backward.py 102.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import logging
23
from . import unique_name
24
from . import log_helper
L
liym27 已提交
25
import paddle.fluid
26
from .data_feeder import check_type
27
import warnings
28

29
from collections.abc import Sequence
30

M
mapingshuo 已提交
31 32 33 34 35
__all__ = [
    'append_backward',
    'gradients',
]

36 37 38
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
39

M
mapingshuo 已提交
40

41
class ProgramStats:
M
mapingshuo 已提交
42 43 44 45 46 47 48 49 50
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
51 52 53 54
            if (
                len(self.var_op_deps[name]["var_as_output_ops"]) == 0
                and len(self.var_op_deps[name]["var_as_input_ops"]) > 0
            ):
M
mapingshuo 已提交
55 56 57 58 59 60 61 62 63 64 65
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
66
            if op.desc.type() == "seed":
M
mapingshuo 已提交
67 68 69 70 71 72 73 74 75 76 77
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
107

M
mapingshuo 已提交
108 109
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
110 111 112 113 114 115
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
116 117 118 119
            return (
                op.desc.type() == 'cast'
                and self.block.var(op.desc.input_arg_names()[0]).persistable
            )
J
JZ-LIANG 已提交
120 121 122 123 124

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
125 126 127 128 129 130
                _logger.info(
                    "found amp-cast op: {}, : {}".format(
                        self.ops[idx_].desc.type(),
                        self.ops[idx_].desc.input_arg_names()[0],
                    )
                )
J
JZ-LIANG 已提交
131 132 133 134 135 136 137
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
138 139 140 141 142
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
143
                    self.op_deps[i]["in_ops"].extend(
144 145
                        self.var_op_deps[name]["var_as_output_ops"]
                    )
M
mapingshuo 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

165 166 167 168
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
169
                _logger.info(
170
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
171 172
                    % name
                )
173 174 175 176 177
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
178 179
                    (name, max(self.var_op_deps[name]["var_as_output_ops"]))
                )
180 181 182
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
183 184 185 186 187 188
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
189
        while op_idx < len(self.ops):
M
mapingshuo 已提交
190 191 192 193
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
194 195 196 197
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
198 199
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
200 201 202
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
M
mapingshuo 已提交
203 204 205 206 207
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
208 209
                stop_gradient=False,
            )
M
mapingshuo 已提交
210
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
211

212 213
            op_device_attr_name = (
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
214 215 216 217 218
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

219
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
220
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
221 222 223 224 225 226 227
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed, 'op_device': op_device, 'force_cpu': True},
            )
M
mapingshuo 已提交
228 229 230 231 232 233 234 235
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
236 237

def _pretty_op_desc_(op_desc, prefix):
238 239 240 241 242 243 244 245
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % (
        prefix + "_op",
        str(op_desc.type()),
        prefix + "_input",
        " ".join(op_desc.input_arg_names()),
        prefix + "_output",
        " ".join(op_desc.output_arg_names()),
    )
M
mapingshuo 已提交
246 247 248
    return out_s


249 250 251
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, grad_op_id_to_fwd_op=None
):
M
mapingshuo 已提交
252 253 254
    if len(descs) == 0:
        return []
    result_descs = []
255
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
256 257
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
258 259
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
260 261
        if isinstance(desc, framework.Operator):
            desc = desc.desc
262
            origin_is_operator = True
M
mapingshuo 已提交
263 264 265 266 267 268 269 270 271
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
272 273
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
274 275 276
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
277 278
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
279 280 281 282
            result_descs.append(new_op_desc)
    return result_descs


283
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
284 285 286
    if len(descs) == 0:
        return []
    result_descs = []
287
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
288 289 290
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
291 292 293
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
294 295 296 297 298 299
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
300 301
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
302 303 304 305 306 307 308
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
309 310 311 312
        if (
            len(op.output_arg_names) == 1
            and op.output_arg_names[0] == loss.name
        ):
M
mapingshuo 已提交
313 314 315
            loss.op = op
            break
    if loss.op is None:
C
co63oc 已提交
316
        raise ValueError("loss.op is None. Should not happen")
317 318


319 320
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
321
    Traverse all ops in op_descs[begin_idx : end_idx],
322 323
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
324 325 326
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
327
        end_idx = len(op_descs)
328 329 330 331 332 333 334 335 336 337 338 339 340
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
341 342


F
fengjiayi 已提交
343
def _create_op_desc_(op_type, inputs, outputs, attrs):
344 345 346
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
347 348
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
349
    for para, args in inputs.items():
350 351 352
        op_desc.set_input(
            para,
            list(
353 354 355 356 357 358
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
359
    for para, args in outputs.items():
360 361 362
        op_desc.set_output(
            para,
            list(
363 364 365 366 367 368
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
Y
yuyang18 已提交
369 370

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
371
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
372 373 374

    if op_role_attr_name not in attrs:
        attrs[
375 376
            op_role_attr_name
        ] = core.op_proto_and_checker_maker.OpRole.Backward
377 378
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
379
    for name, val in attrs.items():
F
fengjiayi 已提交
380 381 382
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
383
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
384 385 386
    return op_desc


M
mapingshuo 已提交
387
def _create_loss_op_desc_(loss):
388 389 390 391 392
    # 0D Tensor or 0-Size Tensor
    if len(loss.shape) == 0 or 0 in loss.shape:
        create_shape = loss.shape
    else:
        create_shape = [1]
M
mapingshuo 已提交
393
    op_desc = _create_op_desc_(
394 395 396 397
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
398
            "shape": create_shape,
399 400 401 402 403 404
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName(): int(
                core.op_proto_and_checker_maker.OpRole.Backward
            )
405
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
406 407 408 409 410
            core.op_proto_and_checker_maker.kOpDeviceAttrName(): loss.op.attr(
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
            ),
        },
    )
M
mapingshuo 已提交
411 412 413
    return op_desc


414
def _infer_var_data_type_shape_(grad_var_name, block):
415
    """
416
    Infer the data type and shape of given grad variable
417
    """
418
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
419
    fwd_name = _strip_grad_suffix_(grad_var_name)
420 421
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
422
        grad_var.set_dtype(fwd_var.dtype())
423
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
424
    else:
425 426
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
427 428 429 430
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".format(
                grad_var_name
            )
        )
431
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
432 433


F
fengjiayi 已提交
434
def _all_in_set_(cands, s):
435 436 437
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
438 439
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
440 441 442 443 444 445
    for c in cands:
        if not c in s:
            return False
    return True


446 447 448 449 450 451
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
452 453
    for c in cands:
        if c in s:
454 455 456 457
            return True
    return False


F
fengjiayi 已提交
458
def _strip_grad_suffix_(name):
459
    """
M
mapingshuo 已提交
460
    Strip the grad suffix from the given variable name
461 462 463
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
464
    pos = name.find(core.grad_var_suffix())
465 466
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
467
    return new_name[new_pos + 5 :] if new_pos != -1 else new_name
F
fengjiayi 已提交
468 469 470


def _append_grad_suffix_(name):
471 472 473 474
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
475
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
476 477


478 479 480
def _accumulate_gradients_by_sum_op_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
481 482 483 484 485 486
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
487 488 489 490 491 492 493
        _create_op_desc_(
            "sum",
            {"X": renamed_vars[var_name]},
            {"Out": [var_name]},
            {"use_mkldnn": False, "op_device": op_device},
        )
    )
494 495 496
    renamed_vars[var_name] = [var_name]


497 498 499
def _accumulate_gradients_by_add_ops_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
500 501 502 503 504 505 506 507 508 509 510 511 512 513
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
514 515 516 517 518 519 520
            _create_op_desc_(
                "grad_add",
                {"X": [x_name], "Y": [y_name]},
                {"Out": [out_name]},
                {"use_mkldnn": False, "op_device": op_device},
            )
        )
521 522 523
    renamed_vars[var_name] = [var_name]


524 525 526
def _addup_repetitive_outputs_(
    op_descs, block_idx, grad_var_to_var=None, grad_op_id_to_fwd_op=None
):
527 528
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
529 530
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
531
    `sum_op`s are added to implement the accumulate.
532 533 534 535

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
536
    """
537

538
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
539
    # pending_sum_ops = []
540
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
541
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
542
    renamed_vars = collections.defaultdict(list)
543
    renamed_var_start_idx = collections.defaultdict(list)
544
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
545
    for idx, op_desc in enumerate(op_descs):
546 547
        op_device_attr_name = (
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
T
tangwei12 已提交
548 549 550 551
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
552
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
553 554
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
555
            if len(renamed_vars[var_name]) > 1:
556
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
557 558 559 560 561 562 563
                    _accumulate_gradients_by_sum_op_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
564
                else:
565 566 567 568 569 570 571
                    _accumulate_gradients_by_add_ops_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
572

F
update  
fengjiayi 已提交
573
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
574 575
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
576 577
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
578
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
579
                #    continue
580 581 582 583
                if (
                    var_name == core.empty_var_name()
                    or var_name in op_desc.input_arg_names()
                ):
F
fengjiayi 已提交
584 585 586 587 588
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
589
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
590 591
                else:
                    if len(renamed_vars[var_name]) == 1:
592 593 594 595 596 597 598
                        new_name = (
                            var_name
                            + "@RENAME@block"
                            + str(block_idx)
                            + "@"
                            + str(var_rename_count[var_name])
                        )
F
fengjiayi 已提交
599
                        var_rename_count[var_name] += 1
600 601 602 603
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
604 605
                                    var_name
                                ]
606 607
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
608 609
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
610 611 612 613
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
614 615 616 617 618 619 620
                        _rename_arg_(
                            op_descs,
                            var_name,
                            new_name,
                            renamed_var_start_idx[var_name],
                            idx,
                        )
F
fengjiayi 已提交
621 622
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
623 624 625
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
626 627 628 629 630 631 632
                                op_desc.set_output(
                                    p,
                                    [
                                        new_name if x == var_name else x
                                        for x in p_arg_names
                                    ],
                                )
F
update  
fengjiayi 已提交
633 634 635 636 637 638

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

639 640 641 642 643 644 645
                    new_name = (
                        var_name
                        + "@RENAME@block"
                        + str(block_idx)
                        + "@"
                        + str(var_rename_count[var_name])
                    )
F
fengjiayi 已提交
646
                    var_rename_count[var_name] += 1
647 648 649 650
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
651 652
                                var_name
                            ]
653 654
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
655 656 657
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
658
                    # record the latest device
659
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
660

661
    for var_name, inputs in renamed_vars.items():
662 663
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
664 665 666 667 668 669 670
                _accumulate_gradients_by_sum_op_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
671
            else:
672 673 674 675 676 677 678
                _accumulate_gradients_by_add_ops_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
679

680
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
681
    # sum_op descs are sorted according to their insert position
682
    for key, value in collections.OrderedDict(
683 684
        reversed(list(pending_sum_ops.items()))
    ).items():
685 686 687 688 689 690 691

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
692 693
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
694 695 696 697 698 699 700
            if (
                grad_op_id_to_fwd_op is not None
                and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None
                )
                is not None
            ):
701
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
702 703
                    op_descs[target_idx].original_id()
                ]
704
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
705 706 707 708

    return op_descs


709 710 711
def _remove_no_grad_branch_(
    op_descs, no_grad_set, grad_op_id_to_fwd_op=None, target_vars=[]
):
712 713 714 715
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
716
        2. all grad inputs of the grad op are in 'no_grad_set'
717
    NOTE: we will skip target_vars's grad name.
718
    """
F
fengjiayi 已提交
719 720

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
721 722
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
723
            return True
724 725 726 727
        if _all_in_set_(
            [
                name
                for name in op_desc.input_arg_names()
728
                if name.find(core.grad_var_suffix()) != -1
729 730 731
            ],
            no_grad_set,
        ):
732
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
733 734 735
            return True
        return False

F
fengjiayi 已提交
736
    # Remove ops whose outputs are all in no_grad_dict
737
    target_grad_var_names = set(
738 739
        [var.name + core.grad_var_suffix() for var in target_vars]
    )
740
    op_descs = [
741 742
        op_desc
        for op_desc in op_descs
743 744
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
745
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
746
    to_insert = []
F
fengjiayi 已提交
747
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
748
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
749
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
750
            if core.grad_var_suffix() in arg and arg in no_grad_set:
751
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
752 753
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
754 755 756 757 758 759
                new_op_desc = _create_op_desc_(
                    "fill_any_like",
                    {"X": [x_in]},
                    {"Out": [arg]},
                    {'value': 0, 'dtype': -1},
                )
760
                # update the mapping between fwd and bwd
761 762 763 764 765 766 767 768
                if (
                    grad_op_id_to_fwd_op is not None
                    and grad_op_id_to_fwd_op.get(op_desc.original_id(), None)
                    is not None
                ):
                    grad_op_id_to_fwd_op[
                        new_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
769
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
770

771
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
772 773 774 775

    return op_descs


C
chengduo 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
791
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
792 793
    """

794
    class Var:
C
chengduo 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

809
    class Op:
C
chengduo 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
850 851 852
    forward_vars_set = (
        set() if input_grad_names_set is None else set(input_grad_names_set)
    )
C
chengduo 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
892 893 894
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
895
    # not_need_op_descs will be whole graph, this IF clause avoids it.
896 897 898
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
899 900


Y
Yang Yang 已提交
901 902
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
903
    proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang 已提交
904 905 906
    return proto.__str__()


907 908 909 910 911 912 913 914 915 916
def _append_backward_ops_with_checkpoints_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    checkpoints,
    grad_op_id_to_fwd_op=None,
):
M
mapingshuo 已提交
917 918 919 920 921 922
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
923
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
924 925 926 927 928 929 930
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
931
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
932 933 934 935 936
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
937 938 939
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
940 941
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
942 943
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
944 945
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
946
    """
M
mapingshuo 已提交
947 948

    checkpoints_name = [x.name for x in checkpoints]
949
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
950 951
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
952
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
953
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
954
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
955
    program_stat.build_stats()
M
mapingshuo 已提交
956 957

    # 1) find ops between checkpoints, i.e. recompute_segments
958
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
959 960
    segments = []

961
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
962 963 964 965 966 967 968
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
969
            # only count the last generate op
M
mapingshuo 已提交
970 971 972 973 974 975
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
976
        pre_segment_end_idx = -1
M
mapingshuo 已提交
977 978 979
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
980 981
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
982
            flag, min_idx, max_idx = program_stat.is_subgraph(
983 984
                [checkpoints_name[start_idx]], [checkpoints_name[start_idx + 1]]
            )
M
mapingshuo 已提交
985
            if flag:
J
JZ-LIANG 已提交
986 987
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
988 989
                    min_idx, pre_segment_end_idx
                )
M
mapingshuo 已提交
990
                segments.append([min_idx, max_idx + 1])
991
            else:
992 993 994 995 996
                _logger.info(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
J
JZ-LIANG 已提交
997

M
mapingshuo 已提交
998 999 1000 1001 1002 1003
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
1004

J
JZ-LIANG 已提交
1005
    for i, (idx1, idx2) in enumerate(recompute_segments):
1006
        _logger.info("recompute segment[{}]".format(i))
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
1017
        _logger.info("recompute segment[{}]".format(i))
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
J
JZ-LIANG 已提交
1028

M
mapingshuo 已提交
1029
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
1030
    vars_should_be_hold = []
1031
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
1032 1033
    for segment in recompute_segments:
        vars_should_be_hold.extend(
1034 1035
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1])
        )
J
JZ-LIANG 已提交
1036 1037

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
1038 1039 1040 1041 1042
    _logger.info(
        "found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format(
            len(cross_vars), cross_vars
        )
    )
J
JZ-LIANG 已提交
1043

M
mapingshuo 已提交
1044
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
1045
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
1046
    # c. input variables are checkpoints
M
mapingshuo 已提交
1047 1048 1049
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
1050
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
1051 1052 1053 1054 1055 1056
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
1057
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
1058 1059 1060 1061
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1062 1063 1064 1065 1066
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1067
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1068 1069
                op.desc, no_grad_dict[block.idx], []
            )
1070 1071 1072 1073 1074 1075

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1076 1077 1078 1079 1080
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1081 1082 1083
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1084 1085 1086 1087
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
1088
        gap_ops = ops[segment[1] : max_calculated_op_position]
M
mapingshuo 已提交
1089 1090 1091
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1092 1093 1094 1095 1096
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1097
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1098 1099
                op.desc, no_grad_dict[block.idx], []
            )
1100 1101 1102 1103 1104 1105

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1106 1107 1108 1109 1110
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1111 1112 1113
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1114 1115 1116
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

1117
        ff_ops = ops[segment[0] : segment[1]]
M
mapingshuo 已提交
1118 1119 1120 1121
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
1122 1123 1124 1125 1126
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1137 1138 1139

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1140 1141 1142 1143 1144 1145 1146 1147
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient,
                    )
1148

M
mapingshuo 已提交
1149
        # 3.a. add ops in current recompute_segment as forward recomputation ops
1150 1151 1152 1153 1154 1155
        buffer_descs = _add_needed_descs_to_block(
            ff_ops, buffer_block, block, vars_in_memory, grad_op_id_to_fwd_op
        )
        added_descs = _add_descs_to_block(
            ff_ops, local_block, grad_op_id_to_fwd_op
        )
M
mapingshuo 已提交
1156

M
mapingshuo 已提交
1157
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1158 1159 1160 1161 1162 1163
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1164
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1165 1166
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1167 1168
                op_desc, no_grad_dict[block.idx], []
            )
1169

1170 1171 1172
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
1173 1174 1175
                    grad_op_id_to_fwd_op[
                        g_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
1176

1177 1178 1179 1180 1181 1182
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1183 1184 1185 1186 1187
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1188
    # 3.d. add sum op for repetitive_outputs
1189
    grad_op_descs = _addup_repetitive_outputs_(
1190 1191
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op
    )
M
mapingshuo 已提交
1192
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
    added_descs = _add_descs_to_block(
        grad_op_descs, target_block, grad_op_id_to_fwd_op
    )
    return (
        program_stat,
        checkpoints_name,
        vars_should_be_hold,
        recompute_segments,
    )


def _get_sub_block_path(
    sub_block,
    sub_block_op_desc,
    no_grad_set,
    op_path_dict,
    sub_block_target_names=None,
):
1217 1218
    """
    Get output vars in subblock which will be assigned to parent block.
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1231
    """
1232

1233
    assert sub_block_op_desc.has_attr(
1234 1235
        "sub_block"
    ) and sub_block.idx == sub_block_op_desc._block_attr_id("sub_block")
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1248
            for op_desc in sub_block.ops:
1249
                if var in op_desc.output_arg_names:
1250
                    for name in op_desc.input_arg_names:
1251
                        sub_outputs.append(sub_block._var_recursive(name))
1252

1253 1254
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1255 1256 1257
        sub_block_op_path = _find_op_path_(
            sub_block, sub_outputs, [], no_grad_set, op_path_dict, is_while
        )
1258 1259 1260 1261
        return sub_block_op_path
    return sub_block.ops


1262 1263 1264
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
1265 1266 1267
    if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
        op.all_attrs()[op_maker.kOpRoleAttrName()]
    ) == int(backward):
1268 1269 1270 1271 1272 1273 1274 1275
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
def _append_backward_ops_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    callbacks=None,
    input_grad_names_set=None,
    op_path_dict=None,
    distop_context=None,
    rename_var_map=None,
    grad_op_id_to_fwd_op=None,
):
1290 1291 1292 1293 1294
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1295
        ops(Op): the forward operators whose backward ops need to be added
1296
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1297
        target_block(Block): the block which is going to hold new generated grad ops
1298
        no_grad_dict(dict):
1299
            key(int)  block index
T
tianshuo78520a 已提交
1300
            val(set) a set of variable names. These variables have no gradient
1301 1302 1303
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1304 1305 1306 1307
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1308 1309 1310
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1311 1312
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1313
    """
1314 1315

    # Build the mapping between the forward op and backward op (Only for auto parallel)
1316 1317 1318
    def update_distop_context(
        distop_context, op_grad_to_var, appending_grad_times
    ):
1319
        distop_context.grad_var_to_var[appending_grad_times].update(
1320 1321
            op_grad_to_var
        )
1322
        for op_desc in grad_op_desc:
1323 1324 1325
            assert (
                op_desc.original_id() not in distop_context.grad_op_id_to_op_id
            )
1326
            distop_context.grad_op_id_to_op_id[
1327 1328
                op_desc.original_id()
            ] = op.desc.original_id()
1329

Y
Yang Yang 已提交
1330
    if callbacks is not None:
1331
        assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1332 1333 1334
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1335

F
fengjiayi 已提交
1336
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1337 1338
    grad_op_descs = []
    program = block.program
1339

1340 1341 1342
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    if core._is_bwd_prim_enabled():
        composite_block = program.clone().current_block()
        # Infer shape for operators whose output haven't been created.
        for op in composite_block.ops:
            if not all(
                tuple(
                    composite_block._find_var_recursive(arg)
                    for arg in op.output_arg_names
                )
            ):
                infershape_for_composite(composite_block, op.desc)

1356
    # add grad_op_desc by reversed ops
1357
    for op in reversed(ops):
F
fengjiayi 已提交
1358 1359 1360
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1361
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1362
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1363
            grad_sub_block._set_forward_block_idx(sub_block.idx)
C
co63oc 已提交
1364
            # see following comments for why set None here.
1365 1366
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1367
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
            _append_backward_ops_(
                sub_block,
                sub_block_path,
                target_vars,
                grad_sub_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
                input_grad_names_set,
                op_path_dict,
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1380
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1381

W
Wu Yi 已提交
1382
            program._rollback()
F
fengjiayi 已提交
1383
            grad_sub_block_list.append(grad_sub_block.desc)
1384 1385
        # In primitive mode, raw phi GradOp will be split into multiple small
        # primitive operators, and the split rules are defined in c++ level,
C
co63oc 已提交
1386
        # see details: paddle/fluid/prim/api/manual/backward/composite_backward_api.h
1387 1388 1389 1390 1391 1392 1393
        # It means that the output's shape and dtype of previous operators which
        # maybe used as the input of next operators must be known. Therefore,
        # we infer shape and dtype in a sandbox block(named composite_block) for
        # used in c++ level.
        # For example:
        #   forward:
        #       z = multiply(x, y) //maybe broadcast in kernel
C
co63oc 已提交
1394
        #   backward:
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        #       x_grad_unreduce = z_grad * y // maybe unreduce
        #       reduced_axes = get_reduced_axes(x_grad.shape, x.shape) // need known shape
        #       x_grad = reduce_sum(x_grad_unreduce)
        grad_op_desc = []
        op_grad_to_var = {}
        if core._is_bwd_prim_enabled():

            def find_op_index(block_desc, cur_op_desc):
                for idx in range(block_desc.op_size()):
                    if cur_op_desc == block_desc.op(idx):
                        return idx
                return -1
F
fengjiayi 已提交
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                composite_block.desc.op(find_op_index(block.desc, op.desc)),
                no_grad_dict[composite_block.idx],
                grad_sub_block_list,
            )
            for desc in grad_op_desc:
                infershape_for_composite(composite_block, desc)
        else:
            # Getting op's corresponding grad_op
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, no_grad_dict[block.idx], grad_sub_block_list
            )
1420

1421 1422 1423 1424 1425
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1426
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1427
        if distop_context is not None:
1428 1429 1430
            update_distop_context(
                distop_context, op_grad_to_var, program._appending_grad_times
            )
1431
        else:
1432 1433 1434 1435 1436
            default_ctx = getattr(
                paddle.distributed.auto_parallel.dist_context,
                '_g_default_distributed_context',
                None,
            )
1437 1438
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
1439 1440 1441 1442 1443
                update_distop_context(
                    distop_context,
                    op_grad_to_var,
                    program._appending_grad_times,
                )
Y
Yang Yu 已提交
1444

1445 1446
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1447 1448 1449 1450
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1462 1463 1464 1465
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1466 1467 1468 1469 1470
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
1471 1472
                            name, program._appending_grad_times
                        )
1473 1474 1475 1476
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1477 1478 1479
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
1480 1481
                                    program._appending_grad_times
                                ][new_name] = op_grad_to_var[name]
1482 1483 1484
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1485 1486 1487 1488 1489
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1490 1491 1492 1493
            is_grad_name = (
                lambda name: name.find(core.grad_var_suffix()) != -1
                or name in input_grad_names_set
            )
1494
            is_append_grad = False
1495
            input_grad_names = []
1496
            for op_desc in grad_op_desc:
1497
                input_grad_names += [
1498 1499
                    name
                    for name in op_desc.input_arg_names()
1500
                    if is_grad_name(name)
1501
                ]
1502 1503 1504 1505 1506 1507
            if len(input_grad_names) == 0:
                is_append_grad = True
                break

            for op_desc in grad_op_desc:

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1521

C
co63oc 已提交
1522
    # record mapping between grad var name and var name (Only for auto parallel)
1523 1524 1525
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
1526 1527
            program._appending_grad_times
        ]
M
mapingshuo 已提交
1528
    # sum parameter's gradients' var given multiple var gradient
1529 1530 1531 1532
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
1533 1534
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
    )
F
fengjiayi 已提交
1535

M
mapingshuo 已提交
1536 1537
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
1538 1539 1540 1541 1542 1543
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
F
fengjiayi 已提交
1544

M
mapingshuo 已提交
1545
    # remove some backward ops
1546
    # TODO(Jiabin): Support this in prime later, it will prune add_grad, fix this problem
1547
    if not core._is_bwd_prim_enabled():
1548 1549 1550 1551 1552 1553
        not_need_ops = _find_not_need_ops(
            grad_op_descs, ops, input_grad_names_set
        )
        grad_op_descs = [
            op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
        ]
1554
    else:
C
co63oc 已提交
1555 1556 1557
        logging.debug(
            "Running backward composite and disable find_not_need_ops"
        )
1558

F
fengjiayi 已提交
1559
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1560 1561
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1562
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1563 1564
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1565
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1566
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1567
        if callbacks is not None:
1568
            assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1569 1570
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1571

F
fengjiayi 已提交
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
1585
    for block_id in range(program.num_blocks):
1586
        block_desc = program.block(block_id).desc
1587
        for op_idx in range(block_desc.op_size()):
1588
            op = block_desc.op(op_idx)
1589 1590 1591 1592
            if (
                op.has_attr("sub_block")
                and op._block_attr_id("sub_block") == sub_block_id
            ):
1593 1594
                return op

1595
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1596 1597 1598 1599
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1600
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1613
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1614
    """
1615 1616
    ops_to_remove = []
    '''
1617 1618 1619 1620 1621
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1632 1633 1634
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1635
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1636
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1637 1638 1639 1640 1641 1642 1643 1644 1645

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
1646 1647
            var
            for var in op_desc.input_arg_names()
1648 1649 1650
            if var != core.empty_var_name()
        ]
        outputs = [
1651 1652
            var
            for var in op_desc.output_arg_names()
1653 1654 1655
            if var != core.empty_var_name()
        ]

1656
        # If the outputs of grad op is empty, just remove it
1657 1658 1659 1660 1661
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1662
            If the output is not empty and there is any grad input, find
1663 1664 1665 1666
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
1667 1668
                    var
                    for var in grad_var_ins
1669
                    if block.desc.has_var_recursive(var.encode())
1670
                    or var in parent_op_vars
1671 1672 1673 1674
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1675 1676
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1677
                    work to this op! If I do not add the following code, this op
1678 1679
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1680 1681 1682
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1683
                        continue
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        # sum may create invalid variable, here to deal with it.
        if op_desc.type() == 'sum':
            new_inputs = []
            for grad_var_name in op_desc.input_arg_names():
                if block.desc.has_var_recursive(grad_var_name.encode()):
                    # meet invalid sum variables, remove the invalid operand.
                    new_inputs.append(grad_var_name)
            assert (
                len(new_inputs) > 0
            ), "After remove invalid variables, sum op have no inputs."
            op_desc.set_input("X", new_inputs)

F
fengjiayi 已提交
1697 1698 1699
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1700 1701 1702 1703
            if (
                block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
F
fengjiayi 已提交
1704
                continue
1705
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1706
            new_vars.add(grad_var_name)
1707
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1708 1709 1710
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1711
        op_desc.check_attrs()
F
fengjiayi 已提交
1712 1713
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1714

F
fengjiayi 已提交
1715 1716
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1717
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1718

1719 1720 1721
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1722

1723
def infershape_for_composite(block, grad_op_desc):
1724
    # NOTE: why pruning the operator with empty output here ?
C
co63oc 已提交
1725
    # Some backward operator will output empty var, which will cause infer
1726
    # shape error, such assign with input's stop_gradient=True
1727 1728 1729
    if len(grad_op_desc.output_arg_names()) == 0:
        return

1730
    # create output variable
1731
    new_vars = set()
1732
    for grad_var_name in grad_op_desc.output_arg_names():
1733 1734 1735 1736
        if not (
            block.desc.has_var_recursive(grad_var_name.encode())
            or grad_var_name == core.empty_var_name()
        ):
1737 1738 1739
            # NOTE: stop_gradient will be set in append_op
            desc = block.desc.var(grad_var_name.encode())
            block.create_var(name=grad_var_name, desc=desc, type=desc.type())
1740 1741
            new_vars.add(grad_var_name)

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    # NOTE For the primitive operator generated by decompositing phi grad kernel,
    # we Operator to reconstruct the op_desc for reusing some complex logic, such
    # as processing dispensable input, intermediate output, extra attrs, etc...
    if framework.OpProtoHolder.instance().has_op_proto(grad_op_desc.type()):
        op = block.append_op(
            type=grad_op_desc.type(),
            inputs={
                name: [block._find_var_recursive(arg) for arg in args]
                for name, args in grad_op_desc.inputs().items()
            },
            outputs={
                name: [block._find_var_recursive(arg) for arg in args]
                for name, args in grad_op_desc.outputs().items()
            },
            # NOTE Runtime attr will be ignore as the c++ GetRuntimeAttr
C
co63oc 已提交
1757
            # interface cann't be exported to python. Please note the WARNING
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            # message logged in RuntimeAttrs of composite_grad_desc_maker.h
            attrs=grad_op_desc.get_attr_map(),
        )
        op.desc._set_attr(
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.OpRole.Backward,
        )
        grad_op_desc.copy_from(op.desc)
    # For the backward operator, we reuse the logic of _append_backward_var
    else:
        op_desc = block.desc.append_op()
        op_desc.copy_from(grad_op_desc)
        op_desc._set_attr(
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.OpRole.Backward,
        )
        op_desc.check_attrs()
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, block)

        grad_op_desc.copy_from(op_desc)
1782

1783 1784 1785
    # NOTE: Some operator doesn't infer dtype correctly, this patch set the
    # grad_var dtype same with corresponding forward variable.
    for arg in grad_op_desc.output_arg_names():
1786 1787 1788 1789 1790 1791 1792
        if arg in new_vars:
            _infer_var_data_type_shape_(arg, block)


def _rename_grad_(
    block, start_op_idx, grad_to_var, target_grad_map, skip_rename_var_list
):
1793 1794 1795 1796 1797
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1798
                op_desc._rename_input(name, var_map[name])
1799 1800

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1801 1802
            if "@GRAD" not in name:
                continue
1803
            if block.desc.find_var(name.encode("ascii")):
1804 1805
                if name in skip_rename_var_list:
                    continue
Y
Yu Yang 已提交
1806
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1807
                op_desc._rename_output(name, new_name)
1808 1809
                var_map[name] = new_name

1810
    for g, ng in var_map.items():
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1822
        for var in list(block.vars.values()):
1823 1824 1825 1826 1827 1828 1829
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1841 1842 1843 1844 1845 1846 1847
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
1848
                elif isinstance(no_grad_var, str):
1849 1850 1851 1852
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
1853 1854
                        % (type(no_grad_var))
                    )
1855 1856
        else:
            raise TypeError(
1857 1858 1859 1860
                "The type of no_grad_set should be set or list or tuple, but received {}".format(
                    type(no_grad_set)
                )
            )
1861 1862 1863
    return no_grad_set_name


1864
@framework.static_only
1865 1866 1867 1868 1869 1870 1871 1872
def append_backward(
    loss,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
1873
    """
1874 1875
    :api_attr: Static Graph

1876
    This function appends backward part to main_program.
F
fengjiayi 已提交
1877

1878 1879
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1880 1881
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1882

1883 1884
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1885

1886
    Parameters:
1887
        loss(Tensor): The loss Tensor of the network.
1888
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1889
                                           that need to be updated by optimizers.
1890
                                           If it is None, all parameters
F
fengjiayi 已提交
1891
                                           will be updated.
1892
                                           Default: None.
1893 1894
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1895
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1896
                               be automatically added into this set.
1897
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1898
                               Default: None.
1899
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1900
                                               The callbacks are used for
1901 1902 1903 1904 1905 1906
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1907
                                               object must have two input
1908 1909
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1910
                                               the new gradient operator will
1911
                                               be added to. The ``context`` is a
1912
                                               map, whose keys are gradient
1913 1914 1915
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1916
                                               has another special key-value pair:
1917
                                               the key is string ``__current_op_desc__``
1918 1919 1920
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1921
                                               Default: None.
F
fengjiayi 已提交
1922 1923

    Returns:
1924 1925
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1926 1927

    Raises:
1928
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1929 1930 1931 1932

    Examples:
        .. code-block:: python

1933 1934
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1935

1936 1937 1938 1939 1940
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1941
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1942 1943
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1944 1945

            # Get all weights in main_program, not include bias.
1946
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1947 1948 1949
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1950
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1951 1952
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1953 1954
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1955 1956 1957
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1958
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1959 1960
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1961 1962
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1963 1964
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1965 1966
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1967 1968 1969
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1970
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1971

1972
    """
1973 1974 1975
    grad_op_id_to_fwd_op = (
        {}
    )  # for cuda graph usage, recording the mapping between grad op original id to fwd op
1976

1977 1978 1979
    check_type(
        loss, 'loss', framework.Variable, 'paddle.static.append_backward'
    )
Y
yuyang18 已提交
1980

Y
Fix bug  
yuyang18 已提交
1981 1982
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1983
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1984

1985 1986 1987
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
1988 1989
        | int(core.op_proto_and_checker_maker.OpRole.Loss),
    )
Y
yuyang18 已提交
1990

Y
Yang Yang 已提交
1991
    if callbacks is not None:
1992 1993 1994 1995 1996 1997
        check_type(
            callbacks,
            'callbacks',
            (list, tuple),
            'paddle.static.append_backward',
        )
Y
Yu Yang 已提交
1998

F
fengjiayi 已提交
1999
    program = loss.block.program
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
2010

F
fengjiayi 已提交
2011
    if no_grad_set is None:
2012
        no_grad_set = set()
2013 2014
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2015
    no_grad_dict = _get_stop_gradients_(program)
2016 2017
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
2018
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
2019

2020 2021 2022 2023 2024 2025 2026
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
2027 2028
            parent_idx=current_block.parent_idx
        )
2029 2030 2031 2032 2033 2034
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
2035 2036
        program, current_block_idx
    )
2037 2038 2039 2040

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
2041

F
fengjiayi 已提交
2042 2043
    grad_to_var = dict()

2044
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
2045
    op_desc = _create_loss_op_desc_(loss)
2046
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
2047 2048 2049 2050 2051 2052
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
2053 2054
            map(_strip_grad_suffix_, no_grad_dict[block_idx])
        )
2055 2056

        op_path_dict = dict()
2057 2058 2059
        op_path = _find_op_path_(
            block, [loss], [], block_no_grad_set, op_path_dict
        )
2060

2061 2062 2063
        no_grad_vars = _find_no_grad_vars(
            block, op_path, [loss], block_no_grad_set
        )
2064 2065 2066

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
2067 2068
            list(map(_append_grad_suffix_, block_no_grad_set))
        )
2069 2070 2071 2072 2073

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

2074
        # TODO(liym27): need a better design.
2075 2076 2077 2078 2079
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

2080
        # TODO: support _append_backward_ops_with_checkpoints_ in
2081
        #  sub-block (control flow)
J
JZ-LIANG 已提交
2082
        is_recompute = False
2083
        if (
2084
            checkpoints is not None
2085 2086 2087
            and isinstance(checkpoints, list)
            and len(checkpoints) > 0
        ):
J
JZ-LIANG 已提交
2088
            is_recompute = True
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
            (
                program_stat,
                checkpoint_names,
                vars_should_be_hold,
                recompute_segments,
            ) = _append_backward_ops_with_checkpoints_(
                root_block,
                op_path,
                [loss],
                root_block,
                no_grad_dict,
                grad_to_var,
                checkpoints,
                grad_op_id_to_fwd_op,
            )
2104 2105 2106 2107
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
2108
                [loss],
2109 2110 2111 2112
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
2113
                input_grad_names_set=input_grad_names_set,
2114
                op_path_dict=op_path_dict,
2115
                distop_context=distop_context,
2116 2117
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
2118 2119 2120 2121 2122

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
2123 2124 2125 2126 2127
    fwd_op_num = (
        block_fwd_op_num_dict[current_block_idx]
        if not is_in_control_flow
        else 0
    )
2128 2129

    # Because append_backward may be called multiple times,
2130 2131
    # we need rename the internal gradient variables so that they have
    # different names.
2132
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {}, [])
2133

2134 2135 2136
    _append_backward_vars_(
        target_grad_block, fwd_op_num, grad_to_var, grad_info_map
    )
F
fengjiayi 已提交
2137

F
fengjiayi 已提交
2138
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
2139
    program._sync_with_cpp()
F
fengjiayi 已提交
2140

2141 2142 2143 2144 2145 2146
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

2147
    if parameter_list is not None:
2148 2149 2150 2151 2152 2153
        check_type(
            parameter_list,
            'parameter_list',
            (list, tuple, set),
            'fluid.backward.append_backward',
        )
2154 2155
        parameters = []
        for i, param in enumerate(parameter_list):
2156 2157 2158 2159 2160 2161
            check_type(
                param,
                'parameter_list[%s]' % i,
                (framework.Variable, str),
                'fluid.backward.append_backward',
            )
2162 2163
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
2164
            elif isinstance(param, str):
2165
                parameters.append(param)
2166
    else:
F
fengjiayi 已提交
2167
        params = program.global_block().all_parameters()
C
chengduo 已提交
2168
        parameters = [param.name for param in params if param.trainable]
2169

2170
    params_and_grads = []
2171
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
2172
    for param in parameters:
2173
        if param not in grad_info_map:
F
fengjiayi 已提交
2174
            continue
F
update  
fengjiayi 已提交
2175
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
2176
        grad_block = grad_info[1]
2177
        if not grad_block.has_var(grad_info[0]):
2178 2179 2180 2181 2182
            raise ValueError(
                "grad block[{0}] did not have grad var {1}".format(
                    grad_info[1], grad_info[0]
                )
            )
2183
        # Get the param var from the global block
F
fengjiayi 已提交
2184
        param_var = program.global_block().var(param)
2185
        grad_var = grad_block.var(grad_info[0])
2186 2187 2188 2189 2190
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
2191
        else:
2192
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
2193 2194 2195 2196

    for p, g in params_and_grads:
        if g is None:
            continue
2197 2198 2199
        ops = (
            grad_block.ops if is_in_control_flow else program.global_block().ops
        )
2200
        for op in reversed(ops):
Y
yuyang18 已提交
2201 2202 2203 2204 2205 2206 2207
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
2208
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
2209 2210
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
2211
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
2212

J
JZ-LIANG 已提交
2213 2214 2215 2216
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
2217 2218 2219 2220 2221


def _as_list(x):
    if x is None:
        return []
2222
    return list(x) if isinstance(x, Sequence) else [x]
2223 2224


2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

2251 2252 2253 2254 2255 2256
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
2257 2258 2259 2260 2261 2262 2263 2264 2265
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
2266 2267 2268
                    if not block.desc.find_var(
                        name.encode()
                    ) and parent_block.desc.find_var(name.encode()):
2269 2270 2271 2272 2273 2274 2275 2276
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


2277 2278 2279
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
2280
    those vars belong to no_grad_var.
2281
    """
2282
    output_names = _get_output_names(block, targets)
2283 2284 2285 2286 2287
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
2288 2289 2290 2291 2292
                if (
                    out_var not in output_names
                    and out_var not in op.desc.input_arg_names()
                    and not block.vars[out_var].stop_gradient
                ):
2293 2294 2295 2296 2297 2298 2299
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


2300 2301 2302
def _find_op_path_(
    block, targets, inputs, no_grad_set, op_path_dict=None, is_while=False
):
2303
    """
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
2317
    """
2318

2319
    input_names = set([inp.name for inp in inputs])
2320 2321 2322
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
2323 2324 2325 2326 2327 2328

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
2329 2330 2331
            if _some_in_set_(
                op.desc.input_arg_names(), input_names
            ) and core.has_non_empty_grad_op_maker(op.type):
2332 2333 2334 2335 2336 2337 2338
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2339 2340 2341 2342
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2343 2344 2345
            sub_block_path = _get_sub_block_path(
                sub_block, op, set(), op_path_dict, sub_block_target_names
            )
2346 2347
            op_path_dict[sub_block_id] = sub_block_path

2348 2349 2350
        if _some_in_set_(
            op.desc.output_arg_names(), output_names
        ) and core.has_non_empty_grad_op_maker(op.type):
2351 2352 2353 2354 2355 2356
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2357 2358 2359 2360
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
2361 2362 2363
            if relevant_op_flags[i] == False and _some_in_set_(
                op.desc.output_arg_names(), output_names
            ):
2364
                relevant_op_flags[i] = True
H
hong 已提交
2365 2366 2367 2368
                if core.has_non_empty_grad_op_maker(op.type):
                    for name in op.desc.input_arg_names():
                        if name not in no_grad_set:
                            output_names.add(name)
2369

2370 2371 2372 2373 2374 2375 2376
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2377
                if name not in input_names and block.vars[name].stop_gradient:
2378 2379 2380 2381 2382
                    no_grad_set.add(name)

    return op_path


2383 2384 2385 2386 2387 2388
def calc_gradient_helper(
    targets, inputs, target_gradients=None, no_grad_set=None
):
    '''
    Calculate gradient and return grad_info_map
    '''
2389 2390 2391 2392 2393 2394
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2395 2396
    # increase appending gradients times
    prog._appending_grad_times += 1
2397 2398 2399 2400 2401 2402 2403
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
2404 2405
            "Should have the same number of target_gradients as targets"
        )
2406 2407 2408

    if no_grad_set is None:
        no_grad_set = set()
2409 2410
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2411
    no_grad_dict = _get_stop_gradients_(prog)
2412
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2413 2414 2415

    fwd_op_num = block.desc.op_size()

2416 2417
    input_grad_names_set = set()

2418
    target_grad_map = {}
2419
    rename_var_map = {}
2420
    skip_rename_var_list = []
2421 2422
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2423
        grad_name = _append_grad_suffix_(target.name)
2424
        if grad is None:
2425
            op_desc = _create_op_desc_(
2426 2427
                "fill_any_like",
                {"X": [target.name]},
2428 2429 2430 2431 2432 2433
                {"Out": [grad_name]},
                {
                    "value": 1.0,
                    "dtype": target.dtype,
                },
            )
2434
            block.desc.append_op().copy_from(op_desc)
2435
            block.program._sync_with_cpp()
2436
            input_grad_names_set.add(grad_name)
2437
            skip_rename_var_list.append(grad_name)
2438 2439 2440 2441 2442
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2443 2444 2445
                    "The shapes of target and grad are different: %s %s"
                    % (target.name, grad.name)
                )
2446
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2447
            input_grad_names_set.add(grad.name)
2448
            rename_var_map[grad_name] = grad.name
2449

2450 2451 2452
    if core._is_bwd_prim_enabled():
        core._set_prim_target_grad_name(target_grad_map)

2453
    # For double backward, input_grad_names is used for filter
2454 2455
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2456 2457
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2458
        rename_var_map = {}
2459 2460 2461 2462 2463 2464

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2465 2466

    op_path_dict = dict()
2467 2468 2469
    op_path = _find_op_path_(
        block, targets, inputs, block_no_grad_set, op_path_dict
    )
2470 2471

    # find no grad var by op_path
2472 2473 2474
    no_grad_vars = _find_no_grad_vars(
        block, op_path, targets, block_no_grad_set
    )
2475 2476
    block_no_grad_set.update(no_grad_vars)

2477
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2478 2479
    grad_to_var = dict()
    grad_info_map = dict()
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
    _append_backward_ops_(
        block,
        op_path,
        targets,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map,
    )
2491 2492 2493 2494

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
2495 2496 2497
    _rename_grad_(
        block, fwd_op_num, grad_to_var, target_grad_map, skip_rename_var_list
    )
2498 2499

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2500
    prog._sync_with_cpp()
2501
    return grad_info_map
2502

2503 2504 2505

def _get_grad_vars(grad_info_map, inputs):
    inputs = _as_list(inputs)
2506 2507 2508 2509 2510 2511 2512 2513 2514
    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
    return grad_vars


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the gradients of targets to inputs.

    Args:
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
            of targets which has the same shape with targets, If None, ones will
            be created for them.
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
                               Default: None.

    Return:
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
        will be None
    """

    # NOTE: If you want to modify the logic of calc_gradient, please modify
    # it inside the calc_gradient_helper and _get_grad_vars functions
    # to ensure the correctness of dy2st mode.
    grad_info_map = calc_gradient_helper(
        targets,
        inputs,
        target_gradients=target_gradients,
        no_grad_set=no_grad_set,
    )

    grad_vars = _get_grad_vars(grad_info_map, inputs)
2552 2553 2554 2555 2556

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2557 2558


2559
@framework.static_only
2560 2561
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2562

2563 2564 2565
    Backpropagate the gradients of targets to inputs.

    Args:
2566 2567 2568
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2569 2570
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2571 2572 2573
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2574
            in this set will be added to the default set. Default: None.
2575 2576

    Return:
2577 2578
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2579 2580 2581
        will be None.

    Examples:
2582

2583
        .. code-block:: python
2584
          :name: code-example
2585 2586 2587 2588
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2589

2590
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2591
            x.stop_gradient=False
2592 2593 2594
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2595
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2596
    """
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    check_type(
        targets,
        'targets',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        inputs,
        'inputs',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        target_gradients,
        'target_gradients',
        (framework.Variable, list, tuple, type(None)),
        'paddle.static.gradients',
    )
2615 2616
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    check_type(
        program,
        'program',
        paddle.fluid.Program,
        'paddle.static.gradients_with_optimizer',
    )
    check_type(
        optimizer,
        'optimizer',
        paddle.optimizer.Optimizer,
        'paddle.static.gradients_with_optimizer',
    )
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
2687 2688 2689 2690 2691 2692
        pram_grads = [
            (pram, grad)
            for pram, grad in zip(inputs, grads)
            if isinstance(pram, paddle.fluid.framework.Parameter)
            and grad is not None
        ]
2693 2694 2695 2696

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads