backward.py 82.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
118
                _logger.info("found amp-cast op: {}, : {}".format(self.ops[
J
JZ-LIANG 已提交
119 120 121 122 123 124 125 126 127
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
158
                _logger.info(
159 160 161 162 163 164 165 166 167 168 169
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
219
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
236 237
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
257 258
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
272 273


274 275
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
276
    Traverse all ops in op_descs[begin_idx : end_idx],
277 278
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
279 280 281
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
282
        end_idx = len(op_descs)
283 284 285 286 287 288 289 290 291 292 293 294 295
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
296 297


F
fengjiayi 已提交
298
def _create_op_desc_(op_type, inputs, outputs, attrs):
299 300 301
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
302 303
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
304
    for para, args in six.iteritems(inputs):
305 306 307 308 309
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
310
    for para, args in six.iteritems(outputs):
311 312 313 314 315
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
316 317

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
318
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
319 320 321 322

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
323 324
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
325
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
326 327 328
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
329
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
330 331 332
    return op_desc


M
mapingshuo 已提交
333 334 335 336 337 338 339 340 341 342
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
343 344
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
345 346 347 348
        })
    return op_desc


349
def _infer_var_data_type_shape_(grad_var_name, block):
350
    """
351
    Infer the data type and shape of given grad variable
352
    """
M
minqiyang 已提交
353 354 355 356
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
357
        grad_var.set_dtype(fwd_var.dtype())
358
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
359
    else:
360
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
361 362


F
fengjiayi 已提交
363
def _all_in_set_(cands, s):
364 365 366
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
367 368
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
369 370 371 372 373 374
    for c in cands:
        if not c in s:
            return False
    return True


375 376 377 378 379 380
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
381 382
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
383 384
    for c in literal_cands:
        if c in literal_set:
385 386 387 388
            return True
    return False


F
fengjiayi 已提交
389
def _strip_grad_suffix_(name):
390
    """
M
mapingshuo 已提交
391
    Strip the grad suffix from the given variable name
392 393 394
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
395
    name = cpt.to_text(name)
M
minqiyang 已提交
396
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
397
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
398 399 400


def _append_grad_suffix_(name):
401 402 403 404
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
405
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
406 407


T
tangwei12 已提交
408 409 410 411 412
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
413 414 415 416 417 418
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
419 420 421 422
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
423 424 425
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
426 427 428 429 430
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
447 448
                             {"use_mkldnn": False,
                              "op_device": op_device}))
449 450 451
    renamed_vars[var_name] = [var_name]


452
def _addup_repetitive_outputs_(op_descs, block_idx):
453 454
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
455 456
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
457 458
    `sum_op`s are added to implement the accumulate.
    """
459
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
460 461
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
462
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
463
    renamed_vars = collections.defaultdict(list)
464
    renamed_var_start_idx = collections.defaultdict(list)
465
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
466
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
467 468 469 470 471
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
472
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
473 474
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
475
            if len(renamed_vars[var_name]) > 1:
476
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
T
tangwei12 已提交
477 478
                    _accumulate_gradients_by_sum_op_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
479
                else:
T
tangwei12 已提交
480 481
                    _accumulate_gradients_by_add_ops_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
482

F
update  
fengjiayi 已提交
483
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
484 485
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
486 487
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
488
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
489
                #    continue
F
fengjiayi 已提交
490 491 492 493 494 495 496
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
497
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
498 499
                else:
                    if len(renamed_vars[var_name]) == 1:
500
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
501 502 503 504
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
505 506 507 508 509 510
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
511 512
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

526
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
527
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
528
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
529 530 531
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
532 533
                    # record the latest device, for shared param
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
534

M
minqiyang 已提交
535
    for var_name, inputs in six.iteritems(renamed_vars):
536 537
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
538 539 540
                _accumulate_gradients_by_sum_op_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
541
            else:
542 543 544
                _accumulate_gradients_by_add_ops_(
                    var_name, renamed_vars, pending_sum_ops,
                    len(op_descs), var_device[var_name])
545

F
fengjiayi 已提交
546
    # sum_op descs are sorted according to their insert position
547 548 549 550 551 552 553 554 555 556
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
557 558 559 560 561

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
562 563 564 565
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
566
        2. all grad inputs of the grad op are in 'no_grad_set'
567
    """
F
fengjiayi 已提交
568 569

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
570 571
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
572
            return True
573 574 575 576
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
577
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
578 579 580
            return True
        return False

F
fengjiayi 已提交
581
    # Remove ops whose outputs are all in no_grad_dict
582 583 584 585
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
586 587
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
588
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
589
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
590
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
591
            if core.grad_var_suffix() in arg and arg in no_grad_set:
592
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
593 594
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
595 596
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
597

598
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
599 600 601 602

    return op_descs


C
chengduo 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
618
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
718 719 720
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
721
    # not_need_op_descs will be whole graph, this IF clause avoids it.
722 723 724
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
725 726


Y
Yang Yang 已提交
727 728
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
729
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
730 731 732
    return proto.__str__()


M
mapingshuo 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
748
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
749 750 751 752 753
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
754 755 756
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
757 758
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
759 760
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
761 762
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
763
    """
M
mapingshuo 已提交
764 765

    checkpoints_name = [x.name for x in checkpoints]
766
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
767 768
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
769
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
770
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
771
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
772
    program_stat.build_stats()
M
mapingshuo 已提交
773 774

    # 1) find ops between checkpoints, i.e. recompute_segments
775
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
776 777
    segments = []

778
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
779 780 781 782 783 784 785
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
786
            # only count the last generate op
M
mapingshuo 已提交
787 788 789 790 791 792
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
793
        pre_segment_end_idx = -1
M
mapingshuo 已提交
794 795 796
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
797 798
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
799 800 801 802
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
803 804 805
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
806
                segments.append([min_idx, max_idx + 1])
807 808 809
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
810

M
mapingshuo 已提交
811 812 813 814 815 816
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
817

J
JZ-LIANG 已提交
818
    for i, (idx1, idx2) in enumerate(recompute_segments):
819 820
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
821
        ), ops[idx1].desc.input_arg_names()))
822
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
823
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
824 825
        _logger.info("recompute segment[{}]".format(i))
        _logger.info("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
J
JZ-LIANG 已提交
826
        ), ops[idx1].desc.input_arg_names()))
827
        _logger.info("segment end op: [{}]: [{}]".format(ops[
J
JZ-LIANG 已提交
828 829
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
830
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
831
    vars_should_be_hold = []
832
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
833 834 835
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
836 837

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
838
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
839 840
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
841
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
842
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
843
    # c. input variables are checkpoints
M
mapingshuo 已提交
844 845 846
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
847
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
848 849 850 851 852 853
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
854
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
855 856 857 858 859 860 861 862 863
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
864 865 866 867 868
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
883 884 885 886 887
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
M
mapingshuo 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
910 911 912 913 914 915 916 917 918 919 920

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient)

M
mapingshuo 已提交
921
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
922 923 924 925
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
926
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
927 928 929 930 931 932
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
933
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
934 935 936 937 938 939 940 941
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
942
    # 3.d. add sum op for repetitive_outputs
943
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
944
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
945 946 947 948 949 950
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


951 952 953 954 955
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
956 957
    """
    Get output vars in subblock which will be assigned to parent block.
958 959 960 961 962 963 964 965 966 967 968 969
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
970
    """
971

972 973 974
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
975 976 977 978 979 980 981 982 983 984 985 986
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
987
            for op_desc in sub_block.ops:
988
                if var in op_desc.output_arg_names:
989
                    for name in op_desc.input_arg_names:
990
                        sub_outputs.append(sub_block._var_recursive(name))
991

992 993
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
994
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
995
                                           no_grad_set, op_path_dict, is_while)
996 997 998 999
        return sub_block_op_path
    return sub_block.ops


1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1013 1014
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1015 1016 1017
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1018
                          callbacks=None,
1019 1020
                          input_grad_names_set=None,
                          op_path_dict=None):
1021 1022 1023 1024 1025
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1026
        ops(Op): the forward operators whose backward ops need to be added
1027
        target_block(Block): the block which is going to hold new generated grad ops
1028
        no_grad_dict(dict):
1029
            key(int)  block index
T
tianshuo78520a 已提交
1030
            val(set) a set of variable names. These variables have no gradient
1031 1032 1033
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1034 1035 1036 1037
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1038 1039 1040
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1041
    """
Y
Yang Yang 已提交
1042
    if callbacks is not None:
1043
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1044 1045 1046
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1047

F
fengjiayi 已提交
1048
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1049 1050
    grad_op_descs = []
    program = block.program
1051

1052 1053
    rename_var_map = {}

1054
    # add grad_op_desc by reversed ops
1055
    for op in reversed(ops):
F
fengjiayi 已提交
1056 1057 1058
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1059
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1060
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1061
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1062 1063 1064
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1065
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1066
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1067
                                  no_grad_dict, grad_to_var, callbacks,
1068
                                  input_grad_names_set, op_path_dict)
1069
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1070

W
Wu Yi 已提交
1071
            program._rollback()
F
fengjiayi 已提交
1072 1073
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1074
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1075
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1076
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1077

1078 1079
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1080 1081 1082 1083
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1139

M
mapingshuo 已提交
1140
    # sum parameter's gradients' var given multiple var gradient
1141
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1142

M
mapingshuo 已提交
1143 1144
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1145 1146
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1147

M
mapingshuo 已提交
1148
    # remove some backward ops
C
chengduo 已提交
1149
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1150

C
chengduo 已提交
1151 1152 1153
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1154

F
fengjiayi 已提交
1155
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1156 1157
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1158
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1159 1160
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1161
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1162
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1163
        if callbacks is not None:
1164
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1165 1166
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1167

F
fengjiayi 已提交
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1189
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1190 1191 1192 1193
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1194
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1207
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1208
    """
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1226 1227 1228
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1229
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1230
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1248
        # If the outputs of grad op is empty, just remove it
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1274
                        continue
1275

F
fengjiayi 已提交
1276 1277 1278
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1279 1280
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1281
                continue
M
minqiyang 已提交
1282
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1283
            new_vars.add(grad_var_name)
1284
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1285 1286 1287 1288 1289
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1290

F
fengjiayi 已提交
1291 1292
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1293
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1294

1295 1296 1297
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1298

1299 1300 1301 1302 1303 1304
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1305
                op_desc._rename_input(name, var_map[name])
1306 1307

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1308 1309
            if "@GRAD" not in name:
                continue
1310
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1311
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1312
                op_desc._rename_output(name, new_name)
1313 1314
                var_map[name] = new_name

M
minqiyang 已提交
1315
    for g, ng in six.iteritems(var_map):
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1327
        for var in list(block.vars.values()):
1328 1329 1330 1331 1332 1333 1334
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1366
@framework.static_only
M
mapingshuo 已提交
1367 1368 1369 1370 1371
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1372
    """
1373 1374
    :api_attr: Static Graph

1375
    This function appends backward part to main_program.
F
fengjiayi 已提交
1376

1377 1378
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1379 1380
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1381

1382 1383
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1384

1385
    Parameters:
1386
        loss(Tensor): The loss Tensor of the network.
1387
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1388
                                           that need to be updated by optimizers.
1389
                                           If it is None, all parameters
F
fengjiayi 已提交
1390
                                           will be updated.
1391
                                           Default: None.
1392 1393
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1394
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1395
                               be automatically added into this set.
1396
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1397
                               Default: None.
1398
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1399
                                               The callbacks are used for
1400 1401 1402 1403 1404 1405
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1406
                                               object must have two input
1407 1408
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1409
                                               the new gradient operator will
1410
                                               be added to. The ``context`` is a
1411
                                               map, whose keys are gradient
1412 1413 1414
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1415
                                               has another special key-value pair:
1416
                                               the key is string ``__current_op_desc__``
1417 1418 1419
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1420
                                               Default: None.
F
fengjiayi 已提交
1421 1422

    Returns:
1423 1424
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1425 1426

    Raises:
1427
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1428 1429 1430 1431

    Examples:
        .. code-block:: python

1432 1433
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1434

1435 1436 1437 1438 1439
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1440
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1441 1442
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1443 1444

            # Get all weights in main_program, not include bias.
1445
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1446 1447 1448
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1449
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1450 1451
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1452 1453
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1454 1455 1456
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1457
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1458 1459
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1460 1461
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1462 1463
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1464 1465
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1466 1467 1468
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1469
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1470

1471
    """
1472
    check_type(loss, 'loss', framework.Variable,
1473
               'paddle.static.append_backward')
Y
yuyang18 已提交
1474

Y
Fix bug  
yuyang18 已提交
1475 1476
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1477
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1478

W
Wu Yi 已提交
1479 1480 1481
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1482

Y
Yang Yang 已提交
1483
    if callbacks is not None:
1484
        check_type(callbacks, 'callbacks', (list, tuple),
1485
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1486

F
fengjiayi 已提交
1487
    program = loss.block.program
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1498

F
fengjiayi 已提交
1499
    if no_grad_set is None:
1500
        no_grad_set = set()
1501 1502
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1503
    no_grad_dict = _get_stop_gradients_(program)
1504 1505
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1506
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1527

F
fengjiayi 已提交
1528 1529
    grad_to_var = dict()

M
mapingshuo 已提交
1530
    op_desc = _create_loss_op_desc_(loss)
1531 1532 1533 1534 1535 1536 1537
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1538 1539 1540 1541

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1554
        # TODO(liym27): need a better design.
1555 1556 1557 1558 1559
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1560
        # TODO: support _append_backward_ops_with_checkpoints_ in
1561
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1562
        is_recompute = False
1563 1564 1565
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1566
            is_recompute = True
1567
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1568 1569
                vars_should_be_hold, \
                recompute_segments = \
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1585 1586
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1587 1588 1589 1590 1591 1592 1593 1594 1595

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1596 1597
    # we need rename the internal gradient variables so that they have
    # different names.
1598
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1599

1600 1601
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1602

F
fengjiayi 已提交
1603
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1604
    program._sync_with_cpp()
F
fengjiayi 已提交
1605

1606
    if parameter_list is not None:
1607 1608
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1609 1610
        parameters = []
        for i, param in enumerate(parameter_list):
1611 1612 1613
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1614 1615 1616 1617
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1618
    else:
F
fengjiayi 已提交
1619
        params = program.global_block().all_parameters()
C
chengduo 已提交
1620
        parameters = [param.name for param in params if param.trainable]
1621

1622
    params_and_grads = []
1623
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1624
    for param in parameters:
M
minqiyang 已提交
1625
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1626
            continue
F
update  
fengjiayi 已提交
1627
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1628
        grad_block = grad_info[1]
1629 1630 1631 1632
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1633
        param_var = program.global_block().var(param)
1634
        grad_var = grad_block.var(grad_info[0])
1635 1636 1637 1638 1639
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1640
        else:
1641
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1642 1643 1644 1645

    for p, g in params_and_grads:
        if g is None:
            continue
1646 1647 1648
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1649 1650 1651 1652 1653 1654 1655
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1656
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1657 1658
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1659
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1660

J
JZ-LIANG 已提交
1661 1662 1663 1664
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1665 1666 1667 1668 1669 1670 1671 1672


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1699 1700 1701 1702 1703 1704
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1724 1725 1726
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1727
    those vars belong to no_grad_var.
1728
    """
1729
    output_names = _get_output_names(block, targets)
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1744 1745 1746 1747 1748 1749
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1750
    """
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1764
    """
1765

1766
    input_names = set([inp.name for inp in inputs])
1767 1768 1769
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1770 1771 1772 1773 1774 1775

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1776 1777 1778
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1779 1780 1781 1782 1783 1784 1785
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1786 1787 1788 1789 1790 1791 1792 1793 1794
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1795 1796 1797
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1798 1799 1800 1801 1802 1803
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1804 1805 1806 1807 1808
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1809
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1810 1811
                relevant_op_flags[i] = True

1812 1813 1814 1815 1816 1817 1818
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1819
                if name not in input_names and block.vars[name].stop_gradient:
1820 1821 1822 1823 1824 1825 1826
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1827
    Backpropagate the gradients of targets to inputs.
1828 1829

    Args:
1830 1831 1832
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
1833 1834
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1835 1836
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1837 1838
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1839
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1840
                               Default: None.
1841 1842

    Return:
1843 1844
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1845 1846 1847 1848 1849 1850 1851 1852
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1853 1854
    # increase appending gradients times
    prog._appending_grad_times += 1
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1866 1867
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1868
    no_grad_dict = _get_stop_gradients_(prog)
1869
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1870 1871 1872

    fwd_op_num = block.desc.op_size()

1873 1874
    input_grad_names_set = set()

1875 1876 1877 1878 1879
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1880 1881 1882 1883 1884
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1885
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1886
                                       {"ShapeTensor": [target_shape]},
1887
                                       {"Out": [grad_name]}, {
1888
                                           "shape": target.shape,
1889 1890 1891
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1892

1893
            block.desc.append_op().copy_from(op_desc)
1894
            input_grad_names_set.add(grad_name)
1895 1896 1897 1898 1899 1900 1901 1902
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1903 1904 1905 1906 1907 1908
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1909 1910 1911 1912 1913 1914

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1915 1916 1917 1918

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1919 1920 1921 1922 1923 1924

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1925
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1926 1927
    grad_to_var = dict()
    grad_info_map = dict()
1928 1929 1930 1931 1932 1933
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1934 1935
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1936 1937 1938 1939 1940 1941 1942

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1943
    prog._sync_with_cpp()
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1959 1960


1961
@framework.static_only
1962 1963
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1964
    :api_attr: Static Graph
T
tangwei12 已提交
1965

1966 1967 1968
    Backpropagate the gradients of targets to inputs.

    Args:
1969 1970 1971
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
1972 1973
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1974 1975 1976
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1977
            in this set will be added to the default set. Default: None.
1978 1979

    Return:
1980 1981
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1982 1983 1984 1985 1986
        will be None.

    Examples:
        .. code-block:: python

1987 1988 1989 1990
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1991

1992
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1993
            x.stop_gradient=False
1994 1995 1996 1997
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
1998
    """
1999
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2000
               'paddle.static.gradients')
2001
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2002
               'paddle.static.gradients')
2003
    check_type(target_gradients, 'target_gradients', (
2004
        framework.Variable, list, tuple, type(None)), 'paddle.static.gradients')
2005

2006 2007
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)