Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b927ce81
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b927ce81
编写于
1月 17, 2023
作者:
J
Jiabin Yang
提交者:
GitHub
1月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add test for composite with dy2st (#49873)
上级
791637cf
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
269 addition
and
28 deletion
+269
-28
paddle/fluid/prim/utils/static/composite_grad_desc_maker.h
paddle/fluid/prim/utils/static/composite_grad_desc_maker.h
+3
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+8
-4
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_add_grad.py
...ests/unittests/prim/prim/vjp/static/test_comp_add_grad.py
+44
-7
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_add_tanh_grad.py
...unittests/prim/prim/vjp/static/test_comp_add_tanh_grad.py
+50
-5
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_div_grad.py
...ests/unittests/prim/prim/vjp/static/test_comp_div_grad.py
+42
-3
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_sqrt_grad.py
...sts/unittests/prim/prim/vjp/static/test_comp_sqrt_grad.py
+40
-3
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_sub_grad.py
...ests/unittests/prim/prim/vjp/static/test_comp_sub_grad.py
+42
-3
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_tanh_grad.py
...sts/unittests/prim/prim/vjp/static/test_comp_tanh_grad.py
+40
-3
未找到文件。
paddle/fluid/prim/utils/static/composite_grad_desc_maker.h
浏览文件 @
b927ce81
...
...
@@ -477,6 +477,9 @@ class GradCompositeOpMakerBase {
void
RecoverOutputName
(
const
paddle
::
experimental
::
Tensor
&
output
,
const
std
::
string
&
origin_name
)
{
if
(
origin_name
==
framework
::
kEmptyVarName
)
return
;
VLOG
(
4
)
<<
"Recover: "
<<
static_cast
<
prim
::
DescTensor
*>
(
output
.
impl
().
get
())
->
Name
()
<<
" To: "
<<
origin_name
;
prim
::
StaticCompositeContext
::
Instance
().
GetBlock
()
->
RenameVar
(
static_cast
<
prim
::
DescTensor
*>
(
output
.
impl
().
get
())
->
Name
(),
origin_name
);
...
...
python/paddle/fluid/backward.py
浏览文件 @
b927ce81
...
...
@@ -1492,11 +1492,15 @@ def _append_backward_ops_(
)
# remove some backward ops
not_need_ops
=
_find_not_need_ops
(
grad_op_descs
,
ops
,
input_grad_names_set
)
# TODO(Jiabin): Support this in prime later, it will prune add_grad, fix this problem
if
not
core
.
is_prim_enabled
():
not_need_ops
=
_find_not_need_ops
(
grad_op_descs
,
ops
,
input_grad_names_set
)
grad_op_descs
=
[
op_desc
for
op_desc
in
grad_op_descs
if
op_desc
not
in
not_need_ops
]
grad_op_descs
=
[
op_desc
for
op_desc
in
grad_op_descs
if
op_desc
not
in
not_need_ops
]
# append op_desc in grad_op_descs to target_block
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_add_grad.py
浏览文件 @
b927ce81
...
...
@@ -21,6 +21,23 @@ import paddle
from
paddle.fluid
import
core
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
,
y
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
add
(
tmp
,
y
)
return
out
@
param
.
parameterized_class
(
(
'primal0'
,
'primal1'
,
'dtype'
),
[
...
...
@@ -57,11 +74,33 @@ class TestAddGradComp(unittest.TestCase):
cls
.
primal0
=
cls
.
primal0
.
astype
(
cls
.
dtype
)
cls
.
primal1
=
cls
.
primal1
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
y
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
self
.
y
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
,
self
.
y
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
,
self
.
y
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-7
,
atol
=
1e-7
,
)
paddle
.
enable_static
()
def
test_tanh_grad_comp
(
self
):
def
actual
(
primal0
,
primal1
):
...
...
@@ -73,8 +112,7 @@ class TestAddGradComp(unittest.TestCase):
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
z
=
paddle
.
add
(
x
,
y
)
out
=
paddle
.
tanh
(
z
)
res
=
paddle
.
static
.
gradients
([
out
],
[
x
,
y
])
res
=
paddle
.
static
.
gradients
([
z
],
[
x
,
y
])
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
...
...
@@ -100,8 +138,7 @@ class TestAddGradComp(unittest.TestCase):
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
z
=
paddle
.
add
(
x
,
y
)
out
=
paddle
.
tanh
(
z
)
res
=
paddle
.
static
.
gradients
([
out
],
[
x
,
y
])
res
=
paddle
.
static
.
gradients
([
z
],
[
x
,
y
])
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_add_tanh_grad.py
浏览文件 @
b927ce81
...
...
@@ -21,6 +21,24 @@ import paddle
from
paddle.fluid
import
core
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
,
y
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
add
(
tmp
,
y
)
res
=
paddle
.
tanh
(
out
)
return
res
@
param
.
parameterized_class
(
(
'primal0'
,
'primal1'
,
'dtype'
),
[
...
...
@@ -57,13 +75,37 @@ class TestDivGradComp(unittest.TestCase):
cls
.
primal0
=
cls
.
primal0
.
astype
(
cls
.
dtype
)
cls
.
primal1
=
cls
.
primal1
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
y
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
self
.
y
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
,
self
.
y
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
,
self
.
y
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-7
,
atol
=
1e-7
,
)
paddle
.
enable_static
()
def
test_tanh_grad_comp
(
self
):
paddle
.
enable_static
()
def
actual
(
primal0
,
primal1
):
core
.
set_prim_enabled
(
True
)
mp
,
sp
=
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()
...
...
@@ -73,7 +115,8 @@ class TestDivGradComp(unittest.TestCase):
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
z
=
paddle
.
add
(
x
,
y
)
res
=
paddle
.
static
.
gradients
([
z
],
[
x
,
y
])
out
=
paddle
.
tanh
(
z
)
res
=
paddle
.
static
.
gradients
([
out
],
[
x
,
y
])
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
...
...
@@ -99,7 +142,8 @@ class TestDivGradComp(unittest.TestCase):
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
z
=
paddle
.
add
(
x
,
y
)
res
=
paddle
.
static
.
gradients
([
z
],
[
x
,
y
])
out
=
paddle
.
tanh
(
z
)
res
=
paddle
.
static
.
gradients
([
out
],
[
x
,
y
])
exe
=
paddle
.
static
.
Executor
()
exe
.
run
(
sp
)
out
=
exe
.
run
(
...
...
@@ -129,6 +173,7 @@ class TestDivGradComp(unittest.TestCase):
atol
=
0
,
)
core
.
set_prim_enabled
(
False
)
paddle
.
disable_static
()
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_div_grad.py
浏览文件 @
b927ce81
...
...
@@ -21,6 +21,23 @@ import paddle
from
paddle.fluid
import
core
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
,
y
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
divide
(
tmp
,
y
)
return
out
@
param
.
parameterized_class
(
(
'primal0'
,
'primal1'
,
'dtype'
),
[
...
...
@@ -57,11 +74,33 @@ class TestDivGradComp(unittest.TestCase):
cls
.
primal0
=
cls
.
primal0
.
astype
(
cls
.
dtype
)
cls
.
primal1
=
cls
.
primal1
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
y
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
self
.
y
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
,
self
.
y
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
,
self
.
y
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-6
,
atol
=
1e-6
,
)
paddle
.
enable_static
()
def
test_tanh_grad_comp
(
self
):
def
actual
(
primal0
,
primal1
):
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_sqrt_grad.py
浏览文件 @
b927ce81
...
...
@@ -26,6 +26,23 @@ import parameterized as param
import
paddle
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
sqrt
(
tmp
)
return
out
@
param
.
parameterized_class
(
(
'primal'
,
'cotangent'
,
'dtype'
),
[
...
...
@@ -38,11 +55,31 @@ class TestSqrtGradComp(unittest.TestCase):
cls
.
primal
=
cls
.
primal
.
astype
(
cls
.
dtype
)
cls
.
cotangent
=
cls
.
cotangent
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-7
,
atol
=
1e-7
,
)
paddle
.
enable_static
()
def
test_sqrt_grad_comp
(
self
):
def
actual
(
primal
,
cotangent
):
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_sub_grad.py
浏览文件 @
b927ce81
...
...
@@ -21,6 +21,23 @@ import paddle
from
paddle.fluid
import
core
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
,
y
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
subtract
(
tmp
,
y
)
return
out
@
param
.
parameterized_class
(
(
'primal0'
,
'primal1'
,
'dtype'
),
[
...
...
@@ -58,11 +75,33 @@ class TestDivGradComp(unittest.TestCase):
cls
.
primal0
=
cls
.
primal0
.
astype
(
cls
.
dtype
)
cls
.
primal1
=
cls
.
primal1
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
y
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
self
.
y
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
,
self
.
y
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
,
self
.
y
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-7
,
atol
=
1e-7
,
)
paddle
.
enable_static
()
def
test_tanh_grad_comp
(
self
):
def
actual
(
primal0
,
primal1
):
...
...
python/paddle/fluid/tests/unittests/prim/prim/vjp/static/test_comp_tanh_grad.py
浏览文件 @
b927ce81
...
...
@@ -26,6 +26,23 @@ import parameterized as param
import
paddle
def
apply_to_static
(
net
,
use_cinn
):
build_strategy
=
paddle
.
static
.
BuildStrategy
()
build_strategy
.
build_cinn_pass
=
use_cinn
return
paddle
.
jit
.
to_static
(
net
,
build_strategy
=
build_strategy
)
class
PrimeNet
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
):
super
(
PrimeNet
,
self
).
__init__
()
self
.
fc
=
paddle
.
nn
.
Linear
(
4
,
4
)
def
forward
(
self
,
x
):
tmp
=
self
.
fc
(
x
)
out
=
paddle
.
tanh
(
tmp
)
return
out
@
param
.
parameterized_class
(
(
'primal'
,
'cotangent'
,
'dtype'
),
[
...
...
@@ -38,11 +55,31 @@ class TestTanhGradComp(unittest.TestCase):
cls
.
primal
=
cls
.
primal
.
astype
(
cls
.
dtype
)
cls
.
cotangent
=
cls
.
cotangent
.
astype
(
cls
.
dtype
)
def
setUp
(
self
):
paddle
.
enable_static
()
def
train
(
self
,
use_prim
,
use_cinn
):
paddle
.
seed
(
2022
)
self
.
x
=
paddle
.
randn
([
2
,
4
])
self
.
x
.
stop_gradient
=
False
net
=
PrimeNet
()
core
.
set_prim_enabled
(
use_prim
)
net
=
apply_to_static
(
net
,
use_cinn
)
out
=
net
(
self
.
x
)
res
=
paddle
.
autograd
.
grad
(
out
,
[
self
.
x
])
return
res
def
te
arDow
n
(
self
):
def
te
st_cin
n
(
self
):
paddle
.
disable_static
()
dy_res
=
self
.
train
(
use_prim
=
False
,
use_cinn
=
False
)
comp_st_cinn_res
=
self
.
train
(
use_prim
=
True
,
use_cinn
=
False
)
for
i
in
range
(
len
(
dy_res
)):
np
.
testing
.
assert_allclose
(
comp_st_cinn_res
[
i
].
numpy
(),
dy_res
[
i
].
numpy
(),
rtol
=
1e-7
,
atol
=
1e-7
,
)
paddle
.
enable_static
()
def
test_tanh_grad_comp
(
self
):
def
actual
(
primal
,
cotangent
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录