of targets to inputs.

    Args:
2586 2587 2588
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2589 2590
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2591 2592 2593
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2594
            in this set will be added to the default set. Default: None.
2595 2596

    Return:
2597 2598
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2599 2600 2601
        will be None.

    Examples:
2602

2603
        .. code-block:: python
2604
          :name: code-example
2605 2606 2607 2608
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2609

2610
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2611
            x.stop_gradient=False
2612 2613 2614
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2615
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2616
    """
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
    check_type(
        targets,
        'targets',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        inputs,
        'inputs',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        target_gradients,
        'target_gradients',
        (framework.Variable, list, tuple, type(None)),
        'paddle.static.gradients',
    )
2635 2636
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
    check_type(
        program,
        'program',
        paddle.fluid.Program,
        'paddle.static.gradients_with_optimizer',
    )
    check_type(
        optimizer,
        'optimizer',
        paddle.optimizer.Optimizer,
        'paddle.static.gradients_with_optimizer',
    )
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
2707 2708 2709 2710 2711 2712
        pram_grads = [
            (pram, grad)
            for pram, grad in zip(inputs, grads)
            if isinstance(pram, paddle.fluid.framework.Parameter)
            and grad is not None
        ]
2713 2714 2715 2716

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads