backward.py 95.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from .proto import framework_pb2
16

17
from paddle.fluid import framework as framework
18
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
19
from . import core
F
update  
fengjiayi 已提交
20
import collections
21
import copy
22
import logging
23
from . import unique_name
24
from . import log_helper
L
liym27 已提交
25
import paddle.fluid
26
from .data_feeder import check_type
27
import warnings
28

29 30 31 32
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
33

M
mapingshuo 已提交
34 35 36 37 38
__all__ = [
    'append_backward',
    'gradients',
]

39 40 41
_logger = log_helper.get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
42

M
mapingshuo 已提交
43 44 45 46 47 48 49 50 51 52 53

class ProgramStats(object):
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
54 55 56 57
            if (
                len(self.var_op_deps[name]["var_as_output_ops"]) == 0
                and len(self.var_op_deps[name]["var_as_input_ops"]) > 0
            ):
M
mapingshuo 已提交
58 59 60 61 62 63 64 65 66 67 68
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
69
            if op.desc.type() == "seed":
M
mapingshuo 已提交
70 71 72 73 74 75 76 77 78 79 80
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
81 82 83 84 85
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
110

M
mapingshuo 已提交
111 112
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
113 114 115 116 117 118
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
119 120 121 122
            return (
                op.desc.type() == 'cast'
                and self.block.var(op.desc.input_arg_names()[0]).persistable
            )
J
JZ-LIANG 已提交
123 124 125 126 127

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
128 129 130 131 132 133
                _logger.info(
                    "found amp-cast op: {}, : {}".format(
                        self.ops[idx_].desc.type(),
                        self.ops[idx_].desc.input_arg_names()[0],
                    )
                )
J
JZ-LIANG 已提交
134 135 136 137 138 139 140
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
141 142 143 144 145
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
146
                    self.op_deps[i]["in_ops"].extend(
147 148
                        self.var_op_deps[name]["var_as_output_ops"]
                    )
M
mapingshuo 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

168 169 170 171
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
172
                _logger.info(
173
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
174 175
                    % name
                )
176 177 178 179 180
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
181 182
                    (name, max(self.var_op_deps[name]["var_as_output_ops"]))
                )
183 184 185
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
186 187 188 189 190 191
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
192
        while op_idx < len(self.ops):
M
mapingshuo 已提交
193 194 195 196
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
197 198 199 200
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
201 202
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
203 204 205
            var_unique_name = unique_name.generate_with_ignorable_key(
                ".".join([op_unique_name, 'tmp'])
            )
M
mapingshuo 已提交
206 207 208 209 210
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
211 212
                stop_gradient=False,
            )
M
mapingshuo 已提交
213
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
214

215 216
            op_device_attr_name = (
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
217 218 219 220 221
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

222
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
223
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
224 225 226 227 228 229 230
            added_op = self.block._insert_op(
                index=op.idx,
                type='seed',
                inputs={},
                outputs={'Out': [added_var]},
                attrs={'seed': seed, 'op_device': op_device, 'force_cpu': True},
            )
M
mapingshuo 已提交
231 232 233 234 235 236 237 238
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
239 240

def _pretty_op_desc_(op_desc, prefix):
241 242 243 244 245 246 247 248
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % (
        prefix + "_op",
        str(op_desc.type()),
        prefix + "_input",
        " ".join(op_desc.input_arg_names()),
        prefix + "_output",
        " ".join(op_desc.output_arg_names()),
    )
M
mapingshuo 已提交
249 250 251
    return out_s


252 253 254
def _add_needed_descs_to_block(
    descs, block, main_block, in_memory_vars, grad_op_id_to_fwd_op=None
):
M
mapingshuo 已提交
255 256 257
    if len(descs) == 0:
        return []
    result_descs = []
258
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
259 260
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
261 262
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
263 264
        if isinstance(desc, framework.Operator):
            desc = desc.desc
265
            origin_is_operator = True
M
mapingshuo 已提交
266 267 268 269 270 271 272 273 274
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
275 276
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
277 278 279
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
280 281
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
282 283 284 285
            result_descs.append(new_op_desc)
    return result_descs


286
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
287 288 289
    if len(descs) == 0:
        return []
    result_descs = []
290
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
291 292 293
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
294 295 296
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
297 298 299 300 301 302
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
303 304
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
305 306 307 308 309 310 311
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
312 313 314 315
        if (
            len(op.output_arg_names) == 1
            and op.output_arg_names[0] == loss.name
        ):
M
mapingshuo 已提交
316 317 318 319
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
320 321


322 323
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
324
    Traverse all ops in op_descs[begin_idx : end_idx],
325 326
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
327 328 329
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
330
        end_idx = len(op_descs)
331 332 333 334 335 336 337 338 339 340 341 342 343
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
344 345


F
fengjiayi 已提交
346
def _create_op_desc_(op_type, inputs, outputs, attrs):
347 348 349
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
350 351
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
352
    for para, args in inputs.items():
353 354 355
        op_desc.set_input(
            para,
            list(
356 357 358 359 360 361
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
362
    for para, args in outputs.items():
363 364 365
        op_desc.set_output(
            para,
            list(
366 367 368 369 370 371
                map(
                    lambda arg: arg.decode() if isinstance(arg, bytes) else arg,
                    args,
                )
            ),
        )
Y
yuyang18 已提交
372 373

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
374
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
375 376 377

    if op_role_attr_name not in attrs:
        attrs[
378 379
            op_role_attr_name
        ] = core.op_proto_and_checker_maker.OpRole.Backward
380 381
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
382
    for name, val in attrs.items():
F
fengjiayi 已提交
383 384 385
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
386
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
387 388 389
    return op_desc


M
mapingshuo 已提交
390 391
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
392 393 394 395
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
M
mapingshuo 已提交
396
            "shape": [1],
397 398 399 400 401 402
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName(): int(
                core.op_proto_and_checker_maker.OpRole.Backward
            )
403
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
404 405 406 407 408
            core.op_proto_and_checker_maker.kOpDeviceAttrName(): loss.op.attr(
                core.op_proto_and_checker_maker.kOpDeviceAttrName()
            ),
        },
    )
M
mapingshuo 已提交
409 410 411
    return op_desc


412
def _infer_var_data_type_shape_(grad_var_name, block):
413
    """
414
    Infer the data type and shape of given grad variable
415
    """
416
    grad_var = block.desc.find_var(grad_var_name.encode())
M
minqiyang 已提交
417
    fwd_name = _strip_grad_suffix_(grad_var_name)
418 419
    if block.desc.has_var_recursive(fwd_name.encode()):
        fwd_var = block.desc.find_var_recursive(fwd_name.encode())
F
fengjiayi 已提交
420
        grad_var.set_dtype(fwd_var.dtype())
421
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
422
    else:
423 424
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
425 426 427 428
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var".format(
                grad_var_name
            )
        )
429
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
430 431


F
fengjiayi 已提交
432
def _all_in_set_(cands, s):
433 434 435
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
436 437
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
438 439 440 441 442 443
    for c in cands:
        if not c in s:
            return False
    return True


444 445 446 447 448 449
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
450 451
    for c in cands:
        if c in s:
452 453 454 455
            return True
    return False


F
fengjiayi 已提交
456
def _strip_grad_suffix_(name):
457
    """
M
mapingshuo 已提交
458
    Strip the grad suffix from the given variable name
459 460 461
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
462
    pos = name.find(core.grad_var_suffix())
463 464
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
465
    return new_name[new_pos + 5 :] if new_pos != -1 else new_name
F
fengjiayi 已提交
466 467 468


def _append_grad_suffix_(name):
469 470 471 472
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
473
    return name + core.grad_var_suffix()
F
fengjiayi 已提交
474 475


476 477 478
def _accumulate_gradients_by_sum_op_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
479 480 481 482 483 484
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
485 486 487 488 489 490 491
        _create_op_desc_(
            "sum",
            {"X": renamed_vars[var_name]},
            {"Out": [var_name]},
            {"use_mkldnn": False, "op_device": op_device},
        )
    )
492 493 494
    renamed_vars[var_name] = [var_name]


495 496 497
def _accumulate_gradients_by_add_ops_(
    var_name, renamed_vars, pending_sum_ops, op_idx, op_device=""
):
498 499 500 501 502 503 504 505 506 507 508 509 510 511
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
512 513 514 515 516 517 518
            _create_op_desc_(
                "grad_add",
                {"X": [x_name], "Y": [y_name]},
                {"Out": [out_name]},
                {"use_mkldnn": False, "op_device": op_device},
            )
        )
519 520 521
    renamed_vars[var_name] = [var_name]


522 523 524
def _addup_repetitive_outputs_(
    op_descs, block_idx, grad_var_to_var=None, grad_op_id_to_fwd_op=None
):
525 526
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
527 528
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
529
    `sum_op`s are added to implement the accumulate.
530 531 532 533

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
534
    """
535

536
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
537
    # pending_sum_ops = []
538
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
539
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
540
    renamed_vars = collections.defaultdict(list)
541
    renamed_var_start_idx = collections.defaultdict(list)
542
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
543
    for idx, op_desc in enumerate(op_descs):
544 545
        op_device_attr_name = (
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
T
tangwei12 已提交
546 547 548 549
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
550
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
551 552
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
553
            if len(renamed_vars[var_name]) > 1:
554
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
555 556 557 558 559 560 561
                    _accumulate_gradients_by_sum_op_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
562
                else:
563 564 565 566 567 568 569
                    _accumulate_gradients_by_add_ops_(
                        var_name,
                        renamed_vars,
                        pending_sum_ops,
                        idx,
                        var_device[var_name],
                    )
570

F
update  
fengjiayi 已提交
571
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
572 573
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
574 575
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
576
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
577
                #    continue
578 579 580 581
                if (
                    var_name == core.empty_var_name()
                    or var_name in op_desc.input_arg_names()
                ):
F
fengjiayi 已提交
582 583 584 585 586
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
587
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
588 589
                else:
                    if len(renamed_vars[var_name]) == 1:
590 591 592 593 594 595 596
                        new_name = (
                            var_name
                            + "@RENAME@block"
                            + str(block_idx)
                            + "@"
                            + str(var_rename_count[var_name])
                        )
F
fengjiayi 已提交
597
                        var_rename_count[var_name] += 1
598 599 600 601
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
602 603
                                    var_name
                                ]
604 605
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
606 607
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
608 609 610 611
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
612 613 614 615 616 617 618
                        _rename_arg_(
                            op_descs,
                            var_name,
                            new_name,
                            renamed_var_start_idx[var_name],
                            idx,
                        )
F
fengjiayi 已提交
619 620
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
621 622 623
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
624 625 626 627 628 629 630
                                op_desc.set_output(
                                    p,
                                    [
                                        new_name if x == var_name else x
                                        for x in p_arg_names
                                    ],
                                )
F
update  
fengjiayi 已提交
631 632 633 634 635 636

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

637 638 639 640 641 642 643
                    new_name = (
                        var_name
                        + "@RENAME@block"
                        + str(block_idx)
                        + "@"
                        + str(var_rename_count[var_name])
                    )
F
fengjiayi 已提交
644
                    var_rename_count[var_name] += 1
645 646 647 648
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
649 650
                                var_name
                            ]
651 652
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
653 654 655
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
656
                    # record the latest device
657
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
658

659
    for var_name, inputs in renamed_vars.items():
660 661
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
662 663 664 665 666 667 668
                _accumulate_gradients_by_sum_op_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
669
            else:
670 671 672 673 674 675 676
                _accumulate_gradients_by_add_ops_(
                    var_name,
                    renamed_vars,
                    pending_sum_ops,
                    len(op_descs),
                    var_device[var_name],
                )
677

678
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
679
    # sum_op descs are sorted according to their insert position
680
    for key, value in collections.OrderedDict(
681 682
        reversed(list(pending_sum_ops.items()))
    ).items():
683 684 685 686 687 688 689

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
690 691
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
692 693 694 695 696 697 698
            if (
                grad_op_id_to_fwd_op is not None
                and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None
                )
                is not None
            ):
699
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
700 701
                    op_descs[target_idx].original_id()
                ]
702
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
703 704 705 706

    return op_descs


707 708 709
def _remove_no_grad_branch_(
    op_descs, no_grad_set, grad_op_id_to_fwd_op=None, target_vars=[]
):
710 711 712 713
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
714
        2. all grad inputs of the grad op are in 'no_grad_set'
715
    NOTE: we will skip target_vars's grad name.
716
    """
F
fengjiayi 已提交
717 718

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
719 720
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
721
            return True
722 723 724 725
        if _all_in_set_(
            [
                name
                for name in op_desc.input_arg_names()
726
                if name.find(core.grad_var_suffix()) != -1
727 728 729
            ],
            no_grad_set,
        ):
730
            no_grad_set.update(set(out_arg_names) - target_grad_var_names)
F
fengjiayi 已提交
731 732 733
            return True
        return False

F
fengjiayi 已提交
734
    # Remove ops whose outputs are all in no_grad_dict
735
    target_grad_var_names = set(
736 737
        [var.name + core.grad_var_suffix() for var in target_vars]
    )
738
    op_descs = [
739 740
        op_desc
        for op_desc in op_descs
741 742
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
743
    # Insert fill_any_like_op with value 0
F
fengjiayi 已提交
744
    to_insert = []
F
fengjiayi 已提交
745
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
746
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
747
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
748
            if core.grad_var_suffix() in arg and arg in no_grad_set:
749
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
750 751
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
752 753 754 755 756 757
                new_op_desc = _create_op_desc_(
                    "fill_any_like",
                    {"X": [x_in]},
                    {"Out": [arg]},
                    {'value': 0, 'dtype': -1},
                )
758
                # update the mapping between fwd and bwd
759 760 761 762 763 764 765 766
                if (
                    grad_op_id_to_fwd_op is not None
                    and grad_op_id_to_fwd_op.get(op_desc.original_id(), None)
                    is not None
                ):
                    grad_op_id_to_fwd_op[
                        new_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
767
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
768

769
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
770 771 772 773

    return op_descs


C
chengduo 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
789
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    """

    class Var(object):
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
848 849 850
    forward_vars_set = (
        set() if input_grad_names_set is None else set(input_grad_names_set)
    )
C
chengduo 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
890 891 892
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
893
    # not_need_op_descs will be whole graph, this IF clause avoids it.
894 895 896
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
897 898


Y
Yang Yang 已提交
899 900
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
901
    proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang 已提交
902 903 904
    return proto.__str__()


905 906 907 908 909 910 911 912 913 914
def _append_backward_ops_with_checkpoints_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    checkpoints,
    grad_op_id_to_fwd_op=None,
):
M
mapingshuo 已提交
915 916 917 918 919 920
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
921
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
M
mapingshuo 已提交
922 923 924 925 926 927 928
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
929
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
930 931 932 933 934
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
935 936 937
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
938 939
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
940 941
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
942 943
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
944
    """
M
mapingshuo 已提交
945 946

    checkpoints_name = [x.name for x in checkpoints]
947
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
948 949
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
950
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
951
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
952
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
953
    program_stat.build_stats()
M
mapingshuo 已提交
954 955

    # 1) find ops between checkpoints, i.e. recompute_segments
956
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
957 958
    segments = []

959
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
960 961 962 963 964 965 966
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
967
            # only count the last generate op
M
mapingshuo 已提交
968 969 970 971 972 973
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
974
        pre_segment_end_idx = -1
M
mapingshuo 已提交
975 976 977
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
978 979
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
980
            flag, min_idx, max_idx = program_stat.is_subgraph(
981 982
                [checkpoints_name[start_idx]], [checkpoints_name[start_idx + 1]]
            )
M
mapingshuo 已提交
983
            if flag:
J
JZ-LIANG 已提交
984 985
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
986 987
                    min_idx, pre_segment_end_idx
                )
M
mapingshuo 已提交
988
                segments.append([min_idx, max_idx + 1])
989
            else:
990 991 992 993 994
                _logger.info(
                    "Could not recompute op range [{}] - [{}] ".format(
                        min_idx, max_idx + 1
                    )
                )
J
JZ-LIANG 已提交
995

M
mapingshuo 已提交
996 997 998 999 1000 1001
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
1002

J
JZ-LIANG 已提交
1003
    for i, (idx1, idx2) in enumerate(recompute_segments):
1004
        _logger.info("recompute segment[{}]".format(i))
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
1015
        _logger.info("recompute segment[{}]".format(i))
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        _logger.info(
            "segment start op: [{}]: [{}]".format(
                ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()
            )
        )
        _logger.info(
            "segment end op: [{}]: [{}]".format(
                ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()
            )
        )
J
JZ-LIANG 已提交
1026

M
mapingshuo 已提交
1027
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
1028
    vars_should_be_hold = []
1029
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
1030 1031
    for segment in recompute_segments:
        vars_should_be_hold.extend(
1032 1033
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1])
        )
J
JZ-LIANG 已提交
1034 1035

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
1036 1037 1038 1039 1040
    _logger.info(
        "found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format(
            len(cross_vars), cross_vars
        )
    )
J
JZ-LIANG 已提交
1041

M
mapingshuo 已提交
1042
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
1043
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
1044
    # c. input variables are checkpoints
M
mapingshuo 已提交
1045 1046 1047
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
1048
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
1049 1050 1051 1052 1053 1054
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
1055
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
1056 1057 1058 1059
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1060 1061 1062 1063 1064
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1065
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1066 1067
                op.desc, no_grad_dict[block.idx], []
            )
1068 1069 1070 1071 1072 1073

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1074 1075 1076 1077 1078
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1079 1080 1081
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1082 1083 1084 1085
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
1086
        gap_ops = ops[segment[1] : max_calculated_op_position]
M
mapingshuo 已提交
1087 1088 1089
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
1090 1091 1092 1093 1094
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1095
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1096 1097
                op.desc, no_grad_dict[block.idx], []
            )
1098 1099 1100 1101 1102 1103

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

1104 1105 1106 1107 1108
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
1109 1110 1111
            added_descs = _add_descs_to_block(
                grad_op_desc, local_block, grad_op_id_to_fwd_op
            )
M
mapingshuo 已提交
1112 1113 1114
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

1115
        ff_ops = ops[segment[0] : segment[1]]
M
mapingshuo 已提交
1116 1117 1118 1119
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
1120 1121 1122 1123 1124
                raise Exception(
                    "Recompute don't support ops with sub_block"
                    "invoke op: %s"
                    % _pretty_op_desc_(op.desc, "with_sub_block")
                )
M
mapingshuo 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1135 1136 1137

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1138 1139 1140 1141 1142 1143 1144 1145
                    block.create_var(
                        name=var_name_dict[name],
                        shape=ref_var.shape,
                        dtype=ref_var.dtype,
                        type=ref_var.type,
                        persistable=ref_var.persistable,
                        stop_gradient=ref_var.stop_gradient,
                    )
1146

M
mapingshuo 已提交
1147
        # 3.a. add ops in current recompute_segment as forward recomputation ops
1148 1149 1150 1151 1152 1153
        buffer_descs = _add_needed_descs_to_block(
            ff_ops, buffer_block, block, vars_in_memory, grad_op_id_to_fwd_op
        )
        added_descs = _add_descs_to_block(
            ff_ops, local_block, grad_op_id_to_fwd_op
        )
M
mapingshuo 已提交
1154

M
mapingshuo 已提交
1155
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1156 1157 1158 1159 1160 1161
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1162
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1163 1164
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1165 1166
                op_desc, no_grad_dict[block.idx], []
            )
1167

1168 1169 1170
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
1171 1172 1173
                    grad_op_id_to_fwd_op[
                        g_op_desc.original_id()
                    ] = grad_op_id_to_fwd_op[op_desc.original_id()]
1174

1175 1176 1177 1178 1179 1180
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1181 1182 1183 1184 1185
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1186
    # 3.d. add sum op for repetitive_outputs
1187
    grad_op_descs = _addup_repetitive_outputs_(
1188 1189
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op
    )
M
mapingshuo 已提交
1190
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
    added_descs = _add_descs_to_block(
        grad_op_descs, target_block, grad_op_id_to_fwd_op
    )
    return (
        program_stat,
        checkpoints_name,
        vars_should_be_hold,
        recompute_segments,
    )


def _get_sub_block_path(
    sub_block,
    sub_block_op_desc,
    no_grad_set,
    op_path_dict,
    sub_block_target_names=None,
):
1215 1216
    """
    Get output vars in subblock which will be assigned to parent block.
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1229
    """
1230

1231
    assert sub_block_op_desc.has_attr(
1232 1233
        "sub_block"
    ) and sub_block.idx == sub_block_op_desc._block_attr_id("sub_block")
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1246
            for op_desc in sub_block.ops:
1247
                if var in op_desc.output_arg_names:
1248
                    for name in op_desc.input_arg_names:
1249
                        sub_outputs.append(sub_block._var_recursive(name))
1250

1251 1252
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1253 1254 1255
        sub_block_op_path = _find_op_path_(
            sub_block, sub_outputs, [], no_grad_set, op_path_dict, is_while
        )
1256 1257 1258 1259
        return sub_block_op_path
    return sub_block.ops


1260 1261 1262
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
1263 1264 1265
    if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
        op.all_attrs()[op_maker.kOpRoleAttrName()]
    ) == int(backward):
1266 1267 1268 1269 1270 1271 1272 1273
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
def _append_backward_ops_(
    block,
    ops,
    target_vars,
    target_block,
    no_grad_dict,
    grad_to_var,
    callbacks=None,
    input_grad_names_set=None,
    op_path_dict=None,
    distop_context=None,
    rename_var_map=None,
    grad_op_id_to_fwd_op=None,
):
1288 1289 1290 1291 1292
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1293
        ops(Op): the forward operators whose backward ops need to be added
1294
        target_vars(list[Tensor]): the loss vars we want to calculate gradient.
1295
        target_block(Block): the block which is going to hold new generated grad ops
1296
        no_grad_dict(dict):
1297
            key(int)  block index
T
tianshuo78520a 已提交
1298
            val(set) a set of variable names. These variables have no gradient
1299 1300 1301
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1302 1303 1304 1305
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1306 1307 1308
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1309 1310
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1311
    """
1312 1313

    # Build the mapping between the forward op and backward op (Only for auto parallel)
1314 1315 1316
    def update_distop_context(
        distop_context, op_grad_to_var, appending_grad_times
    ):
1317
        distop_context.grad_var_to_var[appending_grad_times].update(
1318 1319
            op_grad_to_var
        )
1320
        for op_desc in grad_op_desc:
1321 1322 1323
            assert (
                op_desc.original_id() not in distop_context.grad_op_id_to_op_id
            )
1324
            distop_context.grad_op_id_to_op_id[
1325 1326
                op_desc.original_id()
            ] = op.desc.original_id()
1327

Y
Yang Yang 已提交
1328
    if callbacks is not None:
1329
        assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1330 1331 1332
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1333

F
fengjiayi 已提交
1334
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1335 1336
    grad_op_descs = []
    program = block.program
1337

1338 1339 1340
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1341

1342
    # add grad_op_desc by reversed ops
1343
    for op in reversed(ops):
F
fengjiayi 已提交
1344 1345 1346
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1347
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1348
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1349
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1350 1351 1352
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1353
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            _append_backward_ops_(
                sub_block,
                sub_block_path,
                target_vars,
                grad_sub_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
                input_grad_names_set,
                op_path_dict,
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1366
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1367

W
Wu Yi 已提交
1368
            program._rollback()
F
fengjiayi 已提交
1369 1370
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1371
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1372
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1373 1374
            op.desc, no_grad_dict[block.idx], grad_sub_block_list
        )
1375

1376 1377 1378 1379 1380
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1381
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1382
        if distop_context is not None:
1383 1384 1385
            update_distop_context(
                distop_context, op_grad_to_var, program._appending_grad_times
            )
1386
        else:
1387 1388 1389 1390 1391
            default_ctx = getattr(
                paddle.distributed.auto_parallel.dist_context,
                '_g_default_distributed_context',
                None,
            )
1392 1393
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
1394 1395 1396 1397 1398
                update_distop_context(
                    distop_context,
                    op_grad_to_var,
                    program._appending_grad_times,
                )
Y
Yang Yu 已提交
1399

1400 1401
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1402 1403 1404 1405
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1406

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1417 1418 1419 1420
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1421 1422 1423 1424 1425
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
1426 1427
                            name, program._appending_grad_times
                        )
1428 1429 1430 1431
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1432 1433 1434
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
1435 1436
                                    program._appending_grad_times
                                ][new_name] = op_grad_to_var[name]
1437 1438 1439
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1440 1441 1442 1443 1444
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1445 1446 1447 1448
            is_grad_name = (
                lambda name: name.find(core.grad_var_suffix()) != -1
                or name in input_grad_names_set
            )
1449 1450 1451
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
1452 1453
                    name
                    for name in op_desc.input_arg_names()
1454
                    if is_grad_name(name)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1472

1473 1474 1475 1476
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
1477 1478
            program._appending_grad_times
        ]
M
mapingshuo 已提交
1479
    # sum parameter's gradients' var given multiple var gradient
1480 1481 1482 1483
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
1484 1485
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
    )
F
fengjiayi 已提交
1486

M
mapingshuo 已提交
1487 1488
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
1489 1490 1491 1492 1493 1494
    grad_op_descs = _remove_no_grad_branch_(
        grad_op_descs,
        no_grad_dict[block.idx],
        grad_op_id_to_fwd_op,
        target_vars,
    )
F
fengjiayi 已提交
1495

M
mapingshuo 已提交
1496
    # remove some backward ops
C
chengduo 已提交
1497
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1498

C
chengduo 已提交
1499 1500 1501
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1502

F
fengjiayi 已提交
1503
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1504 1505
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1506
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1507 1508
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1509
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1510
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1511
        if callbacks is not None:
1512
            assert isinstance(callbacks, (list, tuple))
Y
Yang Yang 已提交
1513 1514
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1515

F
fengjiayi 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
1529
    for block_id in range(program.num_blocks):
1530
        block_desc = program.block(block_id).desc
1531
        for op_idx in range(block_desc.op_size()):
1532
            op = block_desc.op(op_idx)
1533 1534 1535 1536
            if (
                op.has_attr("sub_block")
                and op._block_attr_id("sub_block") == sub_block_id
            ):
1537 1538
                return op

1539
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1540 1541 1542 1543
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1544
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1557
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1558
    """
1559 1560
    ops_to_remove = []
    '''
1561 1562 1563 1564 1565
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found
    in the parent/forward block, and they are also the outputs of while_grad
    op. These kinds of inputs are the recursive outputs inside while_grad op.
    They should be considered as "already created" when scanning the inner
    ops of while_grad ops.
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1576 1577 1578
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1579
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1580
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1581 1582 1583 1584 1585 1586 1587 1588 1589

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
1590 1591
            var
            for var in op_desc.input_arg_names()
1592 1593 1594
            if var != core.empty_var_name()
        ]
        outputs = [
1595 1596
            var
            for var in op_desc.output_arg_names()
1597 1598 1599
            if var != core.empty_var_name()
        ]

1600
        # If the outputs of grad op is empty, just remove it
1601 1602 1603 1604 1605
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
1606
            If the output is not empty and there is any grad input, find
1607 1608 1609 1610
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
1611 1612
                    var
                    for var in grad_var_ins
1613
                    if block.desc.has_var_recursive(var.encode())
1614
                    or var in parent_op_vars
1615 1616 1617 1618
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
1619 1620
                    in recurrent op. The input of this op does not even exist in
                    the program! Therefore, any dependency analysis would not
1621
                    work to this op! If I do not add the following code, this op
1622 1623
                    would be pruned, and the calculation result would be wrong.
                    Maybe we should re-design this op later...
1624 1625 1626
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1627
                        continue
1628

F
fengjiayi 已提交
1629 1630 1631
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
1632 1633 1634 1635
            if (
                block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
F
fengjiayi 已提交
1636
                continue
1637
            block.desc.var(grad_var_name.encode())
F
fengjiayi 已提交
1638
            new_vars.add(grad_var_name)
1639
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1640 1641 1642
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1643
        op_desc.check_attrs()
F
fengjiayi 已提交
1644 1645
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1646

F
fengjiayi 已提交
1647 1648
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1649
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1650

1651 1652 1653
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1654

1655 1656 1657 1658 1659 1660
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1661
                op_desc._rename_input(name, var_map[name])
1662 1663

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1664 1665
            if "@GRAD" not in name:
                continue
1666
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1667
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1668
                op_desc._rename_output(name, new_name)
1669 1670
                var_map[name] = new_name

1671
    for g, ng in var_map.items():
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1683
        for var in list(block.vars.values()):
1684 1685 1686 1687 1688 1689 1690
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1702 1703 1704 1705 1706 1707 1708
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
1709
                elif isinstance(no_grad_var, str):
1710 1711 1712 1713
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
1714 1715
                        % (type(no_grad_var))
                    )
1716 1717
        else:
            raise TypeError(
1718 1719 1720 1721
                "The type of no_grad_set should be set or list or tuple, but received {}".format(
                    type(no_grad_set)
                )
            )
1722 1723 1724
    return no_grad_set_name


1725
@framework.static_only
1726 1727 1728 1729 1730 1731 1732 1733
def append_backward(
    loss,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
1734
    """
1735 1736
    :api_attr: Static Graph

1737
    This function appends backward part to main_program.
F
fengjiayi 已提交
1738

1739 1740
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1741 1742
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1743

1744 1745
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1746

1747
    Parameters:
1748
        loss(Tensor): The loss Tensor of the network.
1749
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1750
                                           that need to be updated by optimizers.
1751
                                           If it is None, all parameters
F
fengjiayi 已提交
1752
                                           will be updated.
1753
                                           Default: None.
1754 1755
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1756
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1757
                               be automatically added into this set.
1758
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1759
                               Default: None.
1760
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1761
                                               The callbacks are used for
1762 1763 1764 1765 1766 1767
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1768
                                               object must have two input
1769 1770
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1771
                                               the new gradient operator will
1772
                                               be added to. The ``context`` is a
1773
                                               map, whose keys are gradient
1774 1775 1776
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1777
                                               has another special key-value pair:
1778
                                               the key is string ``__current_op_desc__``
1779 1780 1781
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1782
                                               Default: None.
F
fengjiayi 已提交
1783 1784

    Returns:
1785 1786
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1787 1788

    Raises:
1789
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1790 1791 1792 1793

    Examples:
        .. code-block:: python

1794 1795
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1796

1797 1798 1799 1800 1801
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1802
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1803 1804
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1805 1806

            # Get all weights in main_program, not include bias.
1807
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1808 1809 1810
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1811
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1812 1813
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1814 1815
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1816 1817 1818
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1819
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1820 1821
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1822 1823
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1824 1825
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1826 1827
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1828 1829 1830
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1831
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1832

1833
    """
1834 1835 1836
    grad_op_id_to_fwd_op = (
        {}
    )  # for cuda graph usage, recording the mapping between grad op original id to fwd op
1837

1838 1839 1840
    check_type(
        loss, 'loss', framework.Variable, 'paddle.static.append_backward'
    )
Y
yuyang18 已提交
1841

Y
Fix bug  
yuyang18 已提交
1842 1843
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1844
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1845

1846 1847 1848
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
1849 1850
        | int(core.op_proto_and_checker_maker.OpRole.Loss),
    )
Y
yuyang18 已提交
1851

Y
Yang Yang 已提交
1852
    if callbacks is not None:
1853 1854 1855 1856 1857 1858
        check_type(
            callbacks,
            'callbacks',
            (list, tuple),
            'paddle.static.append_backward',
        )
Y
Yu Yang 已提交
1859

F
fengjiayi 已提交
1860
    program = loss.block.program
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1871

F
fengjiayi 已提交
1872
    if no_grad_set is None:
1873
        no_grad_set = set()
1874 1875
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1876
    no_grad_dict = _get_stop_gradients_(program)
1877 1878
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1879
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1880

1881 1882 1883 1884 1885 1886 1887
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
1888 1889
            parent_idx=current_block.parent_idx
        )
1890 1891 1892 1893 1894 1895
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
1896 1897
        program, current_block_idx
    )
1898 1899 1900 1901

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1902

F
fengjiayi 已提交
1903 1904
    grad_to_var = dict()

1905
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1906
    op_desc = _create_loss_op_desc_(loss)
1907
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1908 1909 1910 1911 1912 1913
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
1914 1915
            map(_strip_grad_suffix_, no_grad_dict[block_idx])
        )
1916 1917

        op_path_dict = dict()
1918 1919 1920
        op_path = _find_op_path_(
            block, [loss], [], block_no_grad_set, op_path_dict
        )
1921

1922 1923 1924
        no_grad_vars = _find_no_grad_vars(
            block, op_path, [loss], block_no_grad_set
        )
1925 1926 1927

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
1928 1929
            list(map(_append_grad_suffix_, block_no_grad_set))
        )
1930 1931 1932 1933 1934

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1935
        # TODO(liym27): need a better design.
1936 1937 1938 1939 1940
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1941
        # TODO: support _append_backward_ops_with_checkpoints_ in
1942
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1943
        is_recompute = False
1944
        if (
1945
            checkpoints is not None
1946 1947 1948
            and isinstance(checkpoints, list)
            and len(checkpoints) > 0
        ):
J
JZ-LIANG 已提交
1949
            is_recompute = True
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
            (
                program_stat,
                checkpoint_names,
                vars_should_be_hold,
                recompute_segments,
            ) = _append_backward_ops_with_checkpoints_(
                root_block,
                op_path,
                [loss],
                root_block,
                no_grad_dict,
                grad_to_var,
                checkpoints,
                grad_op_id_to_fwd_op,
            )
1965 1966 1967 1968
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
1969
                [loss],
1970 1971 1972 1973
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1974
                input_grad_names_set=input_grad_names_set,
1975
                op_path_dict=op_path_dict,
1976
                distop_context=distop_context,
1977 1978
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op,
            )
1979 1980 1981 1982 1983

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
1984 1985 1986 1987 1988
    fwd_op_num = (
        block_fwd_op_num_dict[current_block_idx]
        if not is_in_control_flow
        else 0
    )
1989 1990

    # Because append_backward may be called multiple times,
1991 1992
    # we need rename the internal gradient variables so that they have
    # different names.
1993
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1994

1995 1996 1997
    _append_backward_vars_(
        target_grad_block, fwd_op_num, grad_to_var, grad_info_map
    )
F
fengjiayi 已提交
1998

F
fengjiayi 已提交
1999
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
2000
    program._sync_with_cpp()
F
fengjiayi 已提交
2001

2002 2003 2004 2005 2006 2007
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

2008
    if parameter_list is not None:
2009 2010 2011 2012 2013 2014
        check_type(
            parameter_list,
            'parameter_list',
            (list, tuple, set),
            'fluid.backward.append_backward',
        )
2015 2016
        parameters = []
        for i, param in enumerate(parameter_list):
2017 2018 2019 2020 2021 2022
            check_type(
                param,
                'parameter_list[%s]' % i,
                (framework.Variable, str),
                'fluid.backward.append_backward',
            )
2023 2024
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
2025
            elif isinstance(param, str):
2026
                parameters.append(param)
2027
    else:
F
fengjiayi 已提交
2028
        params = program.global_block().all_parameters()
C
chengduo 已提交
2029
        parameters = [param.name for param in params if param.trainable]
2030

2031
    params_and_grads = []
2032
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
2033
    for param in parameters:
2034
        if param not in grad_info_map:
F
fengjiayi 已提交
2035
            continue
F
update  
fengjiayi 已提交
2036
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
2037
        grad_block = grad_info[1]
2038
        if not grad_block.has_var(grad_info[0]):
2039 2040 2041 2042 2043
            raise ValueError(
                "grad block[{0}] did not have grad var {1}".format(
                    grad_info[1], grad_info[0]
                )
            )
2044
        # Get the param var from the global block
F
fengjiayi 已提交
2045
        param_var = program.global_block().var(param)
2046
        grad_var = grad_block.var(grad_info[0])
2047 2048 2049 2050 2051
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
2052
        else:
2053
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
2054 2055 2056 2057

    for p, g in params_and_grads:
        if g is None:
            continue
2058 2059 2060
        ops = (
            grad_block.ops if is_in_control_flow else program.global_block().ops
        )
2061
        for op in reversed(ops):
Y
yuyang18 已提交
2062 2063 2064 2065 2066 2067 2068
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
2069
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
2070 2071
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
2072
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
2073

J
JZ-LIANG 已提交
2074 2075 2076 2077
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
2078 2079 2080 2081 2082


def _as_list(x):
    if x is None:
        return []
2083
    return list(x) if isinstance(x, Sequence) else [x]
2084 2085


2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

2112 2113 2114 2115 2116 2117
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
2118 2119 2120 2121 2122 2123 2124 2125 2126
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
2127 2128 2129
                    if not block.desc.find_var(
                        name.encode()
                    ) and parent_block.desc.find_var(name.encode()):
2130 2131 2132 2133 2134 2135 2136 2137
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


2138 2139 2140
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
2141
    those vars belong to no_grad_var.
2142
    """
2143
    output_names = _get_output_names(block, targets)
2144 2145 2146 2147 2148
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
2149 2150 2151 2152 2153
                if (
                    out_var not in output_names
                    and out_var not in op.desc.input_arg_names()
                    and not block.vars[out_var].stop_gradient
                ):
2154 2155 2156 2157 2158 2159 2160
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


2161 2162 2163
def _find_op_path_(
    block, targets, inputs, no_grad_set, op_path_dict=None, is_while=False
):
2164
    """
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
2178
    """
2179

2180
    input_names = set([inp.name for inp in inputs])
2181 2182 2183
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
2184 2185 2186 2187 2188 2189

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
2190 2191 2192
            if _some_in_set_(
                op.desc.input_arg_names(), input_names
            ) and core.has_non_empty_grad_op_maker(op.type):
2193 2194 2195 2196 2197 2198 2199
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
2200 2201 2202 2203
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
2204 2205 2206
            sub_block_path = _get_sub_block_path(
                sub_block, op, set(), op_path_dict, sub_block_target_names
            )
2207 2208
            op_path_dict[sub_block_id] = sub_block_path

2209 2210 2211
        if _some_in_set_(
            op.desc.output_arg_names(), output_names
        ) and core.has_non_empty_grad_op_maker(op.type):
2212 2213 2214 2215 2216 2217
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2218 2219 2220 2221
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
2222 2223 2224
            if relevant_op_flags[i] == False and _some_in_set_(
                op.desc.output_arg_names(), output_names
            ):
2225 2226
                relevant_op_flags[i] = True

2227 2228 2229 2230 2231 2232 2233
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2234
                if name not in input_names and block.vars[name].stop_gradient:
2235 2236 2237 2238 2239 2240 2241
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2242
    Backpropagate the gradients of targets to inputs.
2243 2244

    Args:
2245 2246 2247
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2248 2249
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2250 2251
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2252 2253
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2254
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2255
                               Default: None.
2256 2257

    Return:
2258 2259
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2260 2261 2262 2263 2264 2265 2266 2267
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2268 2269
    # increase appending gradients times
    prog._appending_grad_times += 1
2270 2271 2272 2273 2274 2275 2276
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
2277 2278
            "Should have the same number of target_gradients as targets"
        )
2279 2280 2281

    if no_grad_set is None:
        no_grad_set = set()
2282 2283
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2284
    no_grad_dict = _get_stop_gradients_(prog)
2285
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2286 2287 2288

    fwd_op_num = block.desc.op_size()

2289 2290
    input_grad_names_set = set()

2291
    target_grad_map = {}
2292
    rename_var_map = {}
2293 2294
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2295
        grad_name = _append_grad_suffix_(target.name)
2296
        if grad is None:
L
lvmengsi 已提交
2297 2298
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
2299 2300 2301 2302 2303 2304 2305
                _create_op_desc_(
                    "shape",
                    {'Input': [target.name]},
                    {"Out": [target_shape]},
                    {},
                )
            )
L
lvmengsi 已提交
2306
            input_grad_names_set.add(target_shape)
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
            op_desc = _create_op_desc_(
                "fill_constant",
                {"ShapeTensor": [target_shape]},
                {"Out": [grad_name]},
                {
                    "shape": target.shape,
                    "value": 1.0,
                    "dtype": target.dtype,
                },
            )
L
liym27 已提交
2317

2318
            block.desc.append_op().copy_from(op_desc)
2319
            input_grad_names_set.add(grad_name)
2320 2321 2322 2323 2324
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2325 2326 2327
                    "The shapes of target and grad are different: %s %s"
                    % (target.name, grad.name)
                )
2328
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2329
            input_grad_names_set.add(grad.name)
2330
            rename_var_map[grad_name] = grad.name
2331 2332

    # For double backward, input_grad_names is used for filter
2333 2334
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2335 2336
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2337
        rename_var_map = {}
2338 2339 2340 2341 2342 2343

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2344 2345

    op_path_dict = dict()
2346 2347 2348
    op_path = _find_op_path_(
        block, targets, inputs, block_no_grad_set, op_path_dict
    )
2349 2350

    # find no grad var by op_path
2351 2352 2353
    no_grad_vars = _find_no_grad_vars(
        block, op_path, targets, block_no_grad_set
    )
2354 2355
    block_no_grad_set.update(no_grad_vars)

2356
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2357 2358
    grad_to_var = dict()
    grad_info_map = dict()
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
    _append_backward_ops_(
        block,
        op_path,
        targets,
        block,
        no_grad_dict,
        grad_to_var,
        input_grad_names_set=input_grad_names_set,
        op_path_dict=op_path_dict,
        rename_var_map=rename_var_map,
    )
2370 2371 2372 2373 2374 2375 2376

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2377
    prog._sync_with_cpp()
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2393 2394


2395
@framework.static_only
2396 2397
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2398

2399 2400 2401
    Backpropagate the gradients of targets to inputs.

    Args:
2402 2403 2404
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2405 2406
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2407 2408 2409
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2410
            in this set will be added to the default set. Default: None.
2411 2412

    Return:
2413 2414
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2415 2416 2417
        will be None.

    Examples:
2418

2419
        .. code-block:: python
2420
          :name: code-example
2421 2422 2423 2424
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2425

2426
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2427
            x.stop_gradient=False
2428 2429 2430
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2431
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2432
    """
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    check_type(
        targets,
        'targets',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        inputs,
        'inputs',
        (framework.Variable, list, tuple),
        'paddle.static.gradients',
    )
    check_type(
        target_gradients,
        'target_gradients',
        (framework.Variable, list, tuple, type(None)),
        'paddle.static.gradients',
    )
2451 2452
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
    check_type(
        program,
        'program',
        paddle.fluid.Program,
        'paddle.static.gradients_with_optimizer',
    )
    check_type(
        optimizer,
        'optimizer',
        paddle.optimizer.Optimizer,
        'paddle.static.gradients_with_optimizer',
    )
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
2523 2524 2525 2526 2527 2528
        pram_grads = [
            (pram, grad)
            for pram, grad in zip(inputs, grads)
            if isinstance(pram, paddle.fluid.framework.Parameter)
            and grad is not None
        ]
2529 2530 2531 2532

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads