backward.py 80.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import six
23
import logging
M
minqiyang 已提交
24
from .. import compat as cpt
25
from . import unique_name
26
from . import log_helper
L
liym27 已提交
27
import paddle.fluid
28
from .data_feeder import check_type
M
mapingshuo 已提交
29 30 31 32 33
__all__ = [
    'append_backward',
    'gradients',
]

34 35 36
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

M
mapingshuo 已提交
37 38 39 40 41 42 43 44 45 46 47

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
48
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
49
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
50 51 52 53 54 55 56 57 58 59 60
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
61
            if op.desc.type() == "seed":
M
mapingshuo 已提交
62 63 64 65 66 67 68 69 70 71 72
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
73 74 75 76 77
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
102

M
mapingshuo 已提交
103 104
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
                _logger.debug("found amp-cast op: {}, : {}".format(self.ops[
                    idx_].desc.type(), self.ops[idx_].desc.input_arg_names()[
                        0]))
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.op_deps[i]["in_ops"].extend(self.var_op_deps[name][
                        "var_as_output_ops"])
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
                _logger.debug(
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
        while (op_idx < len(self.ops)):
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed})
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
219
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
            result_descs.append(new_op_desc)
    return result_descs


def _add_descs_to_block(descs, block):
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
        if len(op.output_arg_names) == 1 and op.output_arg_names[
                0] == loss.name:
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
268 269


270 271
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
272
    Traverse all ops in op_descs[begin_idx : end_idx],
273 274
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
275 276 277
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
278
        end_idx = len(op_descs)
279 280 281 282 283 284 285 286 287 288 289 290 291
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
292 293


F
fengjiayi 已提交
294
def _create_op_desc_(op_type, inputs, outputs, attrs):
295 296 297
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
298 299
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
300
    for para, args in six.iteritems(inputs):
301 302 303 304 305
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
306
    for para, args in six.iteritems(outputs):
307 308 309 310 311
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
312 313

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
314
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
315 316 317 318

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
319 320
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
321
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
322 323 324
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
325
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
326 327 328
    return op_desc


M
mapingshuo 已提交
329 330 331 332 333 334 335 336 337 338
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
339 340
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
341 342 343 344
        })
    return op_desc


345
def _infer_var_data_type_shape_(grad_var_name, block):
346
    """
347
    Infer the data type and shape of given grad variable
348
    """
M
minqiyang 已提交
349 350 351 352
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
353
        grad_var.set_dtype(fwd_var.dtype())
354
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
355
    else:
356
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
357 358


F
fengjiayi 已提交
359
def _all_in_set_(cands, s):
360 361 362
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
363 364
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
365 366 367 368 369 370
    for c in cands:
        if not c in s:
            return False
    return True


371 372 373 374 375 376
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
377 378
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
379 380
    for c in literal_cands:
        if c in literal_set:
381 382 383 384
            return True
    return False


F
fengjiayi 已提交
385
def _strip_grad_suffix_(name):
386
    """
M
mapingshuo 已提交
387
    Strip the grad suffix from the given variable name
388 389 390
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
391
    name = cpt.to_text(name)
M
minqiyang 已提交
392
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
393
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
394 395 396


def _append_grad_suffix_(name):
397 398 399 400
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
401
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
402 403


T
tangwei12 已提交
404 405 406 407 408
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
409 410 411 412 413 414
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
T
tangwei12 已提交
415 416 417 418
        _create_op_desc_("sum", {"X": renamed_vars[var_name]}, {
            "Out": [var_name]
        }, {"use_mkldnn": False,
            "op_device": op_device}))
419 420 421
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
422 423 424 425 426
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
            _create_op_desc_("grad_add", {"X": [x_name],
                                          "Y": [y_name]}, {"Out": [out_name]},
T
tangwei12 已提交
443 444
                             {"use_mkldnn": False,
                              "op_device": op_device}))
445 446 447
    renamed_vars[var_name] = [var_name]


448
def _addup_repetitive_outputs_(op_descs, block_idx):
449 450
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
451 452
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
453 454
    `sum_op`s are added to implement the accumulate.
    """
455 456 457
    _MAX_ADD_NUM_ = core.globals()['FLAGS_max_inplace_grad_add']
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
458
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
459
    renamed_vars = collections.defaultdict(list)
460
    renamed_var_start_idx = collections.defaultdict(list)
F
fengjiayi 已提交
461
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
462 463 464 465 466
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
467
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
468 469
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
470
            if len(renamed_vars[var_name]) > 1:
471
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
T
tangwei12 已提交
472 473
                    _accumulate_gradients_by_sum_op_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
474
                else:
T
tangwei12 已提交
475 476
                    _accumulate_gradients_by_add_ops_(
                        var_name, renamed_vars, pending_sum_ops, idx, op_device)
477

F
update  
fengjiayi 已提交
478
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
479 480
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
481 482
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
483
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
484
                #    continue
F
fengjiayi 已提交
485 486 487 488 489 490 491
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
492
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
493 494
                else:
                    if len(renamed_vars[var_name]) == 1:
495
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
496 497 498 499
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
500 501 502 503 504 505
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
506 507
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

521
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
522
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
523
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
524 525 526
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
527

M
minqiyang 已提交
528
    for var_name, inputs in six.iteritems(renamed_vars):
529 530 531 532 533 534 535 536 537
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs))
            else:
                _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                  pending_sum_ops,
                                                  len(op_descs))

F
fengjiayi 已提交
538
    # sum_op descs are sorted according to their insert position
539 540 541 542 543 544 545 546 547 548
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
549 550 551 552 553

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
554 555 556 557
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
558
        2. all grad inputs of the grad op are in 'no_grad_set'
559
    """
F
fengjiayi 已提交
560 561

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
562 563
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
564
            return True
565 566 567 568
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
569
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
570 571 572
            return True
        return False

F
fengjiayi 已提交
573
    # Remove ops whose outputs are all in no_grad_dict
574 575 576 577
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
578 579
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
580
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
581
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
582
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
583
            if core.grad_var_suffix() in arg and arg in no_grad_set:
584
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
585 586
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
587 588
                to_insert.append((_create_op_desc_(
                    "fill_zeros_like", {"X": [x_in]}, {"Out": [arg]}, {}), idx))
F
fengjiayi 已提交
589

590
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
591 592 593 594

    return op_descs


C
chengduo 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
610
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
710 711 712
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
713
    # not_need_op_descs will be whole graph, this IF clause avoids it.
714 715 716
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
717 718


Y
Yang Yang 已提交
719 720
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
721
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
722 723 724
    return proto.__str__()


M
mapingshuo 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
def _append_backward_ops_with_checkpoints_(
        block, ops, target_block, no_grad_dict, grad_to_var, checkpoints):
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
740
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
741 742 743 744 745
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
746 747 748
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
749 750
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
751 752
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
753 754
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
755
    """
M
mapingshuo 已提交
756 757

    checkpoints_name = [x.name for x in checkpoints]
758
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
759 760
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
761
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
762
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
763
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
764
    program_stat.build_stats()
M
mapingshuo 已提交
765 766

    # 1) find ops between checkpoints, i.e. recompute_segments
767
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
768 769
    segments = []

770
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
771 772 773 774 775 776 777
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
778
            # only count the last generate op
M
mapingshuo 已提交
779 780 781 782 783 784
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
785
        pre_segment_end_idx = -1
M
mapingshuo 已提交
786
        while True:
J
JZ-LIANG 已提交
787
            _logger.debug("FW op range[0] - [{}]".format(len(ops)))
M
mapingshuo 已提交
788 789
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
790 791
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
792 793 794 795
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
796 797 798
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
799
                segments.append([min_idx, max_idx + 1])
J
JZ-LIANG 已提交
800

M
mapingshuo 已提交
801 802 803 804 805 806
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
807

J
JZ-LIANG 已提交
808 809 810 811 812 813 814 815 816 817 818 819
    for i, (idx1, idx2) in enumerate(recompute_segments):
        _logger.debug("recompute segment[{}]".format(i))
        _logger.debug("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
        ), ops[idx1].desc.input_arg_names()))
        _logger.debug("segment end op: [{}]: [{}]".format(ops[
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
        _logger.debug("recompute segment[{}]".format(i))
        _logger.debug("segment start op: [{}]: [{}]".format(ops[idx1].desc.type(
        ), ops[idx1].desc.input_arg_names()))
        _logger.debug("segment end op: [{}]: [{}]".format(ops[
            idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))

M
mapingshuo 已提交
820
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
821
    vars_should_be_hold = []
822
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
823 824 825
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
826 827 828 829 830 831 832

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
    _logger.debug("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
    len(cross_vars), cross_vars))
    _logger.debug("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
833
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
834
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
835
    # c. input variables are checkpoints
M
mapingshuo 已提交
836 837 838
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
839
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
            added_descs = _add_descs_to_block(grad_op_desc, local_block)
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
M
mapingshuo 已提交
891
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
892 893 894 895
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
                                                  vars_in_memory)
        added_descs = _add_descs_to_block(ff_ops, local_block)

M
mapingshuo 已提交
896
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
897 898 899 900 901 902
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

J
JZ-LIANG 已提交
903
        # 3.c. add backward ops for all ops in current segment 
M
mapingshuo 已提交
904 905 906 907 908 909 910 911
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
912
    # 3.d. add sum op for repetitive_outputs
913
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
M
mapingshuo 已提交
914
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
915 916 917 918 919 920
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
    added_descs = _add_descs_to_block(grad_op_descs, target_block)
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


921 922 923 924 925
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
926 927
    """
    Get output vars in subblock which will be assigned to parent block.
928 929 930 931 932 933 934 935 936 937 938 939
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
940
    """
941

942 943 944
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
945 946 947 948 949 950 951 952 953 954 955 956
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
957
            for op_desc in sub_block.ops:
958
                if var in op_desc.output_arg_names:
959
                    for name in op_desc.input_arg_names:
960
                        sub_outputs.append(sub_block._var_recursive(name))
961

962 963
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
964
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
965
                                           no_grad_set, op_path_dict, is_while)
966 967 968 969
        return sub_block_op_path
    return sub_block.ops


970 971 972 973 974 975 976 977 978 979 980 981 982
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


983 984
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
985 986 987
                          target_block,
                          no_grad_dict,
                          grad_to_var,
988
                          callbacks=None,
989 990
                          input_grad_names_set=None,
                          op_path_dict=None):
991 992 993 994 995
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
996
        ops(Op): the forward operators whose backward ops need to be added
997
        target_block(Block): the block which is going to hold new generated grad ops
998
        no_grad_dict(dict):
999
            key(int)  block index
T
tianshuo78520a 已提交
1000
            val(set) a set of variable names. These variables have no gradient
1001 1002 1003
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1004 1005 1006 1007
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1008 1009 1010
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1011
    """
Y
Yang Yang 已提交
1012
    if callbacks is not None:
Y
Yang Yang 已提交
1013 1014 1015 1016
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1017

F
fengjiayi 已提交
1018
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1019 1020
    grad_op_descs = []
    program = block.program
1021

1022 1023
    rename_var_map = {}

1024
    # add grad_op_desc by reversed ops
1025
    for op in reversed(ops):
F
fengjiayi 已提交
1026 1027 1028
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1029
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1030
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1031
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1032 1033 1034
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1035
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1036
            _append_backward_ops_(sub_block, sub_block_path, grad_sub_block,
1037
                                  no_grad_dict, grad_to_var, callbacks,
1038
                                  input_grad_names_set, op_path_dict)
1039
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1040

W
Wu Yi 已提交
1041
            program._rollback()
F
fengjiayi 已提交
1042 1043
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1044
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1045
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1046
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
1047

1048 1049
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1050 1051 1052 1053
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
                if not _is_grad_op_(op):
                    for name in op_desc.input_arg_names():
                        if name in rename_var_map:
                            op_desc._rename_input(name, rename_var_map[name])
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
                    if name.find(core.grad_var_suffix()) != -1
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1109

M
mapingshuo 已提交
1110
    # sum parameter's gradients' var given multiple var gradient
1111
    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs, block.idx)
F
fengjiayi 已提交
1112

M
mapingshuo 已提交
1113 1114
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1115 1116
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
1117

M
mapingshuo 已提交
1118
    # remove some backward ops
C
chengduo 已提交
1119
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1120

C
chengduo 已提交
1121 1122 1123
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1124

F
fengjiayi 已提交
1125
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1126 1127
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1128
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1129 1130
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1131
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1132
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1133 1134 1135 1136
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1137

F
fengjiayi 已提交
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1159
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1160 1161 1162 1163
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1164
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1177
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1178
    """
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1196 1197 1198
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1199
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1200
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1218
        # If the outputs of grad op is empty, just remove it
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
                    if block.desc.has_var_recursive(cpt.to_bytes(var)) or var in
                    parent_op_vars
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1244
                        continue
1245

F
fengjiayi 已提交
1246 1247 1248
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1249 1250
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1251
                continue
M
minqiyang 已提交
1252
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1253
            new_vars.add(grad_var_name)
1254
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1255 1256 1257 1258 1259
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1260

F
fengjiayi 已提交
1261 1262
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1263
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1264

1265 1266 1267
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1268

1269 1270 1271 1272 1273 1274
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1275
                op_desc._rename_input(name, var_map[name])
1276 1277

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1278 1279
            if "@GRAD" not in name:
                continue
1280
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1281
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1282
                op_desc._rename_output(name, new_name)
1283 1284
                var_map[name] = new_name

M
minqiyang 已提交
1285
    for g, ng in six.iteritems(var_map):
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1297
        for var in list(block.vars.values()):
1298 1299 1300 1301 1302 1303 1304
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
                "The type of no_grad_set should be set or list or tuple, but received {}".
                format(type(no_grad_set)))
    return no_grad_set_name


1336
@framework.static_only
M
mapingshuo 已提交
1337 1338 1339 1340 1341
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
                    checkpoints=None):
1342
    """
1343 1344
    :api_attr: Static Graph

1345
    This function appends backward part to main_program.
F
fengjiayi 已提交
1346

1347 1348
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1349 1350
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1351

1352 1353
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1354

1355
    Parameters:
1356 1357
        loss(Tensor): The loss Tensor of the network.
        parameter_list(list[Tensor|str], optional): List of Parameters or Parameter.names
1358
                                           that need to be updated by optimizers.
1359
                                           If it is None, all parameters
F
fengjiayi 已提交
1360
                                           will be updated.
1361
                                           Default: None.
1362 1363
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1364
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1365
                               be automatically added into this set.
1366
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1367
                               Default: None.
1368
        callbacks(list[callable object], optional): List of callback functions.
1369
                                               The callbacks are used for
1370 1371 1372 1373 1374 1375
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1376
                                               object must have two input
1377 1378
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1379
                                               the new gradient operator will
1380
                                               be added to. The ``context`` is a
1381
                                               map, whose keys are gradient
1382 1383 1384
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1385
                                               has another special key-value pair:
1386
                                               the key is string ``__current_op_desc__``
1387 1388 1389
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1390
                                               Default: None.
F
fengjiayi 已提交
1391 1392

    Returns:
1393 1394
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1395 1396

    Raises:
1397
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1398 1399 1400 1401

    Examples:
        .. code-block:: python

1402 1403
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1404

1405 1406 1407 1408 1409
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1410
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1411 1412
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1413 1414

            # Get all weights in main_program, not include bias.
1415
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1416 1417 1418
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1419
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1420 1421
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1422 1423
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1424 1425 1426
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1427
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1428 1429
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1430 1431
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1432 1433
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1434 1435
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1436 1437 1438
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1439
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1440

1441
    """
1442
    check_type(loss, 'loss', framework.Variable,
1443
               'paddle.static.append_backward')
Y
yuyang18 已提交
1444

Y
Fix bug  
yuyang18 已提交
1445 1446
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1447
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1448

W
Wu Yi 已提交
1449 1450 1451
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1452

Y
Yang Yang 已提交
1453
    if callbacks is not None:
1454
        check_type(callbacks, 'callbacks', list,
1455
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1456

F
fengjiayi 已提交
1457
    program = loss.block.program
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1468

F
fengjiayi 已提交
1469
    if no_grad_set is None:
1470
        no_grad_set = set()
1471 1472
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1473
    no_grad_dict = _get_stop_gradients_(program)
1474 1475
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1476
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1497

F
fengjiayi 已提交
1498 1499
    grad_to_var = dict()

M
mapingshuo 已提交
1500
    op_desc = _create_loss_op_desc_(loss)
1501 1502 1503 1504 1505 1506 1507
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1508 1509 1510 1511

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1524
        # TODO(liym27): need a better design.
1525 1526 1527 1528 1529
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1530
        # TODO: support _append_backward_ops_with_checkpoints_ in
1531
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1532
        is_recompute = False
1533 1534 1535
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1536
            is_recompute = True
1537
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1538 1539
                vars_should_be_hold, \
                recompute_segments = \
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
                    checkpoints)
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1555 1556
                input_grad_names_set=input_grad_names_set,
                op_path_dict=op_path_dict)
1557 1558 1559 1560 1561 1562 1563 1564 1565

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1566 1567
    # we need rename the internal gradient variables so that they have
    # different names.
1568
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1569

1570 1571
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1572

F
fengjiayi 已提交
1573
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1574
    program._sync_with_cpp()
F
fengjiayi 已提交
1575

1576
    if parameter_list is not None:
1577 1578
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1579 1580
        parameters = []
        for i, param in enumerate(parameter_list):
1581 1582 1583
            check_type(param, 'parameter_list[%s]' % i, (framework.Variable,
                                                         six.string_types),
                       'fluid.backward.append_backward')
1584 1585 1586 1587
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1588
    else:
F
fengjiayi 已提交
1589
        params = program.global_block().all_parameters()
C
chengduo 已提交
1590
        parameters = [param.name for param in params if param.trainable]
1591

1592
    params_and_grads = []
1593
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1594
    for param in parameters:
M
minqiyang 已提交
1595
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1596
            continue
F
update  
fengjiayi 已提交
1597
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1598
        grad_block = grad_info[1]
1599 1600 1601 1602
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1603
        param_var = program.global_block().var(param)
1604
        grad_var = grad_block.var(grad_info[0])
1605 1606 1607 1608 1609
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1610
        else:
1611
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1612 1613 1614 1615

    for p, g in params_and_grads:
        if g is None:
            continue
1616 1617 1618
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1619 1620 1621 1622 1623 1624 1625
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1626
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1627 1628
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1629
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1630

J
JZ-LIANG 已提交
1631 1632 1633 1634
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1635 1636 1637 1638 1639 1640 1641 1642


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1669 1670 1671 1672 1673 1674
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1694 1695 1696
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1697
    those vars belong to no_grad_var.
1698
    """
1699
    output_names = _get_output_names(block, targets)
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1714 1715 1716 1717 1718 1719
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1720
    """
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1734
    """
1735

1736
    input_names = set([inp.name for inp in inputs])
1737 1738 1739
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1740 1741 1742 1743 1744 1745

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1746 1747 1748
            if _some_in_set_(
                    op.desc.input_arg_names(),
                    input_names) and core.has_non_empty_grad_op_maker(op.type):
1749 1750 1751 1752 1753 1754 1755
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1756 1757 1758 1759 1760 1761 1762 1763 1764
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
            sub_block_path = _get_sub_block_path(sub_block, op,
                                                 set(), op_path_dict,
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1765 1766 1767
        if _some_in_set_(
                op.desc.output_arg_names(),
                output_names) and core.has_non_empty_grad_op_maker(op.type):
1768 1769 1770 1771 1772 1773
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

1774 1775 1776 1777 1778
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
1779
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
1780 1781
                relevant_op_flags[i] = True

1782 1783 1784 1785 1786 1787 1788
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
1789
                if name not in input_names and block.vars[name].stop_gradient:
1790 1791 1792 1793 1794 1795 1796
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1797
    Backpropagate the gradients of targets to inputs.
1798 1799

    Args:
1800 1801 1802
        targets(Tensor|list[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensors
1803 1804
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1805 1806
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1807 1808
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
1809
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1810
                               Default: None.
1811 1812

    Return:
1813 1814
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1815 1816 1817 1818 1819 1820 1821 1822
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
1823 1824
    # increase appending gradients times
    prog._appending_grad_times += 1
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
1836 1837
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1838
    no_grad_dict = _get_stop_gradients_(prog)
1839
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
1840 1841 1842

    fwd_op_num = block.desc.op_size()

1843 1844
    input_grad_names_set = set()

1845 1846 1847 1848 1849
    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
L
lvmengsi 已提交
1850 1851 1852 1853 1854
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
1855
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
1856
                                       {"ShapeTensor": [target_shape]},
1857
                                       {"Out": [grad_name]}, {
1858
                                           "shape": target.shape,
1859 1860 1861
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
1862

1863
            block.desc.append_op().copy_from(op_desc)
1864
            input_grad_names_set.add(grad_name)
1865 1866 1867 1868 1869 1870 1871 1872
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
1873 1874 1875 1876 1877 1878
            input_grad_names_set.add(grad.name)

    # For double backward, input_grad_names is used for filter
    # some non-used gradients op.
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
1879 1880 1881 1882 1883 1884

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
1885 1886 1887 1888

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
1889 1890 1891 1892 1893 1894

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

1895
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
1896 1897
    grad_to_var = dict()
    grad_info_map = dict()
1898 1899 1900 1901 1902 1903
    _append_backward_ops_(
        block,
        op_path,
        block,
        no_grad_dict,
        grad_to_var,
1904 1905
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict)
1906 1907 1908 1909 1910 1911 1912

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
1913
    prog._sync_with_cpp()
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
1929 1930


1931
@framework.static_only
1932 1933
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
1934
    :api_attr: Static Graph
T
tangwei12 已提交
1935

1936 1937 1938
    Backpropagate the gradients of targets to inputs.

    Args:
1939 1940 1941
        targets (Tensor|list[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor], optional): The gradient Tensor
1942 1943
            of targets which has the same shape with targets, If None, ones will
            be created for them.
1944 1945 1946
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
1947
            in this set will be added to the default set. Default: None.
1948 1949

    Return:
1950 1951
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
1952 1953 1954 1955 1956
        will be None.

    Examples:
        .. code-block:: python

1957 1958 1959 1960
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
1961

1962
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
1963
            x.stop_gradient=False
1964 1965 1966 1967
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
            print(z) # [var x@GRAD : fluid.VarType.LOD_TENSOR.shape(-1L, 2L, 8L, 8L).astype(VarType.FP32)]
1968
    """
1969
    check_type(targets, 'targets', (framework.Variable, list),
1970
               'paddle.static.gradients')
1971
    check_type(inputs, 'inputs', (framework.Variable, list),
1972
               'paddle.static.gradients')
1973
    check_type(target_gradients, 'target_gradients', (
1974
        framework.Variable, list, type(None)), 'paddle.static.gradients')
1975

1976 1977
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)